Negation and negative dependencies in Upper Bal Svan
David Erschler
Ben-Gurion University of the Negev
erschler@bgu.ac.il

This is a preliminary description of negation and indefinites in the scope of negation in Upper Bal Svan. This language uses both negative concord and negative polarity items, which are subject to non-trivial and apparently typologically rare co-occurrence constraints. Furthermore, I propose an idea of an analysis of these phenomena based on Zeijlstra’s (2004) analysis of negative concord as an agreement phenomenon.

1. Introduction

This paper deals with interaction of sentential negation with negative indefinites (NIs) and negative polarity items (NPIs) in Upper Bal Svan (South Caucasian, Georgia). In its negative dependencies, Svan uses both NIs that participate in negative concord, and NPIs. The placement and co-occurrence of NIs and NPIs are subject to non-trivial and possibly typologically unique constraints.

Negative concord, Giannakidou (2000), is a phenomenon where all negative indefinites in the scope of negation show overt negative morphology (and each of them is able to serve as an independent negative answer, Bernini & Ramat 1996: 121; Haspelmath 1997: 194-196), (1a-b), but they are interpreted as a single instance of negation.

(1) Russian

a. v jevo stajax ni-kto ni-kogda ni-jevo
 in his articles NEG-who NEG-when NEG-what
 ne=ponimal
 NEG-understood
 ‘No one ever understood anything in his articles.’

b. Q: kto (i) jto ponimal v jevo stajax?
 who and what understood in his articles
 ‘Who understood what in his articles?’

 A: ni-kto ni-jevo
 NEG-who NEG-what
 ‘No one anything.’

In the same terminology, the two subtypes of negative concord are, first, Strict Negative Concord, where NIs must be accompanied by a sentential negation marker, such as ne in the Russian example in (1a), and, second, Non-Strict Negative Concord, where no sentential negation marker is necessary or even possible, Giannakidou (2000: 462) and Zeijlstra (2004: 64).

An alternative strategy for a language to use to put multiple indefinites in the scope of negation is to make use of NPIs, restricting the number of overtly negative items in a clause to one.

(2) No one has ever understood anything in any of his papers.

1 Glosses: ABS absolutive; ADV adverbal case; COMP complementizer; DAT dative; ERG ergative; NEG negative; PRV preverb; Q question particle. Abbreviations: NI negative indefinite; NPI negative polarity item.
Svan employs an interesting combination of these strategies. While NIs can occur in any number in a sentence, they are incompatible with an overt preverbal negation marker (3a), i.e. Svan exhibits Non-Strict NC. Besides that, Svan uses combinations of NPIs and NIs (3b).

(3) a. gela-d de:-mtʃik de:-me d-ær (*de:m)
 G-ERG NEG-ever NEG-where NEG-who NEG
 anundrevine offended
 ‘Gela has never offended anyone anywhere.’

 b. gela-d de:m(a) anundrevine de:mtʃik ime jær
 G-ERG NEG offended never where who
 ‘Gela never offended anyone anywhere.’

In the terminology accepted since Den Besten (1986: 205), in its combinations of NIs, Svan exhibits Negative Spread. An empirical generalization Zeijlstra (2004: 62) proposed concerning Negative Spread is “There is no language that exhibits Negative Spread, but lacks a particular negative element that accompanies n-words.” Svan and Ossetic (Erschler & Volk 2011; Borise & Erschler 2021) falsify this generalization. A more recent typological study Van der Auwera & Van Alsenoy (2016) does not mention the possibility of such a system, although they note that non-strict negative concord in general is relatively rare cross-linguistically. The theory, however, does not rule out such systems on principled grounds.

To analyze Negative Concord, Zeijlstra (2004) proposed that the negative semantics under NC is contributed by a null operator with an [iNeg] feature, while NIs, which all carry a [uNeg] feature, undergo Agree with it. An early precursor of agreement-based approaches to negation and negative concord are Brown & Franks (1995) and Brown (1999). Zeijlstra’s theory countenances multiple Agree.

I show in this paper that the approach of Zeijlstra (2004:249) can, with some modifications, be extended to Svan. However, restrictions on the position of NIs and NPIs in a clause are a separate Svan-specific phenomenon to account for which I propose a certain sequence of movements.

This paper is organized as follows. In Section 2, I provide a brief background on Svan. In Section 3, I present a description of Svan sentential negation and of the structure and behavior of negative indefinites and negative polarity items. In Section 4, I formulate and discuss descriptive generalizations about co-occurrences of NIs and NPIs in Svan finite clauses. In Section 5, I sketch a possible analysis of the Svan negation system.

2. Background on Svan

Svan is an endangered South Caucasian (Kartvelian) language. It is the earliest offshoot of the family (Testelets 2020). Svan is mostly spoken in the historical regions of Upper and Lower Svaneti, in the Northwest of the Republic of Georgia. In censuses, both the Soviet ones and those performed in independent Georgia, Svans were listed as Georgians and questions about their command of Svan were not asked. Therefore, only very approximate estimates are possible of the number of Svan speakers: the total population of the two districts is currently about 23,000. It is not clear whether Svan is transmitted to children anymore, see a discussion in Gippert (2008) and Tuite (2017). The youngest speakers I have had a chance to meet would be now in their forties.

While typologically similar to the much better studied Georgian, Svan exhibits significant differences in its grammar, which largely remains unexplored. For sketches of Upper Bal Svan grammar, see Palmaitis & Gudjedjani (1986), Tuite (1997), and Oniani (1998).
In this paper, I do not attempt to disentangle the notoriously complex morphophonology of the Svan verb. I only provide simplistic convenience translations for the verb forms.

3. Negation in Svan

3.1 Plain negative markers in Svan

Standard negation (in the sense of Miestamo 2005) in Svan is expressed by a negative marker that (normally) immediately precedes the verb (4). Negative markers can only be separated from the verb by some functional items, such as the complementizer e:, but not e.g. the apparently synonymous complementizer ere: (4 b-c).

(4) a. k’āfa ma:m dʒak’u? porridge.ABS NEG you.want ‘Don’t you want porridge?’
 b. ufša-s xak’luni [gela ma:m e:/#ere: ænqdeni] Ucha-DAT fears Gela.ABS NEG COMP arrives ‘Ucha fears that Gela wouldn’t arrive.’
 c. ufša-s xak’luni [gela e:/ere: ma:m ænqdeni] Ucha-DAT fears Gela.ABS COMP NEG arrives ‘Ucha fears that Gela wouldn’t arrive.’

The inventory of negative markers in Upper Bal Svan is large and the semantic differences between them are not fully clear. While in some cases a change in the negative marker results in a perceivable change in meaning (5), in many situations consultants accept several possible negative markers (6).

(5) a. dævit desa gærgli luʃnud David NEG speaks Svan ‘David doesn’t (=is unable to) speak Svan.’
 b. dævit ma:ma gærgli luʃnud David NEG speaks Svan ‘David doesn’t (= is able to but doesn’t want to) speak Svan.’
 c. Gela řwinæl-s ma:m/dem itre Gela.ABS wine-DAT NEG drinks ‘Gela doesn’t drink wine.’
 d. Gela řwinæl-s def itre Gela.ABS wine-DAT NEG drinks ‘Gela cannot drink wine.’

(6) a. da:vær desa/de:m/ma:m lɔmærdx demons NEG exist ‘Demons do not exist.’
 b. maq’luni ere: ma:m/de:m/mo:m ænqdeni I.fear COMP NEG arrives ‘I am afraid that s/he doesn’t come.’
The negative markers attested in my field materials\(^2\) are shown in (7). It is not clear whether they can be meaningfully morphologically analyzed synchronically.

(7) Negative markers
\(\text{ma:m}(a); \text{de:m}(a); \text{de:s}(a); \text{de:mʃa}; \text{deʃ}; \text{mo:m}\)
Prohibitive markers
\(\text{num}(a); \text{nu}, \text{nosa}\)

3.2 Negation in ellipses

Besides appearing in the preverbal position, negative markers can be stranded under negative contrast ellipsis (see Erschler 2020: 952 for a definition of this ellipsis variety). In such cases, the negative marker follows the negated constituent (8).

(8) a. \(\text{ala uʃba li, tetnuldi ma:ma}\)
this Ushba is Tetnuldi NEG
‘This is not Tetnuldi, but Ushba\(^3\).’
b. manana k’ubdae:r ama:re nino ma:ma/de:ma
Manana kubdar bakes Nino NEG
‘Manana is baking a kubdar, and Nino isn’t.’

c. A: \(\text{manana-}d \text{xink’æ:l ansq’e}\)
Manana-ERG khinkali made
B: \(\text{xink’æ:l ma:ma, k’ubdae:r}\)
khinkali NEG kubdar
A: Manana made khinkali.
B: Not khinkali, a kubdar.

d. Q: \(\text{ala jærd ansq’e}\)
this who.ERG did
‘Who did this?’
A: \(\text{mi ma:ma/de:sa}!\)
I NEG
‘Not me!’

The fact that negative markers can be stranded this way will prove important in exploring the structure of NegP later.

3.3 Negative indefinites

Some of the negative markers\(^4\) “launch” series of negative indefinites (NIs). Morphologically, the indefinites are a combination of the respective negative marker with an independently attested stem, which is often, but not always, a wh-word. The list in (9) is not exhaustive.

(9) \(\text{jær ‘who’ ime ‘where’ imgwaʃ ‘something’}\)
\(\text{d-ær ‘no one’ de:-me ‘nowhere’ de:-mgwaʃ ‘nothing’}\)
\(\text{n-ær ‘no one’ no:-me ‘nowhere’ no:-mgwaʃ ‘nothing’}\)

\(^2\) Sharadzenidze (1946) and Tuite (1997: 41) list more negative markers.
\(^3\) Mountain peaks in Svaneti.
\(^4\) The marker \(\text{ma:m}\) was only found to give rise to two NIs, \(\text{ma:m-gwef ‘nothing’}\) and \(\text{ma:m-fik(s) ‘never’}\).
\(^5\) The root \(\text{gwaʃ/gwef}\) means ‘thing’.
Turning to the syntax of negative indefinites, Svan exhibits a variety of negative concord, that is to say, any number of NIs may occur in the clause. However, if any NIs occur to the left of the verb, they are incompatible with preverbal negative markers\(^6\) (10).

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(10)</td>
<td>a.</td>
<td>gela-s</td>
<td>de:mtfiks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gela-DAT</td>
<td>never</td>
</tr>
<tr>
<td></td>
<td></td>
<td>‘No one ever loved Gela.’</td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>gela</td>
<td>demgwaf</td>
<td>(*dem)</td>
</tr>
<tr>
<td></td>
<td>Gela</td>
<td>nothing</td>
<td>NEG</td>
</tr>
<tr>
<td></td>
<td>‘Gela doesn’t drink anything.’</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Negative indefinites in Svan can function as fragment negative answers. In such contexts, they also exhibit NC (11).

(11)	Q:	jær	im	xets’ãed?
	who	what	saw	
	‘Who saw what?’			
A:	daer	demgwaf	(xets’ãed)	
	noone	nothing		
	‘No one (saw) anything.’			

The stems of the respective NIs can function as NPIs (12), which can be also used in Svan negative dependencies (13).

(12)	Occurrences in polar questions		
a.	mest’ia-s	džifd=a	imtfik(s)/joma?
Mestia-DAT	you.have.been=Q	ever/when	
‘Have you ever been to Mestia?’			
b.	gela	džisw=a	ime
Gela	you’ve.seen=Q	where?	
‘Have you seen Gela anywhere?’			

| (13) | a. | gela-s | ma:m | xalt’e:na | jær |
| Gela-DAT | NEG | loved | who.ABS |
| ‘Gela didn’t love anyone.’ |

\(^6\) See also Lomia & Margiani (2016) and Topuria (2002/1923) for a discussion of this property of Svan, Megrelian, and Old Georgian.
The rest of this paper deals with the interaction of NIs, negation, and NPIs in finite clauses.

4. Placement of NIs and NPIs

4.1 Descriptive generalizations

The placement and co-occurrence of NIs and NPIs are subject to non-trivial constraints. Schematically, the possible combinations of NIs and NPIs are shown in (14). In these schemes, Neg stands for sentential negation markers from the list in (7); XP, YP, and ZP stand for constituents that are neither NIs nor NPIs.

\[
\begin{align*}
(14) & \quad \text{a. } & \text{XP NI … NI (*Neg) V XP} \\
& \quad \text{b. } & \text{XP NI NPI … NPI (*Neg) V XP} \\
& \quad \text{c. } & \text{XP NI/Neg V XP NI … NI} \\
& \quad \text{d. } & \text{XP NI/Neg V XP NPI …} \\
& \quad \text{e. } & \text{XP NI/Neg V XP NI NPI … NPI YP}
\end{align*}
\]

That is to say, NIs form two chains, a preverbal one (14a) and a postverbal one (14c). Placing NIs and NPIs into different chains has not been found to give rise to perceivable semantic differences.

The preverbal chain must immediately precede the verb, with only some functional items being able to intervene, as was shown in (4) above. Besides that, a preverbal chain can consist of an initial NI and a string of NPIs\(^7\) (14b). These possibilities are illustrated in (15) by specific example sentences.

\[
\begin{align*}
(15) & \quad \text{a. } & \text{XP NI … NI (*Neg) V (XP)} \\
& \quad & \text{gela-}d \quad \text{de-}m\text{fik} \quad \text{de-}m\text{e} \quad \text{d-}\text{ær} \quad \text{anundrevine} \\
& & \text{G-ERG} \quad \text{NEG-ever} \quad \text{NEG-where} \quad \text{NEG-who} \quad \text{offended} \\
& & \text{‘Gela has never offended anyone anywhere.’} \\
& \quad & \text{XP NI NPI … NPI V (XP)} \\
& b. & \text{gela-}d \quad \text{de-}m\text{fik} \quad \text{ime} \quad \text{jær} \quad \text{anundrevine} \\
& & \text{G-ERG} \quad \text{NEG-ever} \quad \text{where} \quad \text{who} \quad \text{offended} \\
& & \text{‘Gela has never offended anyone anywhere.’} \\
& c. & \text{lædi} \quad \text{mam}\text{gwef} \quad \text{jær-}d \quad \text{amneqre} \\
& & \text{today} \quad \text{nothing} \quad \text{who-ERG} \quad \text{understood} \\
& & \text{‘Today no one understood anything.’}
\end{align*}
\]

Unlike in Georgian (Borise & Polinsky 2018), but similarly to Ossetic (Erschler & Volk 2011; Borise & Erschler 2021), the preverbal chain of NIs intervenes even between a wh-phrase and the verb\(^8\) (16).

\[^7\] This possibility contradicts the cross-linguistic generalization proposed by Penka (2011: 219): “The generalization that correctly captures the observed distributions of indefinites with respect to negation seems to be the following: whenever an NI can be used, it has to be used.” In Svan, chains of NIs and the respective chains of NPIs beginning with an NI appear to be fully synonymous.

\[^8\] Normally, wh-phrases must be immediately preverbal in Svan:

(i) a. \text{<vano> jær-s <*-vano>xagælæ <vano>?} \\
& & \text{Vano who-DAT talks}
No lexical material may intervene in a chain of NIs (17), except for certain functional items. In other words, NIs really form a chain.

The position of the preverbal NIs is not that of focus, given that focused items may precede it. This is shown in (18) by means of constituents associated with the particles =j ‘even, also’ and gar ‘only’. I assume that XPs associated with such particles are necessarily focused (see Beaver & Clark 2008: 68-72).

(16) wh NI … NI V? / *NI … NI wh V?

a. xed sopels dær demgwaf itre?
 which village-DAT nobody nothing drinks
 ‘In which village does no one drink anything?’

b. *dær demgwaf xed sopels (de:m) itre?
 nobody nothing which village-DAT NEG drinks
 *Idem (intended)

c. mest’ias jær de:mfìk arda?
 M-DAT who never has.been
 ‘Who has never been to Mest’ia?’

d. *mest’ias de:mfìk jær ma:m/de:sa arda?
 M-DAT never who NEG has.been
 *Idem (intended)

(17) NI (*XP) NI V

a. lædì dær ðæs xagørgælda
today nobody nobody.DAT talked

b. *dær lædì ðæs xagørgælda
 nobody today nobody.DAT talked
 ‘Today no one talked to anyone.’

c. *gela de:mtè ðwìnæl-s de:mfìks itre
 Gela nowhere wine-DAT never drinks
 ‘Gela never drinks wine anywhere.’

(18) a. lædì=j dær de:mgwaf itre
today=even nobody nothing drinks
 ‘Even today, no one is drinking anything.’

b. lædì=j dær anqæd
today=even nobody arrived
 ‘Even today, no one came.’

c. gela gar de:mfìk de:mgwaf if’wdæ:ni
 Gela only never nothing reads
 ‘Only Gela never reads anything.’
A postverbal chain of NIs requires the presence of some negative item immediately preverbally (19 a-b)\(^9\). It may be separated from the verb (19 c-d).

\[(19)\]

<table>
<thead>
<tr>
<th>a.</th>
<th>XP NI/Neg V XP NI ... NI</th>
</tr>
</thead>
<tbody>
<tr>
<td>*(nosa) læxpeden no:mgwaf</td>
<td>NEG touch nothing</td>
</tr>
<tr>
<td></td>
<td>‘Don’t touch anything!’</td>
</tr>
<tr>
<td>b.</td>
<td>gela demţfik (*ma:m) ikwtærd̃a de:me de:mgwaf</td>
</tr>
<tr>
<td></td>
<td>Gela never NEG stole nowhere nothing</td>
</tr>
<tr>
<td></td>
<td>‘Gela has never stolen anything anywhere.’</td>
</tr>
<tr>
<td>c.</td>
<td>de:mtfiks iff”wde:ni gela gar de:mgwaf</td>
</tr>
<tr>
<td></td>
<td>never reads G. only nothing</td>
</tr>
<tr>
<td></td>
<td>‘Gela never reads anything.’</td>
</tr>
<tr>
<td>d.</td>
<td>XP NI/Neg V XP NPI …</td>
</tr>
<tr>
<td></td>
<td>demţfiks iff”wde:ni gela gar imgwaf</td>
</tr>
<tr>
<td></td>
<td>never reads G. only anything</td>
</tr>
<tr>
<td></td>
<td>‘Only Gela never reads anything.’</td>
</tr>
</tbody>
</table>

Like in the case of a preverbal chain, see (15b) above, a postverbal chain can consist of an initial NI and a string of NPIs (20).

\[(20)\]

<table>
<thead>
<tr>
<th>a.</th>
<th>XP NI/Neg V XP NI NPI … NPI YP</th>
</tr>
</thead>
<tbody>
<tr>
<td>gela-d de:m(a) anundrevine de:mtfik ime jær</td>
<td></td>
</tr>
<tr>
<td>G-ERG NEG offended never where who</td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘Gela never offended anyone anywhere.’</td>
</tr>
<tr>
<td>b.</td>
<td>dærmoʃ ifʃ”wde:ni gela gar imgwaf</td>
</tr>
<tr>
<td></td>
<td>nobody saw never anything</td>
</tr>
<tr>
<td></td>
<td>‘No one could ever see anything’</td>
</tr>
<tr>
<td>c.</td>
<td>gela de:m xat’q’ts’i de:joma ime jær-s</td>
</tr>
<tr>
<td></td>
<td>Gela NEG offended never where who-DAT</td>
</tr>
<tr>
<td></td>
<td>‘Gela never offended anyone anywhere.’</td>
</tr>
</tbody>
</table>

Furthermore, the postverbal chain may consist of only NPIs.

\[(21)\]

| nos æxq’ærjæld jær-s imčiks! |
| NEG fight who-DAT ever |
| ‘Don’t ever fight with anyone!’ |

I do not have examples of chains where several NIs and NPIs would be present at once, as schematically shown in (22).

\[(22)\]

| ... NI NI NPI V ... |
| ... NI V ... NI NI NPI ... |

Postverbal NIs or NPIs may be preceded or followed by a focused XP, which shows that their position is not that of focus (23). I am again using items associated with focus to ensure that

\(^9\) In this respect, Svan resembles Spanish, Italian and Portuguese, as described in Zeijlstra (2004: 129-132), Penka (2011: 44), and the references there. However, in these Romance languages, postverbal N(P)Is need not form a chain.
the respective constituents are indeed focused. I do not have examples of non-focused items intervening between the verb and postverbal NIs or NPIs, but I cannot exclude such a possibility.

(23) a. de:mʧik ifʧ”wdaːni imgwaj gela=j
 never reads anything Gela=even
 ‘Even Gela doesn’t ever read anything.’

b. de:mʧik ifʧ”wdaːni gela=j imgwaj
 never reads Gela=even anything
 ‘Even Gela doesn’t ever read anything.’

c. de:mʧik ifʧ”wdaːni de:mgwaʃ gela gar
 never reads nothing Gela only
 ‘Only Gela doesn’t read anything.’

d. de:mʧik ifʧ”wdaːni gela gar de:mgwaʃ
 never reads Gela only nothing
 ‘Only Gela doesn’t ever read anything.’

In a chain of negative indefinites, the negative morphology does not need to be identical (24).

(24) deʃaʃd de:mʧik maːmgweʃ xoxwda
 nobody.DAT never nothing gave
 ‘S/he as never given anything to anyone.’

With these generalizations in mind, we can proceed to an analysis of the Svan negation system.

5. An Idea of an Analysis

To analyze negative dependencies in Svan, I follow the general lines of Zeijlstra (2004) and Penka (2011). Specifically, I assume that the negative semantics is contributed by a silent operator with the feature [iNeg] situated high in the clause, while NIs and negative markers undergo agreement with it. The overt negative morphology is a manifestation of this agreement. I leave aside the issue of the choice between possible sentential negation markers (7) and how this choice interacts with the modality of the clause.

5.1 Overall Structure

I assume that in the absence of negation, Svan exhibits the standard functional sequence above the VP (25). The verb form is assembled by a series of head movements.

(25) [TP [AspP [vP [VP]…]]

I propose that Svan projects two NegPs whose multiple specifiers host NIs and NPIs. Following the proposal of Zeijlstra (2004: 249), the interpretable feature [iNeg] is contributed by an operator located higher in the structure10. The relevant part of the surface structure I propose in the case of a declarative sentence is shown in (26b).

I assume that both NegPs are situated above TP, because clausal negation does not seem to be possible in non-finite clauses in Svan. Nothing, however, crucially depends on this choice;

10 In the original proposal of Zeijlstra’s, the operator occupies Spec,NegP rather than heads a projection of its own. Nothing, however, crucially hinges on this choice.
my reasoning would go through if the complement of the lower NegP is AspP rather than TP. As will be explained in Section 5.2, NegP₁ undergoes A'-movement into the specifier of a projection YP that is situated higher than NegP₂. The precise nature of YP is irrelevant for my present purposes. In Section 5.2, I describe the derivation that produces such a structure.

(26) a. NI/Neg V XP NI … NI
 b. OpP
 Op[iNeg] YP
 NegP₁ Y₀ …
 NI NI NI Neg₀ TP NI Neg₀ …
 ZP tNegP₁

Merging of NegP₂ is optional: in a clause without postverbal NIs, it is absent (27).

(27) […] [OpP [NegP₁ NI … NI [TP T+Asp+v+V…]]…]

Placing N(P)Is that form a chain in the specifiers of a single head allows us to account for the fact that nothing can intervene between the N(P)Is. Independent evidence showing that multiple specifiers exist in Svan comes from the structure of wh-questions – Svan has obligatory multiple wh-movement into a preverbal position, Erschler (2015).

(28) lædi mæj <*lædi> jær-d <*lædi> anq’id?
 today what who-ERG bought
 ‘Who bought what today?’

5.2 Derivation

I propose that the derivation of a negated clause proceeds in the following steps.

Step 1. NegP₁ is merged above TP. To repeat, for the sake of concreteness, I assume it is situated above TP, but nothing hinges on this particular choice. The verb head moves into Neg₀, while NIs and NPIs move into the specifiers of this projection. Head-movement of the verb complex into Neg₀ ensures the immediate adjacency between the verb and preverbal negative items. For the spellout of overt negative markers in the absence of NIs, see the discussion in Section 5.3 below.
I hypothesize that functional items that may be placed between NIs and the verb, see (4) above, appear there for prosodic reasons, but I leave this matter for further research.

To account for the movement of NIs and NPIs into the specifiers of NegPs, I propose the following calculus of features. As we have seen in (18) and (23) above, this movement is independent of focusing, and so I take it to be driven by dedicated features.

I endow non-negative NPIs (such as *jær ‘anybody’ or *imgwaf ‘anything’) with a (formal11) feature [uNPI], and NIs, with a pair of formal unvalued features, [uν, uNPI]. I take movement to Spec,NegP\textsubscript{1} to be driven by the need to check these features. That is to say, Neg0 bears strong features [iNPI\textdagger] and [iν\textdagger].

Agree proceeds in such a way that items with a full set of features undergo it first. Additional specifiers are formed by tucking in, as in (Richards 1999). This explains why NPIs may not precede NIs in a preverbal chain (30).

\begin{enumerate}
\item[(30)] *gela imʃik de;ʃaʃd de:mgwaʃ xoxwda
 Gela ever nobody.ADV nothing gave
 ‘Gela has never given anything to anyone.’ (intended)
\end{enumerate}

The negative morphology, that is, the prefixes \textit{d(e):-}, \textit{ma:m:-}, etc., is the spellout of the valued feature [uv] on the respective DPs.

\textbf{Step 2}. Some (probably information structure related) projections hosting the material that intervenes between the verb and NegP\textsubscript{2} (23), are merged above NegP\textsubscript{1}. The precise nature of these projections is not important for the present purposes.

\textbf{Step 3}. NegP\textsubscript{2} is merged. Some of the NIs and NPIs from the specifiers of NegP\textsubscript{1} are moved into multiple specifiers of NegP\textsubscript{2}. I hypothesize that movement from Spec,NegP\textsubscript{1} to Spec,NegP\textsubscript{2} is driven by information structure related features.

The fact that NIs precede NPIs in the specifiers of NegP\textsubscript{2}, i.e., the same ordering condition obtains as for the specifiers of NegP\textsubscript{1}, is explained by the hierarchical order in the specifiers of NegP\textsubscript{1} and superiority effects.

11 That is to say, I am not making any commitments as to its semantic content.
Step 4. NegP₁ undergoes A’-movement into the specifier of some projection YP dominating NegP₂. I stay agnostic as to the nature of this projection12. This movement results in the second chain of NIs becoming postverbal.

When other preverbal material, i.e. wh-phrases, is present (16), the entire verb complex is pied-piped under this movement.

Step 5. Additional material is merged above NegP₂.

Step 6. Op[iNeg] is merged and undergoes agreement with the NegPs, resulting in the structure shown in (26b). Following the proposal of Zeijlstra (2004), I assume that the merger of the operator is driven by the presence of [uNeg] features in the structure. At the spellout, the highest copy of each moved XP is pronounced.

The facts that still need an explanation are the following: First, why it is legitimate to posit the existence of NegP in Svan. Second, why negative markers are in complementary distribution with NIs. Third, why some NIs (or negative markers) need to be present in the structure. Fourth, why an NI, rather than an NPI must occupy the highest specifier of NegP₁. This will be done in the next section.

12 If NegP₁ actually moves into Spec,OpP, Steps 4-6 need to be reordered. Namely, the movement of NegP must follow the merger of the operator. At present, I do not have any empirical evidence that would allow me to determine the nature of the head Y0.

12
5.3 Motivation and details

As for the motivation for positing dedicated NegP projections, it comes from the fact that N(P)Is clearly do not stay in situ in Svan. It is natural to indentify the projections they move into with NegP. Furthermore, positing a dedicated NegP is a fairly standard theoretical assumption since Pollock (1989). Additionally, the structure proposed in (26) allows us to naturally account for the negative contrast ellipsis facts in (8). Under negative contrast ellipsis in Svan, the complement of NegP₁ is deleted as shown in (33), with (8b B) repeated as (33b).

As in the proposal of Merchant (2001) for sluicing in English, I assume that the movement of the verb into Neg⁰ is blocked under ellipsis.

(33) a. [NegP₁ NI Neg⁰ [TP …]]
 b. xink’æ:l [NegP₁ ma:ma Neg⁰ [TP ansq’e]], k’ubdæ:r
 khinkali.ABS NEG made kubdar

To account for the complementary distribution between NIs and sentential negation markers in the preverbal position (34), I assume that the (null) head of NegP₁ bears an uv-EPP feature: an overt uv bearing item must occupy Spec, NegP₁. Sentential negation markers in Svan are phrases inserted in Spec NegP₁ as the last resort to satisfy this feature.

(34) *... NI NI ... NI Neg V ...
 *gela-s de:mfiks de:m/ ma:m xalt’e:na
 G-DAT never no.one NEG loved
 ‘Gela never loved anyone.’

I assume that NegP₂ is only merged when there is material to move into its specifiers. Therefore, its EPP requirement is automatically satisfied, which explains the absence of postverbal sentential negation markers.

To show that Svan negation markers are indeed phrases rather than heads, the test from Merchant (2006) can be used. Namely, at least some¹³ of these markers can combine with the wh-phrase im’ka ‘why’ to form ‘why not’. As Merchant has argued, this is only possible in languages where negation markers are phrasal.

(35) im’ka de:m/de:s?
 why NEG
 ‘Why not?’

The analysis I have proposed makes a correct prediction that a chain of NPIs may not appear without a negative marker in the structure (36).

(36) a. *[Op[iNeg] … [NegP₁ NPI … NPI V] …]
 *[gela [NegP₁ im’fk iʃaiʃd imgwaʃ xoxwda]
 Gela ever nobody.ADV anything gave
 ‘Gela has never given anything to anyone.’ (intended)

¹³ Although some of the markers are not attested in this combination, e.g. ma:m, they are otherwise distributionally identical to other negation markers, so we can conclude that they have the same phrasal status.
The structure in (36) can come about in two ways. First, no NIs can be present in the enumeration (36a). Second, all the NIs can be evacuated from Spec,NegP₁ to Spec,NegP₂ at Step 3 of the derivation (36b). Both possibilities are ruled out by the uv-EPP feature of the head Neg₁⁰.

Indeed, if no NIs are present in the numeration, the uv-EPP feature of the head Neg₁⁰ will ensure the appearance of an overt negative marker. I assume that it is then realized on the highest NPI as negative morphology.

If NIs are present in the numeration, the same feature prevents the evacuation of all NIs from Spec,NegP₁ to Spec,NegP₂ at Step 3. (Specifically in (36b), demgwaf ‘nothing’ would have been moved to Spec,NegP₂.) If all the NIs move, the feature will remain unsatisfied.

To recapitulate, the analysis I propose consists of the following ingredients:

- Negative semantics is contributed by a null operator with interpretable [iNeg] feature, as in the original proposal of Zeijlstra’s.
- Svan has two dedicated projections whose specifiers host N(P)Is.
- The verb undergoes head movement into the lower of these projections, NegP₁.
- The movement of N(P)Is into Spec,NegP₁ is governed by a dedicated system of features.
- Sentential negation markers in Svan are phrases that are spelled out to satisfy an appropriate EPP feature of the head Neg₁⁰.
- A postverbal chain of N(P)Is arises by movement of N(P)Is from Spec,NegP₁ into the specifiers of a higher projection, NegP₂, and a subsequent movement of NegP₁ into a yet higher position in the clause.
- Superiority considerations ensure that the order of N(P)Is in Spec,NegP₂ is the same as in Spec,NegP₁.

Admittedly, this account leaves many open questions solving which will require further extensive fieldwork. These include the factors involved in the choice between negative markers, the internal structure of negative items themselves, and intervention of functional items in negative chains.

6. Conclusion

In this paper, I provided a description and a sketch of an analysis of the negation system in Upper Bal Svan. This language employs both non-strict negative concord and negative polarity licensing in its negative dependencies, which, together with idiosyncratic restrictions on the linear position of NIs and NPIs gives rise to what looks like a very typologically unusual system.

To analyze this system, I have adopted the general lines of the proposal of Zeijlstra (2004). I assume that the negative semantics in a clause is contributed by a null operator situated high in the structure, while overt negative items, which agree with this operator, carry semantically uninterpretable features. The analysis sketched here posits the existence of two NegPs in Svan. The movement of N(P)Is into the multiple specifiers of these projections is driven by a dedicated set of features.
The description and the analysis proposed here are clearly preliminary. Extensive additional fieldwork is needed to arrive at a more detailed account of this extremely complex system.

Acknowledgments

The bulk of data for this paper were collected during my stay in Mestia in the summer of 2016. I acknowledge the support for this field trip of the Linguistics Outreach Fund at the UMass Department of Linguistics. I thank the Japaridze family for their hospitality, and Fr. George Chartolani, Irma Japaridze, Svetlana Mchedliani, Archil Murghvliani, Maia (Tsiiuna) Nakiani, Nargiza Piguriani, Lia Nikoloziani, and Nushi Pirtskihliani for their patience and willingness to help. I thank Liza Dolidze and Lea Nash for help with constructing Georgian stimuli. The responsibility for possible mistakes in and misinterpretations of the data is solely mine.

References

