A seeming violation to the Monotonicity Constraint in Spanish verbal comparatives
Luis Miguel TOQUERO-PÉREZ — University of Southern California

Abstract. Spanish verbal comparatives with (correr más ‘run more’) can be interpreted in terms of ‘speed’ with a subset of manner of motion predicates. This fact poses a challenge to the Monotonicity Constraint (Schwarzschild, 2006) because ‘speed’ is not a part-whole structure preserving dimension unlike ‘duration’. I argue that the data are best explained if más combines with an underspecified measure function that is not restricted to be only resolved by quantity part-whole tracking dimensions. I argue that the resolution of this null measure function is syntactically determined.

Keywords: Syntax-semantics of measurement, comparatives, (non-)monotonicity, Spanish

1. Introduction
Schwarzschild (2006) observed that the syntax of adnominal modification and the semantics of measure expressions interact, in a way that is sensitive to the part-whole structure of the NP domain. For example, when more in (1) is combined with mass NPs like coffee or plural count NPs like coffees, it can be interpreted in terms of VOL(UME), or CARD(INALITY), but crucially not TEMPERATURE.

(1) NP
More coffee(s) [VOL., (CARD.), #TEMPERATURE]

The same observations hold for the VP domain (Nakanishi, 2004, 2007a; Wellwood et al., 2012): the dimension for the interpretation of more can be alongside a scale of DIS(TANCE), DUR(ATION) or CARD., but importantly not SPEED. In other words, (2) can be paraphrased as “Hermes runs {further/more time/more times} than Apollo does” but it cannot be paraphrased as “runs faster than”.

(2) VP
Hermes runs more than Apollo does. [DIS., DUR., CARD., #SPEED]

This constraint on interpretation of the dimension of measurement is known as the Monotonicity Constraint (MC), defined in (3) (Schwarzschild, 2006; Nakanishi, 2007b; Wellwood et al., 2012; Wellwood, 2015):

(3) Monotonicity Constraint (MC)
A measurement \(\mu \) is MONOTONIC relative to a domain \(D \) iff for all \(x \) and \(y \) in \(D \), if \(x \) is a proper subpart of \(y \), then \(\mu(x) < \mu(y) \).

I am extremely grateful to Roumi Pancheva for helpful comments and feedback ever since I started this project. I am also indebted to Alexis Wellwood for many of the suggestions that made it into the paper and for the theoretical discussion. I would also like to thank Sarah Hye-yeon Lee, Elsi Kaiser, Elango Kumaran, Daniel Plesniak, Ian Rigby, Deniz Rudin, Barry Schein and the members of S-Side Story & Psycholing lab at USC, and the audiences of Sinn und Bedeutung 26 at the University of Cologne, Sensus II at UMass and the 4th California Annual Meeting in Psycholinguistics at UC Irvine.
Luis Miguel Toquero-Pérez

The MC prevents unattested readings in comparatives and other degree constructions. For example, in (2), proper subparts of a running event do not necessarily have lesser degrees of speed, so the comparison cannot be interpreted in terms of speed (Wellwood et al., 2012; Wellwood, 2019). (3) is not a constraint that is particular of English, but holds across different languages including, but not limited to, Japanese, German (Nakanishi, 2007a), Bulgarian, and Hindi (Wellwood et al., 2012). However, novel evidence from Iberian Spanish presents a challenge to the MC: verbal comparatives with más ‘more’ can also give rise to interpretations in terms of SPEED with a subset of predicates. This interpretation is not available with the equative tanto ‘as much’: (4).

(4) a. Hermes { corre/ camina/ nada/ gatea} más que Apollo
 Hermes runs walks swims crawls more than Apollo
 ‘Hermes {runs/ walks/ swims/ crawls} more than Apollo’ [CARD., DIS., SPEED]

 b. Hermes { corre/ camina/ nada/ gatea} tanto como Apollo
 Hermes runs walks swims crawls as-much as Apollo
 ‘Hermes {runs/ walks/ swims/ crawls} as much as Apollo’ [CARD, DIS., #SPEED]

The goals of this paper are to (i) identify what is behind the apparent violation of the MC in Spanish, (ii) compare más to English more which must generally obey the MC, and (iii) compare más to tanto which generally obeys the MC too. To account for this puzzle, I propose that Spanish más combines with an underspecified null measure function that can be interpreted as quantity or not; on the contrary, the measure function that equative tanto and English more can be decomposed into is underspecified too (Wellwood, 2015; Solt, 2015; Bale and Schwarz, 2019), but for quantity only. The resolution of the measure function will be determined by what is being measured, which itself is determined by the syntactic position occupied by the DegP.

2. The new observations about Spanish verbal comparatives

2.1. The class of verbs that allow the SPEED interpretation

The SPEED interpretation occurs with a subset of manner of motion verbs: correr (‘run’), nadar (‘swim’), caminar (‘walk’), cabalgar (‘horse-ride’), gatear (‘crawl’), pedalear (‘pedal’), remar (‘row’) etc. I will refer to this class as CORRER-predicates. When we limit the context to a speed one by using the adverbial in terms of speed, más unambiguously gives rise to non-

2The data and judgments reported here come from Iberian Spanish. Whether these judgments also hold in non-Iberian Spanishes is an open research question that I do not attempt to answer here.

3The SPEED interpretation is also found in menos ‘less’ comparatives (i.a) and superaltives (i.b):

 (i) a. Apolo { corre/ camina/ nada/ gatea} menos que Hermes.
 Apolo runs walks swims crawls less than Hermes
 ‘Apolo {runs/ walks/ swims/ crawls} less fast than Hermes.’ Menos comparative

 b. Hermes es el dios que más { corre/ camina/ nada/ gatea} de todos
 Hermes is the god that more runs walks swims crawls of all
 ‘Hermes {runs/ walks/ swims/ crawls} the fastest.’ Superlative

4The traditional name for this class of predicates is Directed Manner of Motion because they imply that the syntactic subject has changed their location or has moved along a path, cf. Talmy (1991, 2000); Rappaport Hovav and Levin (1992); Levin and Hovav (1995); Fábregas (2007); Vassa-Vanrell (2013).
A seeming violation to the Monotonicity Constraint: evidence from Spanish verbal comparatives

monotonic interpretations with these predicates. This is shown in (5a).

Other manner of motion verbs like bailar (‘dance’), flotar (‘flotar’), temblar (‘shiver’) are incompatible with the SPEED interpretation as illustrated in (5b). The ‘#’ in front of the sentence indicates that the sentence is infelicitous with the intended interpretation of SPEED. I will refer to these verbs as BAILAR-predicates.

(5) Hablando de velocidad... (‘in terms of speed’)
 a. Mario {corre/ camina/ gatea} más que Inés
 Mario runs walks crawls more than Inés
 ‘Mario {runs/ walks/ crawls} faster Inés’
 b. # Juan {baila/ tiembla/ flota} más que Miguel
 Juan dances shivers floats more than Miguel
 ‘Juan {dances/ shivers/ floats} faster than Miguel does’

2.2. CORRER-Predicates and their interaction with telicity
In Peninsular Spanish, the SPEED interpretation is only possible with atelic CORRER-verbs (6b), and not with telic ones (6a). This is shown in (18a) using the {in/ for}-an hour test: in an hour brings out a telic interpretation to these predicates, whereas for an hour brings out an atelic interpretation (Vendler, 1967; Dowty, 1979; Rothstein, 2004; Marín and McNally, 2011).

(6) a. Mario corre más que Inés en una hora
 Mario runs more than Inés in an hour
 ‘Mario runs more than Inés in an hour’
 [CARD, DIS, DUR #SPEED]
 b. Mario corre más que Inés durante una hora
 Mario runs more than Inés for an hour
 ‘Mario runs more Inés for an hour’
 [CARD, DIS, DUR, SPEED]

We can also use the compatibility of predicates as complements of dejar de ‘to stop’ (lit. ‘to stop of’) vs. terminar de ‘to finish’ (lit. ‘to finish of’) to test for the SPEED-atelic correlation. Atelic predicates are more natural to appear as complements of verbs dejar/parar de than with terminar de (De Miguel, 1999; Marín and McNally, 2011):

(7) a. Juan {#dejó de/ terminó de} correr la maratón
 Juan stopped of finished of to.run the marathon
 ‘Juan {#stopped/ finished} running the marathon’
 b. Juan { dejó de/ #terminó de} correr
 Juan stopped of finished of to.run
 ‘Juan { stopped/ #finished} running’

The SPEED interpretation is only predicted to be possible when the comparative modifies the VP complement of dejar de. This prediction is borne out as illustrated in (8):

5From here on, all the examples in the text make use of the verb correr. The SPEED interpretation obtains with any other verb of this class. This observation has been verified with an acceptability study of sentences in context.

6This class of predicates is traditionally known as Internal Bodily Motion (Aske, 1989; Morimoto, 2001) because physical displacement is not expected. See also references in fn.4.
2.3. The generalization

Given the data from the previous two subsections, I propose the novel generalization in (9).

(9) **The atelic CORRER-SPEED generalization**

Only atelic CORRER-predicates are compatible with a SPEED interpretation for más.

This is a novel generalization and it is in line with Schwarzschild’s (2006) original observation about the MC in NPs and the parallel between mass/count and atelic/telic predicates (Mourelatos, 1978; Bach, 1986; Krifka, 1989; Borer, 2005; van Geenhoven, 2005; Wellwood et al., 2012). On the one hand, telic parallels count and atelic mass; on the other, number on NPs parallels grammatical aspect on VPs: perfective and progressive involve singular events whereas imperfective-habitual involves plural events. That said, the grammatical properties of the predicate NP/VP determine the scale of comparison. These properties are summarized in (10), but see (Wellwood et al., 2012) for more details.

(10) MC and the the mass/count and atelic/telic parallel.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>more + mass NP = VOL., LENGHT</td>
<td>more + atelic VP = DUR., DIS.</td>
</tr>
<tr>
<td>count NP<sub>pl</sub> = CARD.</td>
<td>telic VP<sub>IMPF</sub> = CARD.</td>
</tr>
<tr>
<td>count NP<sub>SG</sub> = *</td>
<td>telic VP<sub>PERF</sub> = *</td>
</tr>
</tbody>
</table>

The interpretation of both object mass NPs and atelic predicates is in terms of non-cardinality quantity scales, and plural count NPs and atelic imperfective VPs are compared along a cardinality scale. However, just like comparative morphemes are unacceptable with singular count NPs, so are they with telic perfective VPs.

Peninsular Spanish atelic CORRER-VPs behave as expected: they are interpreted (preferably) along non-cardinality scales. However, they also allow a non-monotonic quantity interpretation, namely SPEED.

3. **Why do CORRER-predicates but not BAILAR-predicates allow SPEED?**

One of the major questions that arises is why it is only a subset of manner of motion verbs — CORRER-verbs but not BAILAR-verbs — that give rise to the SPEED interpretation. There are some important differences between these two classes of manner of motion verbs. First of all, only CORRER-verbs are acceptable with locative-directional a (roughly equivalent to English directional to). The a-PP is an argument in these constructions as it affects the telicity of the event (Fábregas, 2007; Vassa-Vanrell, 2013).

7The preposition a is a locative preposition heading a PLACE or LOCATION projection Fábregas (2007); Son and Svenonius (2008); Real-Puigdollers (2013); Folli and Harley (2020). But with Directed Manner of Motion verbs
A seeming violation to the Monotonicity Constraint: evidence from Spanish verbal comparatives

(11) a. Juan \{ corre/ nada/ camina\} a la orilla \{ *durante/ en\} 1h.
Juan runs swims walks at the shore for in 1h

‘Juan \{ runs/ swims/ walks\} to the shore \{ for/ in \} 1h’
CORRER + loc-dir a

b. * Juan \{ baila/ flota/ tiembla\} a la orilla.
Juan dances floats shivers at the shore

‘Juan \{ dances/ floats/ shivers\} to the shore’
*BAILAR + loc-dir a

Second of all, the $\sqrt{\text{ROOTS}}$ that appear with the CORRER class are limited to those that imply directional movement along a path but are also “goal neutral” (Vassa-Vanrell, 2013). A reliable test to diagnose such a directional movement is the unacceptability of these verbs with the adverbial sin desplazarse ‘in place’ (Vassa-Vanrell, 2013): CORRER-verbs are incompatible with the adverbial, while BAILAR-verbs are (12). This entails that the former class but not the latter one involves obligatory displacement along a path.

(12) a. * Juan \{ corre/ nada/ camina\} sin desplazarse
Juan runs swims walks without displacing

‘ Juan \{ runs/ swims/ walks\} in place’
*CORRER + in place

b. Juan \{ baila/ flota/ tiembla\} sin desplazarse
Juan dances floats trembles without displacing

‘ Juan \{ dances/ floats/ shivers\} in place’
BAILAR + in place

We can take these differences as evidence that these two classes of manner of motion verbs have underlyingly different argument structures (Fábregas, 2007; Ramchand, 2008, 2014). In fact, CORRER-predicates include a verbal predicate \textit{PATH}. The \textit{PATH} predicate introduces a path argument which indicates (i) an object that is measured; or (ii) a quantity traversed with the movement in an incremental fashion. On the contrary, BAILAR-predicates lack a \textit{PATH} (Fábregas, 2007; Vassa-Vanrell, 2013).

We can represent the syntactic structure of CORRER-verbs as in (13). The \textit{PATH} head introduces a path argument, projects its own phrase — \textit{PATHP} — and serves as complement of v. The root is introduced via adjunction (Levinson, 2007, 2014; Folli and Harley, 2016, 2020) in the syntax and then undergoes M(orphological)-Merger with an adjacent functional head at PF.

8By “goal-neutral” I mean that the verbs describe motion events with no particular goal in mind, i.e. the intention is to describe the manner component of the motion event. This contrasts with other verbs like \textit{entrar} (‘enter’), \textit{cruzar} (‘cross’), \textit{ir} (‘go’) which entail arrival or a goal, and so give rise to telic VPs (unless combining with bare plural internal arguments, e.g. \textit{cruzar puentes} ‘cross bridges’).

9See Piñón (1993); Krifka (1998) for details on the mereological structure of paths.

10This process of root adjunction is very similar to Matushansky’s (2006) theory of head movement: head movement of X onto Y consists of the adjunction of X to Y’s specifier followed by subsequent M-Merger with Y.
A PATH is a relation between an entity, realized by path, and an event such as there is a monotonic relationship between measures of a property of the entity and parts of the event. The complement of PATH, i.e. path, can be realized by distinct syntactic categories. The dimensions to measure proper subparts of an event will depend on what that path is. In (14), I provide a (non-exhaustive) list of syntactic categories that can occupy the path position in (13).

(14) The syntactic realization of paths
 a. DP: mereological parts of the entity denoted by the nominal expression (a race).
 b. MP: the spatial or temporal dimension defined by the measure noun (10km).
 c. PP: the spatial dimension manifested through P (to the store).
 d. x: a contextually filled variable not associated with a particular endpoint.

I follow Ramchand (2008: Ch.4, 71) and assume that PATH heads can come into two different ‘flavors’: [±BOUND]. If it is [+BOUND], the predicate will come out as telic, i.e. an accomplishment; if it is [-BOUND], the predicate will come out as atelic, i.e. an activity. Considering the (un)boundedness of PATHs together with the generalization in (9) we can draw some important conclusions in Table 1.

<table>
<thead>
<tr>
<th></th>
<th>PATH</th>
<th>SPEED</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORRER\textsubscript{activity}</td>
<td>-BOUND</td>
<td>✓</td>
</tr>
<tr>
<td>CORRER\textsubscript{accomplishment}</td>
<td>+BOUND</td>
<td>*</td>
</tr>
<tr>
<td>BAILAR</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

Though both accomplishment and activity CORRER-verbs contain a PATH, only the latter’s is unbounded resulting in an atelic event which is acceptable with the SPEED interpretation. BAILAR-verbs lack a PATH, which presupposes no linear displacement and entails no SPEED interpretation.

4. The proposal
I propose that más is just -er, i.e. an ordering relation between degrees, whose denotation is in (15), (cf. Mendia 2020; Toquero-Pérez 2022). más is just a quantifier, and, by hypothesis, it should not be restricted to only combine with quantity denoting measure functions, i.e. measure functions that introduce part-whole structure preserving dimensions. In fact, there is a null morpheme Ø introducing the measure function μ that más combines with; crucially this
A seeming violation to the Monotonicity Constraint: evidence from Spanish verbal comparatives

measure function is completely underspecified. I refer to this measure function as $\mu_{[Q+]}$, where the subscript $[Q+]$ means ‘quantity and beyond’.\footnote{The entry for μ in (16) is based on Hackl (2000); Wellwood et al. (2012) where α is a variable over types: e (individuals), v (events), s (states) etc. As a generalized quantifier over degrees, más QRs to a higher position resolving any potential type mismatch and leaves a variable of type d in its base position. This variable will saturate $[\mu_{[Q+]}]$’s degree argument. I assume that the standard of comparison is late-merged in the position más has QR-ed to (Bhatt and Pancheva, 2004; Toquero-Pérez, 2022).}

\begin{align*}
(15) & \text{[más]} = [-er] = \lambda P_{(dt)} \cdot \lambda Q_{(dt)} \cdot \{\text{MAX}(Q) > \text{MAX}(P)\} \\
(16) & \text{[}\mu_{[Q+]}\text{]} = \lambda d. \lambda \alpha. \mu(\alpha) \geq d
\end{align*}

(Heim, 2000)

Given the underspecificity of μ in (16), its value is resolved by the syntactic context. I propose an elaboration on where $\mu_{[Q+]}$ can be resolved as quantity and where it cannot be.

(17) **The syntax behind the MC**

The monotonic requirements are determined by the syntactic position that the comparative (i.e. MP) occupies in the VP.

(17) is in line with the spirit of Schwarzschild (2006)’s, in which the syntactic position of the Measure Phrase (MP) inside the NP corresponds to an interpretation in terms of (non-)monotonicity. In the rest of the paper, I argue that there are three different syntactic positions that the comparative can occupy: an argument position and two distinct adjunction sites. In other words, the (non-)monotonicity is determined structurally (cf. McKinney-Bock and Pancheva 2019).\footnote{Like Schwarzschild (2006), McKinney-Bock and Pancheva (2019) argue that a certain position is only associated with monotonicity; but unlike Schwarzschild (2006), they show that another position is not strictly associated with non-monotonicity.}

4.1. A syntactic ambiguity: Más as a MP argument or adjunct
4.1.1. Más as an argument

CORRER-predicates, like measure verbs weigh, measure, cost, last, can take a Measure Phrase argument. When such a verbal predicate is combined with an MP, the aspect becomes telic (18). But SPEED measuring MPs cannot be arguments (19):

\begin{align*}
(18) & \text{a. Mary runs } \{20\text{km/ this much}\} \{\text{in an hour /* for an hour}\} \\
& \text{b. María corre } \{20\text{km/ mucho/ una hora}\} \{\text{en 1h/ *durante 1h}\} \\
& \text{María runs 20km much one hour in 1h during 1h}
\end{align*}

\begin{align*}
(19) & \text{* María corre 20km/h} \\
& \text{María runs 20km/h} \\
& \text{‘Mary runs 20km/h’}
\end{align*}

From this we can conclude that when a verbal predicate is combined with an overt MP argument, the MP can only be interpreted monotonically with respect to the part-whole structure of the event. Just like these MPs, the comparative phrase can be interpreted as the MP complement of an accomplishment predicate and thus be monotonic. As an argument, the comparative
constituent can be pronominalized by an accusative clitic *lo* in (20b). Cliticization, at least in Spanish, is a process that applies to argument DPs and never to adjuncts.

(20) MP substitution with a clitic

a. Juan corre 20km en 1h → Juan los CL.ACC.M.PL corre en 1h
 ‘Juan runs {20km/ them} in 1h’

b. Juan corre más que Miguel en 1h → ?Juan lo CL.ACC.SG corre en 1h
 ‘Juan runs {more than Miguel/ it} in 1h’

We can also test for the argumenthood of the MP by using different *wh*-pronouns to substitute the comparative constituent. Following Rizzi (1990); Smith (1992); Real-Puigdollers (2013), argumental MPs can be made into a question with *qué* ‘what’ and *cuánto* ‘how much’, but it cannot be questioned by the manner *wh*-element *cómo* ‘how’. Besides, the answer to A’s question with the comparative (21) cannot be interpreted in terms of SPEED.\(^\text{13}\)

(21) MP substitution with *wh*-pronoun

A: \{Qué/ Cuánto/ *Cómo\} corre Juan (en 1h)?
 what-how-much how runs Juan in 1h
 ‘{What/ How much/ *How} does Juan run (in 1h)’

B: \{20km/ más que Miguel\}
 20km more than Miguel
 ‘{20km/ more than Miguel}’

A classic test of argumenthood is the *do so* substitution. If the MP that contains *más* is an argument, *más* must be incompatible with *hacer-lo* ‘do so’. This prediction is borne out as shown in (22): the ungrammaticality of the sentence entails that the complement of *hace* ‘do’ is the MP.

(22) \[Context: Pedro runs 10km; María 5km; Miguel 20km\]

* Pedro corre más que María en una hora y Miguel lo CL.ACC corre más que ellos
 Pedro ran more than María in an hour and Miguel does more than them
 ‘Pedro runs a longer distance than María in an hour and Miguel does so more than them’

All these tests indicate that the MP must be merged in the complement position of the PATH

\(^{13}\)It is true that not only complements are questioned by *qué* “what”. Nominal predicates in copular sentences can also pass this test:

(i) a. María es abogada
 ‘María is lawyer’

b. *Qué es María?*
 ‘What is María?’
A seeming violation to the Monotonicity Constraint: evidence from Spanish verbal comparatives

head, i.e. the MP syntactically represents the path in (13). The corresponding syntactic representation of argument más is provided in (23).

(23) The syntactic position of argument más

```
  v
 Juan             v
   PATHP
     PATHP
       PATH MP
         μ_{[Q+]} DegP
          más CP
```

From this position, what is being measured by μ_{[Q+]} is the PATH: (the adjacent) spatial points along a physical path incrementally traversed. Thus, the strictly monotonic interpretation is then enforced by the denotation that PATH imposes on its individual-type argument (24).

(24) \[\text{PATH} = \lambda x \lambda e. \forall e \forall y[R(e, x) \land y \leq x \rightarrow \exists e'[e' \subseteq e \land R(e', y)]] \land \forall e \forall e'[R(e, x) \land e' \subseteq e \rightarrow \exists y[y \leq x \land R(e', y)]] \] (adapted from Ramchand, 2008)

To put it in Ramchand’s own words, PATH in (24) “is the relation that holds between an entity and an event, if a monotonic property of that entity is monotonic with respect to the part-whole structure of the event as well.” (Ramchand, 2008: Ch.3, 50). PATH first takes its individual argument, which is the MP, via Functional Application (FA) (Heim and Kratzer, 1998) and it returns a predicate of events — \(\langle vt \rangle \). I follow Parsons (1990); Kratzer (1996); Schein (2002) among others, and assume that verbs/verbal roots are functions from events to truth values (25). Moreover, given the assumption that roots enter the syntactic derivation via adjunction and then undergo M-Merger with the closest adjacent head at PF (Levinson, 2007, 2014; Folli and Harley, 2020), the root is composed via Predicate Modification (PM) (Heim and Kratzer, 1998) with the \(\langle vt \rangle \) type predicate that results from composing PATH with its individual argument.

(25) \[\sqrt{\sqrt{\text{v}}} = \lambda e. V(e) \]

Before we get to the semantic composition, there is one more issue to be addressed: the MP after QR of más is a predicate of individuals, but PATH’s first argument is an individual. In order to resolve this type mismatch I posit the presence of a null determiner ε (cf. Wellwood 2019), i.e. ‘little d’: an indefinite operator ε that takes a predicate of individuals and returns an individual.15 The presence of this determiner is also empirically appropriate as it would explain the DP-like properties of the MP in argument position such as cliticization.

(26) a. \[\text{little d} = \lambda P_{(et)}. \varepsilon x P(x) \]

‘some x such that P(x)’

14The constituent is an MP because it is headed by μ and takes the DegP (-er, as, más, and its standard CP) as its complement.

15The same result could be obtained via existential closure of the individual argument in the presence of the measure expressions (Hackl, 2000).
Pedro runs at 10km/h; María at 5km/h; Miguel at 20km/h

(29) a. to (22), the MP is not the verb’s argument.

We can use the same diagnostics that we did to test for the argumenthood of the MP in §4.1.1 to test for the adjuncthood of the MP in certain linguistic contexts, i.e. (atelic) activities. For example, when applying the hacer-lo substitution test to (29a) & (29b), the MP can co-occur with the clitic suggesting that what lo is resuming is not the DegP. In other words, as opposed to (22), the MP is not the verb’s argument.

(29) a. [Context: Pedro runs at 10km/h; María at 5km/h; Miguel at 20km/h]

Pedro corre más que María durante una hora y Miguel lo hace más
Pedro runs more than María for an hour and Miguel cl. ACC do more
que ellos
than them
‘Pedro runs faster than María for an hour and Miguel does so more than them’

b. [Pedro runs some laps (x3); María (x2); Miguel (x6)]

Pedro corre unas vueltas más que María durante una hora y Miguel
Pedro runs some laps more than María for an hour and Miguel
lo hace más que ellos
ACC does more than them
‘Pedro runs some laps more than María for an hour and Miguel does so more than them’

This test simply identifies that there is an adjunct/argument distinction in the syntactic status of the MP containing más. However, it does not say anything at all about the distribution of the SPEED reading as opposed to the ‘quantity’ ones. Substituting the MP with a wh-pronoun allows us to probe this question deeper.

When the MP is interpreted in terms of ‘quantity’ — i.e. subject to the MC — and is an adjunct, it can only be made into a question with the degree wh-form cuánto, but not with qué or cómo
A seeming violation to the Monotonicity Constraint: evidence from Spanish verbal comparatives

(30a). On the contrary, when the MP is interpreted in terms of \textit{SPEED}, it can only be made into a question with the manner \textit{wh}-form \textit{cómo} (30b).

\begin{equation}
\text{(30)} \quad \text{(For an hour...)}
\end{equation}

\begin{enumerate}
\item a. \{ *¿Qué/ *Cómo/ Cuánto\} corre Juan? \Rightarrow más que Al
\item b. \{ Cómo/ *¿Qué/ *Cuánto\} corre Juan? \Rightarrow más que Al
\end{enumerate}

We can take (30a) and (30b) to show that there are (at least) two different syntactic positions where the MP can adjoin, and those two positions have an impact on the resolution of the measure function. In fact, I propose that the quantity interpretation comes about when the MP is a “high” \textit{vP} adjunct, while the \textit{SPEED} interpretation arises when the MP is a “low” \textit{vP} adjunct.

4.1.3. High \textit{vP} adjunct

On the one hand, I follow Wellwood et al. (2012); Pasternak (2018); Wellwood (2019) and propose that as an adjunct that is interpreted monotonically, the MP adjoins high in the \textit{vP}. From this position in (31), \(\mu\) does not measure the \textit{path}, but rather it measures (a)telic events. As a result, \(\mu\) ranges over events of type \(v\).

\begin{equation}
\text{(31) The syntactic position of “high” adjunct más}
\end{equation}

Once \(\text{PATH}\) composes with its individual argument via FA and then with the root by PM (as in (27), it will return a predicate of events — \(\langle vt\rangle\) — that will serve as the first argument of \(v\) in (32), cf. Kratzer (1996). Once the external argument has saturated \(v\)’s individual variable and maps it to a thematic relation, it returns a predicate of events, just like \text{PATH} before it. This predicate can compose with the MP, of the same type, via PM. A simplified derivation is provided in (33) where the monotonicity requirement of the complement of \text{PATH} has been omitted for simplicity.

\footnote{16I am using the label \text{QUANT(ITY)} as a shorthand for extensive measures such as \text{CARD.}, \text{DIS.}, \text{DUR.}, etc.}

\footnote{17It is also possible to ask a degree question analogous to English using a \textit{wh}-operator and \textit{much}: \textit{qué tanto} \textit{‘how much’} (lit. \textit{‘what much’}). This is a bit archaic in some varieties of Peninsular Spanish, and it is mostly found in rural areas or in the speech of elders. It is, however, common in American Spanishes. Note that this strategy employs the equative degree morpheme, which was noted in §1 could not be interpreted along the \textit{SPEED} scale.}
(32) $[v] = \lambda P(v). \lambda x. \lambda e.P(e) \land Agent(e)(x)$

(33)

a. $[\text{PATHP}] = \lambda e. \text{correr}(e) \land R(e, \text{path})$

b. $[v'] = [v]([\text{PATHP}]) = \lambda x. \lambda e. \text{correr}(e) \land R(e, \text{path}) \land Agent(e)(x)$ (by FA)

c. $[v''] = [v']([\text{Juan}]) = \lambda e. \text{correr}(e) \land R(e, \text{path}) \land Agent(e)(\text{Juan})$ (by FA)

d. $[vP] = \lambda e. \text{correr}(e) \land R(e, \text{path}) \land Agent(e)(\text{Juan}) \land \mu(e) \geq d$ (by PM)

$\exists e[\text{correr}(e) \land R(e, \text{path}) \land Agent(e)(\text{Juan}) \land \mu(e) \geq d]$ (by \exists-closure)

The values assigned for μ are quantity-based, and subject to the MC. In fact, the relevant values are identical to the ones in (28). In addition to these, it is also possible that μ measures pluralities, in which case μ will be resolved with the value of CARD.. For this to occur, the DegP must take scope over semantically interpretable Number morphemes as in (34) (which might be null in some languages, cf. Wellwood et al. 2012; Wellwood 2019).

(34) $[vP [v' [v' [\text{correr}] \text{SG}] \text{PL}]] \text{más}$

4.1.4. Low vP adjunct

In addition to the high vP adjunction site, the data in (30b) indicate that the SPEED interpretation arises as a type of manner modification. We can take manner modifiers to occupy a low position in the vP domain, cf. Cinque (1999); Ramchand and Svenonius (2014). In fact, it has been recently argued by Folli and Harley (2020) that the manner component of directed manner of motion verbs — i.e. the CORRER-class — is encoded by the PATH. That said, and given the proposed decomposition of the vP domain in (13), I propose that in order to obtain the non-monotonic interpretation of SPEED, the MP must be adjoined lower than the monotonically-interpreted adjunct counterpart: in particular, the MP must adjoin to PATHP in (35).

(35) The syntactic position of “low” adjunct más

```
         \text{vP}
          ^
         / \   \n     Juan /   \   \n        ^     ^
       v'     vP
          ^     ^
         / \   / \   / \
      v'    PATHP    PATH'
        ^     ^     ^
       / \   / \   / \
      PATH   PATH' MP
          ^     ^     ^
         / \   / \   / \
     √\text{CORR} - PATH -BOUND μ_{Q+} más CP
```

An argument for this syntactic position comes from the presence of an overt PP headed by a “at” which typically follows monotonic MP arguments and comes before high vP adjuncts. In (36) the for an hour adverbial is (right-)adjoined high in the vP and is linearized to the right the low a-PP adjunct that introduces the dimension of SPEED.

\footnote{For simplicity I am ignoring the fact that the main verb raises to T in Spanish (Rivero, 1978; Torrego, 1984; Zubizarreta, 1997; Gallego, 2007).}
A seeming violation to the Monotonicity Constraint: evidence from Spanish verbal comparatives

(36) Juan \[_{V} \text{corr}_{PATH} [\text{path} [[PP} a \text{ 20km/h}]]] \[PP \text{durante 1h}] \]
 \text{Juan runs at 20km/h for 1h}

‘Juan runs at 20km/h for 1h’

This \(a\)-PP is in complementary distribution with low-adjunct MP, i.e. they compete for the same position. As a result, the interpretation of the comparative in (37) cannot be in terms of \text{SPEED}. We can take this as a blocking effect in the form of the generalization in (38) whose understanding I leave for future research.\(^{19}\)

(37) for 1h...

\begin{align*}
\text{Juan corre a 20km/h más que Miguel} \\
\text{Juan runs at 20km/h more than Miguel}
\end{align*}

‘(For 1h,) Juan runs at 20km/h more than Miguel’

[QUANT., #SPEED]

(38) \textbf{The más-a generalization}

The measure introduced by comparative \textit{más/menos} cannot be interpreted in terms of \text{SPEED} when a PP headed by \(a\) provides the proportional measure.

From this low position, the MP scopes over a non-specified traversed quantity, i.e. \([-\text{BOUND}].\) Just like the scale of comparison of mass NPs is determined by properties of the NP (Schwarzschild, 2006), the scale of comparison of atelic VPs is determined by properties of the VP (Wellwood et al., 2012). Thus, considering that a low MP modifier in the NP domain measures “attributes”, a low MP adjunct measures “manner”, except that the only manner is the one that is composed of two monotonic measures: \text{SPEED} is obtained via a fraction (39):

\begin{equation}
\text{SPEED} = \frac{\text{DISTANCE}}{\text{TIME}}
\end{equation}

The input to the fraction in (39) is two dimensions for measurement that are themselves monotonic on the part-whole structure of the atelic predicate. But as the time and distance — both of which can be imposed by \text{PATH} in (28) — increase monotonically, the speed need not. The value assigned to \(\mu\) is then as in (40):

\begin{equation}
\mu = \lambda d \cdot \dot{\lambda} v, \quad \frac{\text{DISTANCE}(e)}{\text{DURATION}(e)} = \text{SPEED}(e) \geq d
\end{equation}

This analysis has two major consequences: (i) the MP interpreted non-monotonically is adjoined to a \([-\text{BOUND}]\) \text{PATH}; we are thus restricting the subset of predicates to the atelic \texttt{CORRER} class only; (ii) \text{PATH} enables the measure function to take as input two monotonic dimensions for measurement and return a non-monotonic dimension.

\(^{19}\)We should note that a high adverbial “at KM/h” is fine with all motion verbs including telic ones like \textit{run to the store} even in English (ii). It is the lower adjunct position which is in complementary distribution with \textit{more/más}.

(ii) John runs to the store at 10km/h.
5. **Monotonicity, equative *tanto* and English *more***

I noted in §1 that the *SPEED* interpretation was only available when the superiority/inferiority degree morphemes were used. However, equatives with *tanto...como* do not give rise to such an interpretation (4b).

I propose that this asymmetry is due to the fact that, unlike *más* and its negative counterpart *menos*, equative *tan*(t-{a/o}) is the spell-out of a degree head *t*–‘as’ and a morpheme *-an(t-)* that provides the measure function (Zanuttini and Portner, 2003; Eguren, 2020), along with agreement {-a(s)/o(s)} ‘F.(PL)/M.(PL)’. This morpheme *-an(t-)* is also found in the *wh*-degree operator *cuánto*, which I showed in (30b) could not probe for a *SPEED* interpretation of the comparative either.

I propose that the underlying syntax of equative and degree question morphemes is in (41). At PF, I assume that *-an(t-)* is lowered onto *t*. When the MP contains a [+WH] feature, cf. Cable (2010), the degree morpheme *t*- undergoes suppletion: *t- → cu-[+WH]_*

\[
\begin{align*}
(41) \quad & \text{a. The syntax of *tanto*} \\
& \begin{array}{c}
\text{MP} \\
\text{-an(t-)} \\
\text{DegP} \\
\text{t} \\
\text{CP} \\
\text{como}
\end{array} \\
& \text{b. The syntax of *cuánto*} \\
& \begin{array}{c}
\text{MP} \\
\text{[+WH]} \\
\text{-an(t-)} \\
\text{DegP} \\
\text{t} \\
\text{CP} \\
\text{como}
\end{array}
\end{align*}
\]

The semantics of the complex equative morpheme are given in (42). Given that the measure function can denote different dimensions of measurements, it must be underspecified; despite this underspecification, it can only denote quantity, i.e. track the part-whole structure of what is being compared. This is what the subscript Q indicates — as opposed to Q+.

\[
\begin{align*}
(42) \quad & \text{a. } [t-] = [as] = \lambda P_{(dt)} \lambda Q_{(dt)}, [\text{MAX}(Q) \geq \text{MAX}(P)] \\
& \text{b. } [-\text{ANT-Q}] = \lambda d.\lambda \alpha.\mu_Q(\alpha) > d
\end{align*}
\]

tanto already has the quantity measure built in, which requires satisfaction of the MC. Thus, for the sake of compositionality, *t-ant(t-)* can only be merged in a position that ensures a monotonic interpretation such as (23) & (31). As a result, merger or adjucntion of the equative to PATHP results in ungrammaticality.

Now we can explain the Spanish, but we are back to the question of why English — and many other languages — does not allow the *SPEED* interpretation just like *tanto*. The solution I advocate for is that the underlying measure function borne by *more* in English imposes an extensive measurement requirement. In fact, the complex morpho-syntax of *t-ant-* parallels the decomposition of *more* into *-er* and *much* (Bresnan, 1973; Corver, 1997); the former is the ordering relation between degrees and the latter introduces the measure function. Besides, the measure

20 *tanto* is inflected for number and gender in the nominal domain: *tant-os chic-os* “as.much-M.PL boy-M.PL”. The same happens with *cuanto* ‘how much’: *cuant-os chic-os* “how.much-M.PL boy-M.PL”. Both forms appear truncated when modifying an adjective: *tan alt-o(s)* “as.much tall-M.(PL)".
A seeming violation to the Monotonicity Constraint: evidence from Spanish verbal comparatives

function introduced by *much*, though underspecified (Wellwood, 2015; Solt, 2015; Bale and Schwarz, 2019), it is not fully so since it can only denote a dimension that preserves the part-whole structure of what is being compared. Thus, we can assign *much* the same denotation as

> \[[-\text{ANT}Q] = [\text{MUCH}Q] = \lambda d. \lambda \alpha. \mu_Q(\alpha) \geq d \]

Given (43), *MUCH*, and any of its morpho-syntactic variants, must always obey the MC. This explains why *John runs more than Mary for 1h* cannot mean ‘John ran faster’.

6. Conclusion

I have presented previously unnoticed evidence from verbal comparatives in Spanish. In particular, I showed that verbal comparatives with a subclass of manner of motion verbs, namely the directed manner of motion class, allowed interpretations along a scale of *SPEED* posing a challenge to the MC. These data shed light onto our understanding of dimensions for measurement. The MC, though apparently violated, is actually not: *más* composes with an underspecified measure function that allows for non-monotonic dimensions; and it is contained in a DegP that enables an additional adjunction site where a non-monotonic interpretation is composed. This entails that non-monotonicity is derived syntactically, rather than being a primitive grammatical constraint. This in turn supports McKinney-Bock and Pancheva’s (2019) hypothesis that there is no non-monotonicity constraint. That is, the domain of application of the MC is determined by the syntax. In fact, the MC applies only within a particular syntactic domain in the VP, much like Schwarzschild (2006) showed that it is syntactically constrained in the NP. This parallel is summarized in Table 2 and shown in (44):

> (44) a. The syntax behind the MC: NP
> (Schwarzschild, 2006)
> ![Diagram A]
> b. The syntax behind the MC: VP
> ![Diagram B]

21 The examples is (iii) are not counterexamples.

(iii) a. John runs more than 10 miles/h for some time.
 b. I drove more than 60 miles per hour for quite a long time in the morning.
 (https://forums.edmunds.com/discussion/17163/toyota/x/toyota-sienna-clicking-sound-over-60-miles-hour)

(iii) are an MP comparatives. And MPs indicate degrees as ordered points on a scale with no reference to the particular dimension. The dimension is determined in the syntax (Schwarzschild, 2006). Examples like (iii) are, thus, comparing such ordered points: the amount X is greater than the amount Y. The fact that it is quantities and not speed is then predicted by \[[\text{MUCH}_Q] \]. The meaning of ‘speed’ only comes out as an inference.
Table 2: Parallelism between NP and VP domains

<table>
<thead>
<tr>
<th></th>
<th>High</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP</td>
<td>Pseudo-partitive</td>
<td>Monotonic</td>
</tr>
<tr>
<td></td>
<td>Attributive</td>
<td>Non-Monotonic</td>
</tr>
<tr>
<td>VP</td>
<td>vP</td>
<td>Monotonic</td>
</tr>
<tr>
<td></td>
<td>PATHP</td>
<td>Non-Monotonic</td>
</tr>
</tbody>
</table>

The locus of cross-linguistic variation seems to be the underspecificity of the functional head doing the measurement. This is in turn is cashed out in the syntax as a structural constraint on where the MP containing that functional head can be merged or adjoined in the derivation. However, I leave a deeper explanation for future research.

References

A seeming violation to the Monotonicity Constraint: evidence from Spanish verbal comparatives

Ramchand, G. and P. Svenonius (2014). Deriving the functional hierarchy. Language Sci-

