Он опыт из лепета лепит
И лепет из опыта пьёт.
‘New theory brings new data
New data bring new theory’
(rough translation)

Octave #9
Osip Mandelstam
A theory of two strong islands

by

Dmitry Privoznov

Submitted to the Department of Linguistics and Philosophy
on August 31, 2021, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Abstract

This thesis is dedicated to two strong island effects: The Subject Condition and The Adjunct Condition. Both effects can be unified under a single generalization, known as Condition on Extraction Domain, or CED (Cattell, 1976; Kayne, 1981; Huang, 1982): any maximal projection that is merged with a phrase is an island.

The thesis develops the so-called Spell Out theory, based on the original proposal by Johnson (2003). This theory derives CED from two basic assumptions about when and to which constituent Spell Out is applied over the course of syntactic derivation. The assumptions are, first, that between any two phrasal sisters at least one must be spelled out, and second, that a spelled out phrase does not project its category. The thesis also offers a theory of the interaction between syntactic derivation and memory structure that derives these two assumptions. The core principle is that focus of attention can only hold one element at a time.

The thesis examines three main predictions of the Spell Out theory. The first prediction is the Adjunct Condition. The thesis shows that adjuncts may sometimes be transparent, but only if their sister is opaque. The second prediction is the Subject Condition. The thesis argues that any extraction out of subjects either involves extraction out of complements (not specifiers) or covert pied-piping. The third and new prediction is that all specifiers and all adjuncts are interpreted by the LF interface before their sister, that is, they create the local context for their sister, as is evident from the behavior of discourse anaphora (the Island Condition).

Thesis Supervisor: Patrick Elliott
Title: Postdoctoral Associate

Thesis Supervisor: Sabine Iatridou
Title: David W. Skinner Professor of Linguistics

Thesis Supervisor: Norvin Richards
Title: Professor of Linguistics

Thesis Supervisor: Danny Fox
Title: Anshen-Chomsky Professor of Language & Thought

Thesis Supervisor: David Pesetsky
Title: Ferrari P. Ward Professor of Modern Languages and Linguistics
Acknowledgments

I would never have dared to dream to write a dissertation about islands, if I hadn’t been extremely lucky to receive the kind support, the friendly encouragement and the invaluable advice from many wonderful people I had a pleasure to meet and work with at MIT, and also at Moscow State University. Here are some of them.

First and foremost this dissertation only exists because of my excellent supervisors: Patrick Elliott, Danny Fox, Sabine Iatridou, David Pesetsky and Norvin Richards. Sabine is my MIT mother, who immediately took me under her wing and never stopped caring about me in numerous different ways, from teaching me sudoku on a plane to constantly keeping my reasoning about this thesis and many other topics faithful to the analyzed material and in check of cold Greek logic. David would not only support many crazy ideas I had, but also choose the most important and exciting ones and patiently make me make them work. Thank you, David, for teaching me how to broaden my scientific imagination. Thank you, Danny, for making me sweat trying to think and express myself clearer, for always reminding me of the bigger picture, and for not letting me muddy myself in the moor of unimportant and irrelevant details. Thank you, Patrick, for your invaluable emotional support and never seizing excitement about whatever gibberish I have come up with over the last couple of years, and for patiently helping me make something truly interesting and, hopefully, worthwhile out of this gibberish. Thank you, Norvin, for always keeping an eye out for the most promising, the most relevant and the most important part of the pile of data I have constantly brought your way.

I should also thank Roger Schwarzschild for understanding practically everything I have ever come to him to talk about, from dynamic semantics to long-distance scrambling, better than I understood it myself, and explaining it back to me in a surprisingly clear and generous way. I should also thank Martin Hackl for his kind and patient encouragement and advice, which brought chapter 4 of this thesis into existence, which in turn made writing the rest of it possible.

This thesis would not have been possible without the amazing amount of time and energy that my linguistic consultants have generously shared with me. For their Balkar intuitions I thank Alim Ulbashev, Asijat Gazieva and Aslizhan Nogerova. For their English intuitions I thank Christopher Baron, Clara McMahon, Elise Newman, Justin Colley, Mary
Jane, Neil Banerjee, Rafael Abramovitz and Yadav Gowda. For their Russian intuitions I thank Anastasia Gruzdeva, Anton Kukhto, Victoria Kinzler, Irina Privoznova, Konstantin Privoznov, Olga Nikolaenko and Tatiana Bondarenko.

For insightful discussions and valuable thought provoking input I thank Irene Heim, Kai von Fintel, Sergei Tatevosov, Gennaro Chierchia, Sarah Zobel, Tatiana Bondarenko, Matthew Gotham, Justin Colley, Neil Banerjee, Alexander Podobryaev, Colin Davis, Itai Bassi, Enrico Flor, Verena Hehl, the audience and anonymous reviewers of Sinn und Bedeutung 25, the audience of the LF Reading Group at MIT, and the members of the field trip to Kabarino-Balkaria organized by Moscow State University in the summer of 2019. For a Topics in Syntax class in which I had some sort of a vague idea that started it all I should thank Danny Fox and Norvin Richards. My extreme gratitude goes to Mary, Aggie, Chrissy, Chris, Jen and Matt for making the L&P department at MIT work so smoothly and blissfully.

For teaching me how to do linguistics and science in general I should thank two people: Sergei Tatevosov and Svetlana Toldova. My deepest beliefs about the field and about what to do with my life are formed thanks to them. I should also thank my amazing teachers from Moscow State University: Barbara Partee and Sergei Tatevosov for semantics, Alexander Kibrik for linguistics, Vladimir Uspensky, Tatiana Yavorskaya and Mati Pentus for logic, Ekaterina Lyutikova for syntax, Maria Falikman for cognitive science and many others. I also thank John Bailyn and NYI for giving me a ticket to a larger world. Last, but not least, I thank the Altaic and Uralic expedition crowd, who made my work not only productive, but also immensely enjoyable: Sasha Podobryaev, Natasha Ivleva, Liza Bylinina, Tanya Bondarenko, Anton Kukhto, Petya Staroverov, Galya Sim, Lyosha Kozlov, Lena Delikanova, Dasha Bikina, Sonya Nikiforova, Sophie Pokrovskaya, Masha Privizentseva, Nastya Gruzdeva, Katya Morgunova, Nastya Voznesenskaya, Matvey Korzukov, Lisa Kornakova, Nastya Evstigneeva, Marina Ermolaeva, Alëna Aksënova, Masha Vassilyéva, Dima Dundua, Philipp Shushurin, Andrey Zavgorodny and Lyovushka.

Thank you to my friends around the world who kept me sane and working through the two horrible pandemic years: Lisa Mankovskaya, Olya Nikolaenko, Kolya Markov, Vika Kinzler and Masha Esipova. Thank you to my friends at home who always made my coming back a somewhat hangover, but very happy holiday and for keeping my heart warm until our next meeting: Ksu Semyonova, Vanya Mukhin, Masha Shapiro, Ruslan Idrisov, Vadim

Thank you to my cohort mates, who became a Boston family to me: Justin Colley, Itai Bassi, Maša Močnik, Rafael Abramovitz, Verena Hehl, Suzana Fong, Colin Davis, our two honorary mates Danfeng Wu and Keny Chatain, and “the son of the regiment”, little Nadav. Thank you to the friends I met at MIT, who made Boston home: Isa Bayırlı, Ömer Demirok, Ezer Rasin, Athulya Aravind, Michelle Yuan, Carrie Spadine, Abdul-Razak Sulemana, Ishani Guha, Vitor Nóbrega, Agnes Bi, Filipe Kobayashi, Sherry Chen and the “romantic boys” Enrico Flor, Vincent Rouillard and Stan Zompi. Thank you to “the bumblebees”, to whose couch and hospitality I owe so much (the couch I hereby proclaim my eternal and exclusive right): Justin Colley, Colin Davis, Yadav Gowda, Frank Staniszewski, my linguistic brother and dearest friend Anton Kukhto and my genius linguistic sister and best friend, who will always be the unending source of emotional support – Tanya Bondarenko. Thank you to my wonderful and caring roommate of long and happy five years – Fern, and her loving pet and my dearest friend, Christopher Baron. Thank you to gamers, walkers and puzzlers: Neil Banerjee, Agnes Bi, Danfeng Wu, Hyunji Yoo, Peter Grishin and Keny Chatain.

Thank you to my family who loved, encouraged and supported me invariably in all my endeavors and to whom I owe more than I can say: Ira, Kostya, Lilya, Lida, Sveta, Dima, Sasha, Vitya, Olya and Jura. Finally, thank you for all of the above and much more to Neil, who will, without a doubt, always look to me like a thing.

I dedicate this thesis to the dear memory of my teacher, Nadezhda Mirova.
Contents

1. **The Spell Out theory**
 1.1 What this thesis is about
 1.2 Background and terminology
 - 1.2.1 Phrase structure
 - 1.2.2 Movement
 1.3 The Spell Out theory
 - 1.3.1 The two central claims
 - 1.3.2 Predictions in narrow syntax
 - 1.3.3 Predictions at LF
 1.4 Syntactic derivation and memory structure
 1.5 Roadmap

2. **The Adjunct Condition**
 2.1 Formulating the adjunct condition
 2.2 Introducing Balkar converbs
 - 2.2.1 Preliminaries
 - 2.2.2 Converbs
 - 2.2.3 Scrambling
 - 2.2.4 Outline
 2.3 Extracting from converbs with subjects
 - 2.3.1 CP-coverbs
 - 2.3.2 Back to extraction
 2.4 Extracting from converbs with PRO
2.4.1 vP/TP-converbs .. 70
2.4.2 Bleached verbs and grammaticalization 78
2.4.3 Back to extraction 85
2.4.4 Interim summary 88
2.5 Extracting from English \textit{ing}-clauses 90
 2.5.1 Preliminaries 90
 2.5.2 Intransitives 91
 2.5.3 Transitives 97
 2.5.4 Summary .. 100
2.6 Concluding remarks and finite adjuncts 101

3 The Subject Condition 105
 3.1 Introduction .. 105
 3.2 Formulating the Subject Condition 107
 3.2.1 Strong and Weak Subject Condition 107
 3.2.2 Challenges to the Subject Condition 110
 3.3 Transparent subjects in Literary Russian 113
 3.3.1 Background 113
 3.3.2 Transitive verbs 117
 3.3.3 Unergative vs. unaccusative verbs 121
 3.3.4 Among unaccusatives 128
 3.3.5 Summary .. 133
 3.4 DSO in Colloquial Russian 134
 3.4.1 Literary vs. Colloquial 134
 3.4.2 Arguments against syntactic deconstruction 136
 3.4.3 Discontinuous Spell Out 142
 3.4.4 Restrictions on Discontinuous Spell Out 144
 3.4.5 Detectable Subject Condition effects 148
 3.4.6 Summary .. 152
 3.5 DSO in Balkar .. 152
3.5.1 Background ... 152
3.5.2 Extraction from noun phrases 154
3.5.3 Extraction from clauses 154
3.5.4 Extraction from complex noun phrases 158
3.5.5 DSO and Subject Condition effects 162
3.5.6 Summary ... 165
3.6 Conclusion .. 165

4 Spell Out at LF: The Island Condition 167
4.1 Spell Out and discourse anaphora 167
4.2 The Island Condition 171
 4.2.1 The Island Condition 171
 4.2.2 Anaphoric relations 173
4.3 Indefinite anaphora and structure 175
 4.3.1 The main argument 175
 4.3.2 Specifiers 175
 4.3.3 Adjuncts ... 180
 4.3.4 Coordination 184
 4.3.5 Summary ... 187
4.4 Spelling Spell Out out 187
 4.4.1 Semantic framework 187
 4.4.2 Logical Form 188
 4.4.3 Interpretation rules 190
 4.4.4 Sample derivations 192
 4.4.5 Quantifiers 195
 4.4.6 Spell Out at LF 198
4.5 Extensions .. 201
 4.5.1 Presupposition projection 201
 4.5.2 Temporal iconicity 204
4.6 Issues ... 208
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6.1 Other adjuncts</td>
<td>208</td>
</tr>
<tr>
<td>4.6.2 Disjunction</td>
<td>213</td>
</tr>
<tr>
<td>4.7 Conclusion</td>
<td>215</td>
</tr>
<tr>
<td>A The Island Condition and movement</td>
<td>217</td>
</tr>
<tr>
<td>B “Backwards” donkey anaphora</td>
<td>221</td>
</tr>
<tr>
<td>C The Island Condition in Russian</td>
<td>223</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>227</td>
</tr>
<tr>
<td>Bibliography</td>
<td>240</td>
</tr>
</tbody>
</table>
'One and the same situation can be described in many different ways. The natural desire of a computer would, evidently, be the following: build a coordinate grid and describe each square in a particular order. Meanwhile, for a human a much more natural description would be one when a main object is chosen, <...> and from it, like from a root, a graph is being built, which determines the positions of all the other objects.'

On the structure of a paragraph

Elena Paducheva
Chapter 1

The Spell Out theory

1.1 What this thesis is about

Consider the contrast in (1). In (1a) the wh-phrase who moves out of the noun phrase a friend of _1 in the object position, and the sentence is fine. In (1b) the same wh-phrase moves out of the same noun phrase, but this noun phrase is in the subject position, and the sentence is not as good. This contrast illustrates the so-called Subject Condition, first introduced by Ross (1967, 241-255) and further developed by Chomsky (1973), Cattell (1976), Kayne (1981), Pesetsky (1982, 313-318) and Huang (1982, 503-514), among others.

(1) a. ok This is the person [who1 Rosa invited [a friend of _1] to the party].

b. * This is the person [who1 [a friend of _1] invited Rosa to the party].

There must be some property that distinguishes between subjects and objects that we should attribute the contrast in (1) to. One such property is that subjects merge with a phrase, while objects merge with a head. In (1a) the noun phrase that is being extracted from, a friend of _1, is merged with the verb invite, while in (1b) the same noun phrase is merged with v'.
In this thesis I will defend the view first proposed by Cattell (1976), Kayne (1981) and Huang (1982), according to which it is this distinction that lies behind the Subject Condition, namely, the distinction between phrases that merge with heads and phrases that merge with other phrases. The former can be transparent for movement, while the latter are invariably opaque.

Consider now the contrast in (3) from Russian. In (3a) the PP \(v \) kotoryj ‘into which’ moves from some position inside a subjunctive clause headed by \(čto-by \) ‘that-SBJ’, which is the complement of xotel ‘want’, and the sentence is fine. In (3b) the same PP moves from the same position inside the same subjunctive clause, but this clause is an adjunct to the verb phrase mnogo rabotal ‘much worked’, and the sentence is not as good. This contrast illustrates the so-called Adjunct Condition, first introduced and developed by Cattell (1976), Paducheva and Zaliznyak (1979), Kayne (1981), Huang (1982, 497-499, 503-514) and others.
There are several properties that distinguish between complements and adjuncts and that could be responsible for the contrast in (3), one of which is that complements merge with a head, while adjuncts merge with a phrase. For example, in (3a) the subjunctive clause is merged with the verb \textit{xotel} ‘wanted’, while in (3b) the same subjunctive clause is merged with \textit{v}′:

\begin{itemize}
 \item[(4)]
 \begin{enumerate}
 \item The position of the subjunctive clause in (3a):
 \begin{itemize}
 \item\[vP \quad DP \quad v \quad v' \quad VP \quad V \quad CP \quad '\text{for them to accept him }_1' \quad '\text{want'} \quad '\text{Karl'}\]
 \end{itemize}
 \end{enumerate}
 \item The position of the subjunctive clause in (3b):
 \begin{itemize}
 \item\[vP \quad CP \quad '\text{for them to accept him }_1' \quad '\text{work'} \quad '\text{Karl'}\]
 \end{itemize}
\end{itemize}

In this thesis I will defend the view, according to which the Adjunct Condition stems from the same basic principles as the Subject Condition. Namely, phrases that merge with a
head (complements) can be transparent, while phrases that merge with other phrases (specifiers and adjuncts) are opaque.

This configurational account was first pursued by Cattell (1976), Kayne (1981) and Huang (1982). The generalization that unifies the Subject and the Adjunct Condition is commonly known as Huang’s (1982) Condition on Extraction Domain, or CED (Huang, 1982, 505). Various explanations for this generalization have been advanced by Uriagereka (1999), Nunes and Uriagereka (2000), Johnson (2003) and Sheehan (2010). For some discussion of Uriagereka’s (1999) and Johnson’s (2003) proposals, which are the direct predecessors of this thesis, see section 1.4 below.

This dissertation pursues a theory called the Spell Out theory, which is a development of Johnson’s (2003) proposal. The Spell Out theory consists of two core assumptions about when and to which constituent the operation of Spell Out is applied over the course of syntactic derivation. The first assumption is that before any two phrases are merged at least one of them must be spelled out. The second assumption is that a spelled out phrase does not project its category.

In this chapter I will formally introduce the Spell Out theory and its predictions in narrow syntax and at the LF interface, and offer some speculations about why this theory might be true. Section 1.2 outlines the background assumptions concerning phrase structure and movement. Section 1.3 lays out the Spell Out theory and its predictions. Section 1.4 offers a tentative theory of the interaction between syntactic derivation and memory structure that could derive the Spell Out theory itself.

1.2 Background and terminology

1.2.1 Phrase structure

In this dissertation I will adopt the Bare Phrase Structure framework, introduced by Chomsky (1995). More precisely, I will make reference to three basic syntactic notions: constituency, (maximal) projection and a modifier vs. non-modifier distinction.

The notion of constituency is very straightforward. It is a common assumption that
sentences in natural language are structured. In particular, the string *listening to a merry song* in all the three sentences in (5) forms a constituent, which may be represented as a node on a syntactic tree. In (5a) it is the immediate subconstituent of *liked listening to a merry song*; in (5b) it is the immediate subconstituent of *cleaned the room listening to a merry song*; and in (5c) it is the immediate subconstituent of *listening to a merry song made Rosa happy*.

(5)

a. ok Rosa [liked [listening to a merry song]].
b. ok Rosa [cleaned the room [listening to a merry song]].
c. ok [[Listening to a merry song] made Rosa happy].

By assumption, all the terminal nodes (heads) in a syntactic tree bear a category, which determines, among other things, their syntactic distribution. For example, *clean* and *like* bear the category V (for verb), *room* bears the category N (for noun), and *the* bears the category D (for determiner).

Furthermore, all non-terminal nodes (phrases) also bear a category. More precisely, each non-terminal node bears the syntactic category of one of its immediate daughters, namely, the daughter that contains the head of the constituent that this node dominates.¹ One of the daughters, thus, *projects* its category to its mother. For example, the node that dominates the constituent *liked listening to a merry song* bears the category of *like*, which is V. Hence, it is labeled VP. Meanwhile the node that dominates the constituent *the room* bears the category of *the*, which is D. Hence, it is labeled DP:

¹Like in the case of the notion of constituency, the notion of the head of a constituent is associated with a set of properties neither of which is necessary and neither of which is sufficient. The head of a constituent is usually the terminal node that determines the syntactic distribution of this constituent and carries the morphology that the syntactic context of this constituent demands/assigns.
(6) a. The structure of the verb phrase in (5a)²

```
  vP
 /   \
DP   v'  
   /   \
Rosa v  VP
   /     \
V     ingP
     /     \
like  listening to a merry song
```

b. The structure of the verb phrase in (5b)

```
  vP
 /   \
DP   v'  ingP
   /   \   
Rosa v  VP   listening to a merry song
   /     \
V     DP
     /     \
clean  the room
```

c. The structure of the verb phrase in (5c)

```
  vP
 /   \
-ingP  v'  AdjP
   /   \    
listening to a merry song  v  Adj
     /     \    
make  DP  Adj
      /    \
Rosa  adj
```

A node that does not project its category to its mother is called a maximal projection. A node that does project its category is a non-maximal projection. For example, the ing-clause listening to a merry song is a maximal projection in all the structures in (6). By convention, maximal projections are labeled XP, while non-maximal projections are labeled X'.

²Here and throughout I will follow the common assumption that English subjects are base generated within the verb phrase and later move to Spec, TP.
In what follows I will use two parameters to distinguish between different types of maximal projections. The first parameter is a modifier vs. non-modifier distinction. A modifier is a maximal projection that is optional in the context of its sister. Semantically, it does not fill any argument slot of the main predicate, it introduces modification.\(^3\) The class of non-modifiers includes everything else, including arguments. For example, the \textit{ing}-clause \textit{listening to a merry song} is a modifier in (6b), but not in (6a) or (6c), where it fills an argument slot of the main verb.

The second parameter is the complexity of the sister. If a maximal projection is merged with a head (a terminal node), it will be called a complement, \textbf{regardless} of its semantic status. If a maximal projection is merged with a phrase (a non-terminal node), it will be called either a specifier or an adjunct. If it is a modifier, it will be called an adjunct, and if it is not, it will be called a specifier.\(^4\) Notice that in Bare Phrase Structure, complements can be modifiers:

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
\textbf{XP’s status} & \textbf{Non-Modifier} & \textbf{Modifier} \\
\hline
\textbf{Head} & Complement & Complement \\
\hline
\textbf{Phrase} & Specifier & Adjunct \\
\hline
\end{tabular}
\caption{Types of maximal projections}
\end{table}

In (6a) the \textit{ing}-clause \textit{listening to a merry song} is not a modifier (it is an argument in this case), and its sister is a head, which means that it is a complement. In (6b) the \textit{ing}-clause is a modifier whose sister is a phrase, which means that it is an adjunct. In (6c) the \textit{ing}-clause is not a modifier (it is an argument in this case) and its sister is a phrase, which means that it is a specifier.

\(3\)Another property of modifiers is that their morphology is never predetermined by the main predicate, see Chomsky (1965, 1981), Melchuk (1974) and Kibrik (1977), among numerous others.

\(4\)The terminology originally comes from the X’-theory (Jackendoff, 1977; Chomsky, 1981), which uses it in a slightly different way. In X’-theory it is assumed that all complements are arguments, which is crucially not the case in Bare Phrase Structure.
1.2.2 Movement

Movement is a description of a situation when there are reasons to believe that a constituent occupies two positions in the same sentence at once. For example, in (8) the phrase which song occupies the position at the left periphery of the embedded question, because it is pronounced there. At the same time it serves as an argument of the verb listen inside the ing-clause. Here and throughout the lower unpronounced position is marked by _ with an index. By assumption, which song in (8) is base generated in the lower argument position and later moves to the left periphery of the embedded clause, because this clause is an embedded question.

(8) ok I know [which song, Rosa liked [listening to _]].

Usually, movement can connect two syntactic positions at an arbitrary long distance from each other. In particular, it may cross (potentially) infinitely many clausal boundaries:

(9) a. ok I know [which song, Rosa liked [listening to _]].
 b. ok I know [which song, Karl thinks Rosa liked [listening to _]].
 c. ok I know [which song, you say Karl thinks Rosa liked [listening to _]].
 d. ok ...

However, as was first observed by Ross (1967), there are certain syntactic domains that restrict movement. For example, movement of a modifier, like when, cannot cross the boundary of an embedded question:

(10) a. ok I know [when, Rosa thought [that Karl left _]].
 b. * I know [when, Rosa asked [whether Karl left _]].

There are three types of constituents that restrict long-distance movement: phases, weak islands and strong islands (see Szabolcsi, 2006, for an overview).

Phases might as well have been called peninsulas. They are constituents that only allow movement from their left edge position (see Fox, 1999; McCloskey, 2000; Chomsky, 2001; Fox and Pesetsky, 2005, and numerous others). According to other theories, movement
out of a phase does not have to proceed through its left edge, but rather has to preserve the phase-internal word order (see Fox and Pesetsky, 2005). A phase is defined as a maximal projection of a certain category, regardless of its structural position or interpretation. For example, it is usually assumed that any DP, any CP and any \(vP \) is a phase, regardless of their structural position or interpretation.

Weak islands only allow movement of certain types of constituents. In particular, arguments but not modifiers can move out of a weak island (see Ross, 1967; Cinque, 1990; Rizzi, 1990; Szabolcsi and Zwarts, 1993; Szabolcsi, 2006, and numerous others). A weak island can be defined as the scope of a semantic operator. For example, the scope of an interrogative \(wh \)-phrase (an embedded question), the scope of a definite article and the scope of negation are usually assumed to be weak islands (see Szabolcsi and Zwarts, 1993 and Szabolcsi, 2006).

Strong islands do not allow any movement to escape from them, neither of an argument nor of a modifier, neither through the left edge nor from the base position (see Ross, 1967; Cinque, 1990; Takahashi, 1994; Uriagereka, 1999; Johnson, 2003; Stepanov, 2007; Sheehan, 2010, and numerous others). A strong island is usually defined in terms of its structural position. In this sense strong islands are configurational. For example, any maximal projection that is an adjunct is usually assumed to be a strong island, regardless of its category (unlike phases) or its interpretation (unlike weak islands).

The Subject Condition, illustrated again by (11), is a strong island effect. In both (11a) and (11b) \(who \) moves out of a DP, which means that this contrast cannot be attributed to DP being a phase. Furthermore, the DP that is being extracted from has the same interpretation, in particular, it is indefinite in both cases, which means that this contrast cannot be attributed to the meaning of some semantic operator. The only difference between (11a) and (11b) is the structural position of the constituent that is being moved out of: complement in (11a) and specifier in (11b). Consequently, this can only be classified as a strong island effect.

(11) a. \textit{ok} This is the person [\textit{who} _1 Rosainvited [a friend of _1] to the party].

b. \textit{*} This is the person [\textit{who} _1 [a friend of _1] invited Rosato the party].

The Adjunct Condition, illustrated again by (12), is also a strong island effect. In both
(12a) and (12b) the PP v kotoryj moves out of a subjunctive clause, which means that this contrast cannot be attributed to Russian subjunctive clauses being phases. Furthermore, it is not obvious that there any semantic operators that are present in (12b), but not in (12a), which means that this contrast cannot be easily explained as a weak island effect. The only clear difference between (12a) and (12b) is the structural position of the constituent that is being moved out of: complement in (12a) and adjunct in (12b). Hence, this is also best classified as a strong island effect.

(12) **Russian**

a. ok klub, [v kotoryj Karl očen’ xotel, [čto-by pro ego prinjali _1]]
 club into which Karl very wanted that-sbj they him accepted
 ‘...the club which Karl wanted so much for them to accept him to _1.’

b. *klub, [v kotoryj Karl mnogo rabotal, [čto-by pro ego prinjali _1]]
 club into which Karl much worked that-sbj they him accepted
 ‘...the club which Karl worked a lot for them to accept him to _1.’

The goal of this dissertation is to argue that (11) and (12) illustrate the same strong island effect. Any maximal projection that is merged with a phrase (any specifier and any adjunct, as defined above) is a strong island.

1.3 The Spell Out theory

1.3.1 The two central claims

Any linguistic item can be viewed as a triplet of form, meaning and syntactic structure, which connects the previous two. For example, the sentence *Karl likes music* is associated with a sequence of phonological features (form), a proposition and its pragmatic effects (meaning) and a syntactic structure, which can be represented by a tree. The syntactic structure of lexical items is very simple and, possibly, consists of only one node and some set of syntactic features, including the category. Larger items, like phrases or sentences have a more complex structure.

In the Principles and Parameters framework (Chomsky, 1981), as well as in Minimalism
(Chomsky, 1995), it is assumed that language first builds a syntactic structure and then assigns to it its form and meaning. *Spell Out* is the operation that is responsible for this last step. It takes a constituent (syntactic structure) and returns its phonological and semantic representation (form and meaning). Naturally, Spell Out is not a simple operation and may consist of multiple sub-steps. Furthermore, the sub-steps may be different at the syntax-semantics interface (LF) and the syntax-phonology interface (PF).

By assumption, after a constituent is spelled out, it turns into a terminal, like a lexical item. After it has been associated with a particular form and meaning, its internal syntactic structure becomes irrelevant and, thus, inaccessible for further syntactic processes, for example, movement.

As a result, a spelled out constituent is special in at least two respects. First, it is interpreted by the PF and LF interfaces before it is merged with the rest of the sentence, and second, a spelled out constituent is opaque for movement.

Unlike Chomsky (2001), in whose theory Spell Out applies to phases, this dissertation follows the idea first proposed by Uriagereka (1999) and Johnson (2003), according to which Spell Out applies to strong islands. The proposed theory builds on Johnson (2003) and consists of the following two hypotheses:

(13) **The Spell Out theory.**

a. Before any two phrases are merged at least one must be spelled out.

b. A spelled out phrase does not project its category.

From (13a) and (13b), taken together, it follows that all specifiers and all adjuncts must be spelled out, because specifiers and adjuncts are, by definition, maximal projections whose sister is a phrase. That is, a specifier is, by definition, a phrase that is merged with another phrase and does not project its category; and an adjunct is also, by definition, a phrase that is merged with another phrase and does not project its category.
1.3.2 Predictions in narrow syntax

The two immediate predictions of the Spell Out theory in narrow syntax are that all adjuncts are opaque for movement (the Adjunct Condition) and that all specifiers are opaque for movement (the Subject Condition).

As I have already shown above, there is a contrast between extraction out of a complement, as in (14a), and extraction out of an adjunct, as in (14b).

(14) a. *I know [which song$_1$ Rosa liked [listening to $_1$]].
 b. *I know [which song$_1$ Rosa cleaned the room [listening to $_1$]].

In the current literature there are two views on the contrast in (14), stemming from two properties that distinguish the ing-clause in (14a) and in (14b). Various theories that can be generally called modifier accounts (Chomsky, 2004; Truswell, 2007; Stepanov, 2007; Hunter, 2010, 2015; Bošković, 2017) draw the line between modifiers and non-modifiers. According to this view, all modifiers are opaque, while non-modifiers can be transparent. Configurational accounts (Uriagereka, 1999; Nunes and Uriagereka, 2000; Johnson, 2003; Sheehan, 2010) draw the line between adjuncts and complements. According to this view all adjuncts are opaque, while complements (regardless of whether they are modifiers or not) can be transparent.

(15) a. Opaque maximal projections under modifier accounts

<table>
<thead>
<tr>
<th>XP’s status</th>
<th>Non-Modifier</th>
<th>Modifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>XP’s sister</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head</td>
<td>Complement</td>
<td>Complement</td>
</tr>
<tr>
<td>Phrase</td>
<td>Specifier</td>
<td>Adjunct</td>
</tr>
</tbody>
</table>
b. Opaque maximal projections under configurational accounts

<table>
<thead>
<tr>
<th>XP’s sister</th>
<th>Non-Modifier</th>
<th>Modifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>Complement</td>
<td>Complement</td>
</tr>
<tr>
<td>Phrase</td>
<td>Specifier</td>
<td>Adjunct</td>
</tr>
</tbody>
</table>

The Spell Out theory is a configurational account. It predicts that opacity should track the structural distinction between adjuncts and complements, not the semantic one between modifiers and non-modifiers. As a consequence, unlike modifier accounts, the Spell Out theory predicts that modifiers can be transparent. Moreover, they can be transparent in two precise circumstances:

(16) a. A modifier is transparent if it is merged with a head (is a complement).

b. A modifier is transparent if its sister is spelled out.

The situation described in (16a) arises when a modifier is attached low in the syntactic structure. As for the situation in (16b), I suggest that it can only arise if the modifier and its sister bear the same category. In this circumstance the mother node will have the same category and, hence, the same syntactic distribution (i.e., it can be selected by the same set of heads) regardless of which of its daughters projects.

In chapter 2 I will argue, based on data from Balkar (a Turkic language, spoken in Kabardino-Balkaria, Russia), that modifiers can be transparent, contrary to what modifier accounts predict. Furthermore, they are transparent precisely in the two cases described by (16).

The argument comes from the behavior of non-finite clauses that serve as modifiers, so-called *converbs*. Balkar converbs come in three varieties: vPs, TPs and CPs. vP-converbs are attached within the main vP, and in the context of an unaccusative verb of motion or position they are structurally complements (merged with the verb). TP-converbs are attached between the vP or the T’ level. CP-complements are attached at the CP level. TP-converbs are always opaque, as the Spell Out theory predicts. They are merged with a phrase, and
this phrase cannot be spelled out, either because it is not of the same category as the con-
verb or because its EPP feature has not yet been satisfied (in the case of the T′-attachment).
vP-converbs are transparent in the context of unaccusative verbs of motion or position, in
other words, only when they are attached as complements. This confirms the prediction in
(16a). CP-complements are only transparent if the main clause, their CP-sister, is opaque.
Scrambling is possible out of a CP-converb, out of the main clause, but not out of both
simultaneously. This confirms the prediction in (16b).

In sum, data from Balkar confirm the predictions of the Spell Out theory and are incom-
patible with modifier accounts. In Balkar the transparency of a non-finite clause depends
on its structural position, not on its argument vs. modifier status.

The Subject Condition can be illustrated by the contrast between extraction out of a
complement, as in (17a), and extraction out of a specifier, as in (17b).

(17) a. ok I know [which song₁ you think Rosa liked [listening to _₁]].

b. * I know [which song₁ you think [listening to _₁] made Rosa happy].

The prediction of the Spell Out theory is that all specifiers (both derived and base gener-
atged) should be opaque for movement. This is the strongest form of the Subject Condition.

This prediction has been challenged in the recent syntactic literature in two ways. First,
in some languages, like Russian, some subjects that stay in-situ are transparent for extrac-
tion. This led some researchers to the idea that the strongest version of the Subject Con-
dition is incorrect (see Takahashi, 1994; Rizzi and Shlonsky, 2007; Stepanov, 2007). The
proposed weaker version only restricts movement out of derived specifiers (the so-called
freezing effect, see Wexler and Culicover, 1981).

Second, in other grammars, like Balkar or the colloquial register of Russian (see Zem-
skaya, 1973, and chapter 3 for more discussion), nominal subjects do not seem to be opaque
at all, regardless of their syntactic position (see Sekerina, 1997; Fanselow and Ćavar, 2002;
Pereltsvaig, 2008; Bondarenko and Davis, 2020a, and others). This is a challenge to both
the stronger and the weaker version of the Subject Condition.

In chapter 3 I will argue that both of these challenges are superficial and that under
closer consideration the strongest version of the Subject Condition is correct, as predicted
by the Spell Out theory.

As for the first challenge, I consider subjects in-situ in Russian and show that they are only transparent if they are base generated as complements, see Polinsky et al. (2013) and also Jurka (2010) for the empirical support for the same generalization in German, English, Japanese and Serbian. That is, only subjects of certain unaccusative verbs (verbs of position and ‘be’) are transparent in-situ, while those subjects that can independently be argued to be base generated as specifiers, i.e., subjects of unergative and transitive verbs are opaque. This supports the Spell Out theory: base generated specifiers are opaque, base generated complements are transparent.

As for the second challenge, I discuss Balkar and the colloquial register of Russian as two examples of grammar systems that seemingly allow extraction out of all noun phrases, regardless of their syntactic position. As I will show, there are good reasons to believe that in these systems split noun phrases do not necessarily involve genuine subextraction. Instead, they are better analyzed as *discontinuously spelled out* constituents (see Fanselow and Ćavar, 2002; Pereltsvaig, 2008; Bondarenko and Davis, 2020a, and others). That is, part of a noun phrase is marked as Topic and moves to the Topic position. The rest of the noun phrase is pied-piped, so no genuine subextraction is involved. However, only the topical part of the noun phrase is pronounced in the Topic position, while the pied-piped material is “reconstructed” at PF. The literature proposes a variety of arguments in support of this analysis, some of which will be reviewed in chapter 3.

Furthermore, even in grammars like Balkar or the colloquial register of Russian the effects of the Subject Condition are still detectable, though obscured. First, in Balkar the Subject Condition applies to nominalized clauses, which cannot be discontinuously spelled out. That is, scrambling is possible out of a nominalized clause in the object position, but not out of the same nominalized clause in the subject position.

Second, in both Balkar and the colloquial register of Russian splitting a subject noun phrase is more restricted than splitting an object noun phrase. In particular, splitting an object “across” a split subject is possible, while splitting a subject “across” a split object is not. Splitting an object does not have to preserve the internal order of the noun phrase elements, while splitting a subject does. These asymmetries are easily explained, if we
assume that in these grammars noun phrases can be split by two independent processes: Discontinuous Spell Out and genuine subextraction. Because the Subject Condition still applies, genuine subextraction is only available for object noun phrases. Consequently, object noun phrases can be split in two ways (subextraction or Discontinuous Spell Out), while subject noun phrases can only be split as a result of Discontinuous Spell Out. Hence object noun phrases are expected to be split more freely than subject noun phrases.

To sum up, extraction data supports the predictions of the Spell Out theory. Extraction out of all specifiers and all adjuncts is principally restricted. Adjuncts can only be transparent if their sister is opaque, that is, only if their sister is spelled out. Any apparent extraction out of a base generated specifier involves Discontinuous Spell Out (i.e., covert pied-piping).

1.3.3 Predictions at LF

The immediate prediction of the Spell Out theory at LF is that any specifier and any adjunct is interpreted before its sister. This follows from the two assumptions in (13) and the definitions of specifiers and adjuncts.

A specifier or an adjunct does not project its category and is merged with a phrase, hence, by (13), it must be spelled out. Meanwhile, the sister of a specifier or an adjunct does project its category, hence, by (13), it is not spelled out. As the result, the meaning of any specifier and the meaning of any adjunct is “known” to the semantic component before the meaning of its sister. For example, in a sentence \=[[A person who saw a car] [said that it's honking frightened the cat]] the specifier [a person who saw a car] is spelled out before its sister [said that it's honking frightened the cat].

In chapter 4 I will argue that this hypothesis can be tested by its consequences for how the semantic component processes a syntactic structure. In particular, I argue that every spelled out constituent (a specifier or an adjunct) creates the local context for its non-spelled out sister. The main argument comes from the direction of discourse anaphora.

By discourse anaphora I understand the anaphoric relation between an indefinite and a pronoun where the indefinite is not interpreted in the scope of any other operator (no negation or quantifiers), as in (18).
(18) ok Karl saw a cat₁ on the street and gave it₁ some fish.

All theories of discourse anaphora (Heim, 1982; Groenendijk and Stokhof, 1991; Chierchia, 1995; Schlenker, 2009, 2011; Rothschild, 2011; Rothschild and Mandelkern, 2017; Mandelkern, 2020, and many others) assume that the indefinite must be interpreted before the pronoun. The indefinite, like a cat₁ in (18), introduces a discourse referent which the pronoun, like it₁ in (18), can later “pick up”. In other words, the indefinite creates a context in which the presupposition of the pronoun is satisfied.

The question is what “interpreted before” corresponds to. To my knowledge, all the existing theories of discourse anaphora assume that it corresponds to “linearly precedes”. That is, they assume that for any given sentence the semantic component has access to the surface linear order of its terminals and processes them accordingly, that is, from left to right.

If we assume that the surface linear order is established at the PF interface, there is an architectural problem with this point view, because it is unclear how the LF interface can have access to the output of the PF interface.

Apart from the conceptual problems, however, it is also not obvious that indefinites must always proceed pronouns in order to create accessible antecedents for them (see Chierchia, 1995). It is true that in most cases cataphora to an indefinite is not possible. In coordination discourse anaphora can only “proceed” from left to right, as is evident from the contrast in (19). An indefinite inside a specifier can serve as an antecedent for a pronoun inside the sister of this specifier, but not the other way around, as is evident from the contrast in (20). Cataphora is also not possible if the indefinite is inside a complement, as is evident from (21b). However, cataphora is possible if the indefinite is inside an adjunct, as is evident from (21a).

(19) a. ok Karl [saw a cat₁ on the street] and gave it₁ some fish.
 b. * Karl [saw it₁ on the street] and gave a cat₁ some fish.

(20) a. ok [A person who saw a cat₁ on the street] gave it₁ some fish.
 b. * [A person who saw it₁ on the street] gave a cat₁ some fish.
(21)

a. ok Rosa informed his$_1$ parents [when she caught a student$_1$ smoking].

b. *Rosa informed his$_1$ parents [that she caught a student$_1$ smoking].

Any theory of discourse anaphora must rule in cataphora in (21a), but crucially not in (19b), (20b) or (21b). Existing approaches rely on the basic ‘left-to-right’ processing principle and on an additional assumption that adjuncts are special in some way, which allows them to ameliorate this principle. In other words, cataphora is impossible, but for postposed adjuncts. This is not a very satisfactory theory. A better approach would be to find some kind of generalization that would capture all the cases in (19-21) and incorporate it as a basic processing principle.

The Spell Out theory readily provides such a generalization. Any spelled out constituent is interpreted before its non-spelled out sister. In particular, any adjunct is interpreted before its sister and any specifier is interpreted before its sister. In what follows I will call this generalization the Island Condition. According to a more precise formulation, given in chapter 4, any node α is interpreted before any other node β if and only if α so-commands β (so for Spell Out). The relation of so-command is defined as follows: a node α so-commands another node β if and only if the node that both (reflexively) dominates α and c-commands β is a maximal projection (hence, a specifier or an adjunct). In other words, α so-commands β if and only if α is inside a specifier or an adjunct and β is inside its sister.

By this definition the indefinite so-commands the pronoun in (20a) and (21a), but not in (20b) and (21b).

As for (19), it has been argued independently (see Ross, 1967; Johannessen, 1993, 1998; Kayne, 1994, and others) that the connective and forms a constituent with the second conjunct. This leads us to the result that and takes the second conjunct as a complement and the first conjunct as a specifier and forms ConjP. Consequently, (19) reduces to (20). The first conjunct is the specifier of ConjP and the second conjunct is the complement of Conj (and). The first conjunct is interpreted before the second conjunct.

In chapter 4 I examine these predictions in more detail and show that the Island Condi-
tion not only rules in cataphora with adjuncts in a principled way, but also accommodates “classical” cases of discourse anaphora without additional stipulations. It also correctly predicts the possibility of cataphora in asymmetric coordination. I formulate the algorithm of Spell Out at LF that derives the Island Condition automatically as a consequence of the order of interpretation and context update, building on Heim (1982), Schlenker (2009) and Mandelkern (2020). The central idea is that at any moment of interpretation the semantic component tries to update the context with all the information available to it. As a result, when interpreting any non-terminal node with a spelled out and a non-spelled out daughter, for instance, a TP, the semantic component first updates the context by the content of its spelled out daughter (DP) and only then proceeds to interpret its sister (T′).

1.4 Syntactic derivation and memory structure

As mentioned above, the generalization that unifies the Adjunct Condition and the Subject Condition was originally developed by Cattell (1976), Kayne (1981) and Huang (1982). Following Huang (1982), this generalization is usually called Condition on Extraction Domain, or CED. It states that any maximal projection whose sister is a phrase must be an island.

Uriagereka (1999) and Johnson (2003) were the first to derive CED from an assumption that certain constituents must be turned into terminals in the course of syntactic derivation.5

Uriagereka’s (1999) account is based on Kayne’s (1994) linearization theory. He argues that between any two phrasal sisters the left one must be turned into a terminal via Spell Out, because only then will the resulting structure be linearizable in Kayne’s (1994) system.

The main advantage of Uriagereka’s (1999) theory is that it explains strong island effects by appealing to an independent linearization mechanism developed by Kayne (1994). In Uriagereka’s (1999) system specifiers must be spelled out because of the demands of the PF interface, which, by Kayne’s (1994) assumptions, cannot linearize a structure with two

5Uriagereka’s (1999) approach has been further developed by Nunes and Uriagereka (2000) and Sheehan (2010).
phrasal sisters. Of course, if the linearization theory proposed by Kayne (1994) turns out to be incorrect, Uriagereka’s (1999) theory of strong islands must be rethought as well.

As was pointed out by Johnson (2003), this theory faces certain empirical problems. It successfully predicts that all specifiers are spelled out because they are linearized on the left, and that all preposed adjuncts are spelled out because they are linearized on the left. But it does not predict that postposed adjuncts are spelled out, since they are linearized on the right. Furthermore, it predicts that the left sister of any postposed adjunct must be spelled out (Johnson, 2003, 190), which is not a welcome prediction, because a main clause that linearly precedes its adjunct is usually transparent for extraction.

Johnson (2003) proposes a different explanation for CED, based on certain assumptions about syntactic derivation. Johnson’s (2003) tree-building mechanism makes use of two operations: Merge and Renumerate. In his system, for any two phrases that are sisters at least one must be renumerated. His theory’s predictions do not depend on the linear order. As the result, both specifiers and adjuncts must be renumerated regardless of their linear position.

The Spell Out theory, repeated in (22), is a development of Johnson’s (2003) proposal. Johnson’s Renumerate is understood as Spell Out, which is an operation whose primary purpose is to assign semantic and phonological information to a piece of syntactic structure.

(22) **The Spell Out theory.**

- a. Before any two phrases are merged at least one must be spelled out.
- b. A spelled out phrase does not project its category.

If the order of application of Spell Out is not tied to linearization, what else could it be explained by? That is, why does Johnson’s (2003) tree-building mechanism works the way it does? Namely, first, why is it not possible to merge two non-spelled out phrases, and second, why does a spelled out phrase not project? In the remainder of this section I will lay

6Nunes and Uriagereka’s (2000) system does not make this prediction. It requires at least one of any two sisters that are phrases to be spelled out, but not necessarily the left one. However, to the best of my understanding, there is nothing in Nunes and Uriagereka’s (2000) system that would determine which of the two sisters must be spelled out. As the result, they predict that in all the cases when an adjunct is on the right of its sister, either the adjunct or its sister has to become opaque for extraction.
out a theory of syntactic derivation that tries to explain these two claims as consequences of
the limitations imposed on the tree-building mechanism by memory structure and the focus
of attention.

Let me start by postulating that syntactic derivation can manipulate three finite sets: the Lexicon, the Workspace and the Focus. The Lexicon and the Workspace are sets of linguistic items which are stored in memory (triplets of form, meaning and a set of syntactic features, including category). The stored items include both lexical items and previously spelled out constituents. All items stored in memory (either in the Lexicon or in the Workspace) are syntactically primitive, in the sense that they do not have internal syntactic structure, and each of them is associated with a certain meaning and a certain form.

The fact that memory contains two different sets of items has been established independently. It is has been argued that there are two types of memory: the long-term memory and the working memory (see Baddeley, 1986, 1993; Cowan, 1988, 1993; Oberauer, 2009, 2013, and many others). The Lexicon corresponds to the long-term memory and the Workspace corresponds to the working memory.

The Focus is a set that contains at most one element. This is the element that is in the focus of attention at the current moment in the derivation. The fact that the focus of attention can contain at most one element at a time has also been argued for independently (see Cowan, 1988, 1993; Garavan, 1998; Oberauer, 2009, 2019).

To recapitulate, syntactic derivation can manipulate three finite sets: the Lexicon, the Workspace and the Focus. The Lexicon and the Workspace are sets that contain syntactically primitive items stored in memory, which are triplets of form, meaning and a set of syntactic features. The Focus can contain at most one element:

(23) \(<\text{Lexicon } (L), \text{ Workspace } (W), \text{ Focus } (F)\>\), where:

a. \(L\) and \(W\) contain syntactically primitive items;

b. \(|F| \leq 1\).

Any theory of syntactic derivation that manipulates these three sets must have at least three basic operations: (a) operation \(L \rightarrow W\), which brings an item from the Lexicon into
the Workspace; (b) operation $W \rightarrow F$, which brings an item from the Workspace into the Focus; and (c) operation $F \rightarrow W$, which brings an item from the Focus back into the Workspace.

(24) Syntactic derivation:

Without any additional assumptions, this system can only deliver a finite grammar. It can bring items one by one from the Lexicon into the Workspace and then into the Focus, but no more than that. For example, suppose the Workspace consists of four items: ‘a’, ‘girl’, ‘admires’ and ‘Rosa’. If the Focus contains ‘girl’ and we want to bring ‘a’ into it by $W \rightarrow F$, we have to first return ‘girl’ back into the Workspace by $F \rightarrow W$, because the Focus can only contain one element at a time.

As the result, this system can generate a finite set of at most as many different sentences as there are items in the Lexicon. This is clearly far from any natural language. Consequently, we need to make some additional assumptions. The present proposal is to make additional assumptions about operations $W \rightarrow F$ and $F \rightarrow W$.

Suppose that operation $W \rightarrow F$ involves Merge, as defined by Chomsky (1995, 2001). Merge can put into the Focus a set consisting of the element that was there before and the element that is currently being brought into the Focus from the Workspace. For example, the Focus holds the item ‘girl’, and we want to bring into it the item ‘a’ from the Workspace. Merge forms a set \{a, girl\} and puts this set in the Focus. Notice that the Focus still only contains one element, but this element itself is a set.

This new system can merge lexical items with the Focus one by one. Consequently, we have what is called a regular grammar in Chomsky’s (1957) hierarchy. This grammar can only merge a head with a phrase, hence, it does not have any specifiers or adjuncts. Any node has at most one complex daughter. It can generate infinitely many expressions, for example, \{admires Rosa\}, \{a girl\}, \{Rosa \{admires Rosa\}\} etc., but, crucially, not yet \{[a
Suppose further that operation $F \rightarrow W$ involves Spell Out. Spell Out can take the set that is in the Focus and turn it into a syntactically primitive item by assigning it a fixed phonological and semantic representation. This spelled out element can now be stored back in the Workspace and participate in further derivation. For example, suppose we have derived the set \{a, girl\} by applying Merge to ‘girl’ and then to ‘a’. We can now spell this set out and store it in the Workspace as a new syntactically primitive item ‘a girl’, which we can later merge with the Focus.

This system delivers a context free grammar in Chomsky’s (1957) hierarchy, something that resembles natural languages. It can merge a phrase with a phrase, but, crucially, one of these two phrases must have undergone Spell Out. The first claim of the Spell Out theory is successfully derived.\(^7\)

To sum up, we have introduced additional assumptions about operations $W \rightarrow F$ and $F \rightarrow W$. Operation $L \rightarrow W$, which brings something from the Lexicon into the Workspace, remains intact and will be called Activate.

The resulting system has three finite sets (the Lexicon, the Workspace and the Focus) and three operations (Activate, Merge and Spell Out). Activate brings items from the Lexicon into the Workspace (26a). Merge brings an item from the Workspace into the Focus (26b). Spell Out brings the element from the Focus back into the Workspace (26c).

(25) Three finite sets <Lexicon (L), Workspace (W), Focus (F)>, where:
 a. L and W contain primitive items;
 b. $|F| \leq 1$.

\(^7\)Interestingly, the system that only has Merge, but no Spell Out, can also “count”, if the only element in the Lexicon is the number 1. But it can only “count” up to as high as the number of elements that the Workspace + the Focus can hold at a time. With Spell Out smaller numbers can be stored and added again, which makes addition unbounded. The system with both Merge and Spell Out can “count” to any arbitrarily high natural number.
(26) Three operations.

a. Activate \((L \rightarrow W)\)

Takes \(<L, W, F>\) and some elements \(X_1\ldots X_n \in L\).

Returns \(<L, W', F>\), where \(W' = W \cup \{X_1, \ldots, X_n\}\).

b. Merge \((W \rightarrow F)\)

Takes \(<L, W, F>\), where \(F = \{Y\}\), and an element \(X\) from \(W\).

Returns \(<L, W', F'>\), where \(W' = W \setminus \{X\}\) and \(F' = \{\{X, Y\}\}\).

c. Spell Out \((F \rightarrow W)\)

Takes \(<L, W, F>\), where \(F = \{X\}\).

Returns \(<L, W', F'>\), where \(W' = W \cup \{X^{\text{spelled out}}\}\) and \(F' = \emptyset\).

(27) Syntactic derivation:

```
Lexicon  Activate  Merge  Workspace  Focus
          |            |      |            |
          |            v      |            |
          |   Spell Out   |      |            |
```

This grammar can derive a sentence like *A girl admires Rosa*, but crucially, either *a girl* or *admires Rosa* must be spelled out. Here is how the derivation proceeds, if *a girl* is spelled out:

(28) The derivation of \([/[A girl] [admires Rosa]]\).

\(L^{0-9} = \{\text{`a'}, \text{`girl'}, \text{`admires'}, \text{`Rosa'}, \ldots\}\).}

a. Start:

\(W^0 = \emptyset, F^0 = \emptyset\).

b. Activate ‘a’ and ‘girl’:

\(W^1 = \{\text{`a'}, \text{`girl'}\}, F^1 = \emptyset\).

c. Merge ‘girl’:

\(W^2 = \{\text{`a'}\}, F^2 = \{\text{`girl'}\}\).
d. Merge ‘a’:
 \[W^3 = \emptyset, F^3 = \{ \{‘a’, ‘girl’\} \}. \]

e. Spell Out:
 \[W^4 = \{ ‘a girl’ \}, F^4 = \emptyset. \]

f. Activate ‘admires’ and ‘Rosa’:
 \[W^5 = \{ ‘a girl’, ‘admires’, ‘Rosa’ \}, F^5 = \emptyset. \]

g. Merge ‘Rosa’:
 \[W^6 = \{ ‘a girl’, ‘admires’ \}, F^6 = \{ ‘Rosa’ \}. \]

h. Merge ‘admires’:
 \[W^7 = \{ ‘a girl’ \}, F^7 = \{ ‘admires’, ‘Rosa’ \}. \]

i. Merge ‘a girl’:
 \[W^8 = \emptyset, F^8 = \{ ‘a girl’, ‘admires’, ‘Rosa’\} \}. \]

j. Spell Out:
 \[W^9 = \{ ‘a girl admires Rosa’ \}, F^9 = \emptyset. \]

We have successfully derived the first claim of the Spell Out theory, namely, that before any two phrases are merged at least one must be spelled out. The second claim is that a spelled out phrase does not project. This requires some additional assumptions concerning projection. For the present purposes, I will simply stipulate the rules of projection without explanation.

By assumption, whenever Merge applies to an element from the Workspace and an element in the Focus, the resulting set bears the category of one of these two elements. Let us assume that the choice depends on the element that comes from the Workspace. If this element is new, that is, has not been merged or spelled out before, which means that it is a lexical item, then it projects. If this element is something old that has been merged and spelled out before, it does not project. Perhaps, this could be explained by a preference to immediately record and keep information about new elements in the derivation.
We have now successfully incorporated both claims of the Spell Out theory. Before any two phrases are merged at least one has to be spelled out, and a spelled out phrase does not project its category. However, the present system still lacks movement.

Movement can be formulated as a version of Merge, so-called Internal Merge, as opposed to External Merge (see Chomsky, 2001). In the present system we can say that External Merge combines an item from the Workspace with the Focus, while Internal Merge combines an item from the Focus with the Focus.

(30) a. External Merge
Takes \(<L, W, F > \), where \(F = \{Y\} \), and an element \(X \) from \(W \).

Returns \(<L, W', F' > \) where \(W' = W \setminus \{X\} \) and \(F' = \{\{X, Y\}\} \).

b. Internal Merge
Takes \(<L, W, F > \), where \(F = \{Y\} \), and an element \(X \) from \(Y \).

Returns \(<L, W, F' > \) where \(F' = \{\{X, Y\}\} \).

Notice that, if the element \(X \) that Merge manipulates with comes from the Workspace, it can only be a syntactically primitive item, because the Workspace only contains primitive items. Meanwhile, if it comes from the Focus, it can be either a primitive item or a set. For example, if the Focus is \(\{\{\text{a girl}, \{\text{admires}, \text{Rosa}\}\}\} \), Internal Merge can apply not only to \(\text{a girl} \), \(\text{admires} \) and \(\text{Rosa} \), but also to \(\{\text{admires}, \text{Rosa}\} \). As the result, three types of nodes can undergo movement: lexical items, previously spelled out constituents and non-spelled out constituents. This allows to state operations like remnant movement. For example, \(\text{Rosa} \) can undergo Internal Merge deriving the new Focus \(\{\{\text{Rosa} \{\{\text{a girl}\}\} \{\text{admires}, \text{Rosa}\}\}\} \). Later the “remnant” \(\{\text{admires}, \text{Rosa}\} \) can also undergo Internal Merge deriving the new Focus \(\{\{\text{admires}, \text{Rosa}\}, \{\text{Rosa} \{\{\text{a girl}\}\} \{\text{admires}, \text{Rosa}\}\}\} \).
1.5 Roadmap

The remainder of this dissertation is dedicated to providing empirical arguments for the two central claims of the Spell Out theory, repeated below:

(31) **The Spell Out theory.**

 a. Before any two phrases are merged at least one must be spelled out.

 b. A spelled out phrase does not project its category.

In chapters 2 and 3 I examine the two predictions that the Spell Out theory makes in narrow syntax, namely, the Adjunct and the Subject Condition. Chapter 2 provides some arguments in favor of the Spell Out view of the Adjunct Condition, based on data from Balkar and English. It argues that an adjunct can only be transparent for movement, if its sister is opaque. Chapter 3 provides some arguments in favor of the Spell Out view of the Subject Condition, based on data from Russian and Balkar. It argues that any apparent extraction out of a specifier involves Discontinuous Spell Out (i.e., covert pied-piping).

Chapter 4 is dedicated to the predictions that the Spell Out theory makes at the LF interface, namely, the Island Condition. There I will argue that all specifiers and all adjuncts are interpreted before their sister, based on data from English (see also Appendix C for Russian).
Chapter 2

The Adjunct Condition

2.1 Formulating the adjunct condition

In this chapter I will argue for the Spell Out theory of the Adjunct Condition, based on new evidence from Balkar (a dialect of Karachay-Balkar, a Turkic language, spoken in the Republic of Kabardino-Balkaria, Russia) with some discussion of English. In particular, I will argue that an adjunct, as defined in the previous chapter, can only be extracted from if its sister is opaque, as predicted by the Spell Out theory (at least one of two phrasal sisters must be spelled out).

For Balkar I will use data collected through fieldwork. Adjunct Condition effects will be tested against long-distance scrambling. The adjuncts that I will focus on are so-called converbs or converb clauses. For English, I will reconsider data from Truswell (2007), who diagnoses the Adjunct Condition with relativization and wh-question formation. The adjuncts that I will focus on in English are modifier ing-clauses.

The Adjunct Condition was originally proposed by Huang (1982, 497-499, 503-514).

1Balkar data are based on the judgments of three native speakers from the village of Verkhnyaya Balkariya (Republic of Kabardino-Balkaria, Russia). The speakers were either asked to judge whether a single sentence was acceptable in their dialect, or to compare the acceptability of a pair of sentences. Sentences judged as grammatical are marked with ok, ungrammatical as *, and ? is used for marginally acceptable sentences.

2English data were elicited from eight native speakers. The speakers were presented with one sentence or a pair of sentences. They were asked to judge each sentence on the scale from 1 (ungrammatical) to 5 (grammatical). Evaluations from 1 to 2 were considered “ungrammatical” (*), and 4 to 5 as “grammatical” (ok). The examples for which the speakers’ evaluations averaged around 3 are marked ? (marginally acceptable). For sentence pairs the speakers were also asked whether they perceived a contrast in grammaticality between the two members of the pair.
It restricts movement out of adjuncts and can be illustrated by the following contrast:

(1) a. *I know which song you liked [listening to ___].

b. *I know which song you cleaned the room [listening to ___].

In (1a) a noun phrase *which song* is extracted from an *ing*-clause *listening to ___*, which serves as the complement of *liked*, and the sentence is fine. In (1b) the same noun phrase *which song* is extracted from the same *ing*-clause *listening to ___*. But the *ing*-clause is an adjunct, and the sentence is bad.

In both cases the moved constituent is the same (*which song*), and the clause that it is extracted from is the same (*listening to ___*). The only difference is the syntactic position of the clause: complement in (1a) vs. adjunct in (1b). The Adjunct Condition can be preliminary stated as follows: extraction is not possible out of adjuncts (but is possible out of complements).

There are two respects in which complements are different from adjuncts. First, they stand in different semantic relations to the main clause. Adjuncts are *modifiers*, complements may not be. Modifiers are optional and do not fill any argument slots of the main predicate. Second, they occupy different structural positions. Complements merge with a head, as is illustrated in (2a), adjuncts merge with a phrase, as is illustrated in (2b).

(2) a. Complement:

```
      VP
     /   \\
   DP    V'
  /       \\
you     ingP
     / \\
   V    listening to which song
```

liked
In X-bar theory these two properties are connected: all adjuncts are modifiers, and no complements are modifiers. In the Bare Phrase Structure framework (Chomsky, 1995) it is not the case, because complements can be modifiers (see Chapter 1 for discussion).

As the result, Bare Phrase Structure offers two views of the Adjunct Condition: modifier accounts vs. configurational accounts. Modifier accounts are a variety of different theories (Chomsky, 2004; Truswell, 2007; Stepanov, 2007; Hunter, 2010, 2015; Bošković, 2017, among a few others), which all capitalize on the argument vs. modifier distinction. Configurational accounts (Uriagereka, 1999; Nunes and Uriagereka, 2000; Johnson, 2003; Sheehan, 2010) capitalize on the structural distinction: merged with a head vs. merged with a phrase.

Modifier accounts claim that modifiers are integrated into the clause via special syntactic rules, which make them opaque. These theories can be further classified into two groups.

Semantic modifier accounts (Truswell, 2007 and Bošković, 2017) claim that the crucial property of modifiers is in how they are incorporated into the main clause at the semantic level. Modifiers are interpreted conjunctively and combine with the matrix clause via Predicate Modification and, according to semantic modifier accounts, it is this that makes them opaque for extraction.

Syntactic modifier accounts (Chomsky, 2004; Stepanov, 2007; Hunter, 2010, 2015) claim that the crucial property of modifiers is in how they are incorporated into the main clause in syntax. Stepanov (2007), building on Lebeaux (1991), suggests that all modifiers are always merged late (counter-cyclically), after all the other operations have been performed, including movement. According to Stepanov, it is this that makes modifiers in-
accessible for movement. Meanwhile, Chomsky (2004) and Hunter (2010, 2015) propose special tree-building operations. Chomsky (2004) assumes that modifiers are combined with the rest of the clause via the special Pair-Merge rule. Hunter (2010, 2015) assumes that, while non-modifiers are combined with their heads by Merge and a special operation Insert, modifiers only use Insert.

As opposed to modifier accounts, configurational accounts capitalize on the structural asymmetry: complements merge with a head, adjuncts merge with a phrase. The Spell Out theory, presented in Chapter 1, belongs to this camp. Consider the two core empirical claims of the Spell Out theory, repeated in (3).

(3)
a. When two phrases are sisters, at least one of them must be spelled out.
b. A spelled out phrase does not project its category.

From (3) it follows that all adjuncts must be spelled out, because they are maximal projections and are merged with a phrase. To spell out a constituent means to ship it off to both LF and PF interfaces, which assign semantic and phonological representation. As a result, this constituent becomes a term, like a lexical item, and, consequently, opaque for extraction (see Chapter 1). Thus, it follows from (3) that all adjuncts are opaque.

But crucially, it does not follow that all modifiers are opaque, as modifier accounts predict. The Spell Out theory predicts that modifiers can be transparent in two cases:

(4)
a. A modifier is transparent if it is merged with a head (is a complement).
b. A modifier is transparent if its sister is spelled out.

The first case (4a) arises when a modifier is merged low. If it is merged with a head, it is no longer an adjunct, it is an un-selected complement, as per definitions from Chapter 1, and is expected to be transparent. It could still be interpreted as a modifier (e.g., via Predicate Modification or Event Identification), in the sense that it does not fill any argument slot of the main predicate. But structurally it is a complement, because it is a sister to a head, and this is why it is expected to be transparent.

The second case (4b) arises when a modifier is merged with a phrase, but it is this phrase
that is spelled out. In this case the modifier projects its category. For the purposes of this thesis I will suggest that this is only possible if, first, the sister of the modifier could be spelled out (that is, it has all of its unvalued features valued and EPP features satisfied), and second, both the modifier and its sister are of the same category. This is a circumstance that permits either to project, because in either case the mother node will have the same category, and hence, the same syntactic distribution. That is, the mother node will be selected by the same set of heads regardless of which of its daughters projects. An important prediction of this analysis is that the sister of a transparent modifier has to be opaque. No simultaneous extraction out of the modifier and out the main clause should be possible.

In what follows I will show that apparent counterexamples to the Adjunct Condition found in Balkar and English fall precisely under the two categories in (4). Either they involve extraction out of a complement, not an adjunct, or they do involve extraction out of an adjunct, but its sister has to be opaque, which supports the Spell Out theory.

In sections 2.2, 2.3 and 2.4 I will present a case study of Balkar converbs (non-finite adjunct clauses). Crucially, Balkar converbs are modifiers. They are optional and do not fill any argument slots of the main predicate. Modifier accounts predict them to be always opaque. However, as I will show below, these clauses can be transparent for scrambling. Furthermore, they are transparent in precisely the two situations described by (4), as the Spell Out theory predicts. Balkar converbs are a perfect case study for two reasons. First, the attachment site and the category of a convert verb clause can be established independently from extraction. Second, scrambling in Balkar permits moving more than one constituent at once. This makes it possible to test the prediction in (4b).

In section 2.5 I will briefly consider some known apparent exceptions to the Adjunct Condition in English, originally pointed out by Truswell (2007), in the light of what we find in Balkar. We will see that the analysis proposed for Balkar can be extended to the English data as well without additional stipulations.

If modifiers can only be transparent under the conditions described by (4), it provides a strong argument in favor of the Spell Out theory. Modifier accounts do not have a clear way of dealing with transparent modifiers at all. What matters for modifier accounts is whether the constituent in question fills an argument slot or not, but not its structural position or the
transparency of its sister.

2.2 Introducing Balkar converbs

2.2.1 Preliminaries

It is obvious that the predictions of the Spell Out theory crucially depend on our assumptions about the category of the modifier, its position in the main clause and the category of the modifier’s sister.

In this section I will introduce non-finite clausal adjuncts in Balkar (so-called converbs). We will discuss their size, i.e., their category, and their syntactic position. But before we proceed, let me make some preliminary observations about the clausal structure in Balkar.

Balkar is a head final (SOV) language with rich verbal morphology:

(5) Root + Voice + Negation + Aspect (auxiliary) + Tense + Agreement

based on (Podobryaev, 2004)

Given the morphological structure of the verb, presented in (5), and following the Mirror Principle (Baker, 1985), I will assume the following syntactic structure for a simple clause in Balkar.3

3I will assume that subject in Balkar (the noun phrase that controls verbal agreement) is base generated within the vP and later moves to Spec,TP, and that finite agreement morphology is located in T.
Let me point out two important assumptions illustrated by the tree in (6). First, the causative morphology (CAUS) is hosted by a \(v \) head, which takes another \(vP \) (or VP) as its complement. This analysis is based on Harley (1996), among many others. For Balkar causatives specifically it was proposed and developed by Lyutikova et al. (2006). Second, Negation is located low: above the \(vP \), but below aspect auxiliaries. Here I am following the Mirror Principle: I assume that the location of the negative suffix inside the verb form is mirroring the syntactic position of the corresponding head in syntax, cf. (5) and (6).

2.2.2 Converbs

Balkar has a whole variety of clausal and non-clausal modifiers. For the purposes of this case study I will focus on non-finite clauses headed by a verb with the suffix \(-a^4\) or \(-p\). These clauses will be referred to as ‘converbs’ or ‘converb clauses’.

The term comes from the literature on Turkic languages, where it is sometimes applied to all non-finite clausal adjuncts (see Kornfilt, 1997, Pazelskaya and Shluinsky, 2007, Grashchenkov and Ermolaeva, 2015, Grashchenkov and Ermolaeva, 2016, among

\(^4\)The suffix \(-a\) has two allomorphs: \(-j\) after vowels and \(-a\) after consonants (Podobryaev, 2004). As most suffixes in Turkic languages and Balkar specifically, the allomorph \(-a\) is subject to vowel harmony, that is, it is realized as \(-a\) in back environments and as \(-e\) in front environments. When naming morphemes here and throughout, I will conventionally use the back variant.
others). Here and below I will use the term ‘converb’ specifically for non-nominalized, non-finite clauses formed by the two aforementioned suffixes.

The choice between -a and -p depends on the temporal relation between the converb clause and the main clause. As in many other Turkic languages, in Balkar -p is primarily used for precedence (7b), and -a – for simultaneity (7a).\(^5\)

(7) a. ok Aslan\(_1\) [PRO\(_1\) zir-la zirla-j] šorpa ete-j e-di
Aslan song-PL sing-CONV soup make-CONV AUX-PST1.3SG
‘Aslan\(_1\) was making soup, PRO\(_1\) singing songs.’

b. ok ustaz\(_1\) [PRO\(_1\) ešik-ni ac-ip] stol-nu otou-ira
 teacher door-ACC open-CONV table-ACC room-DAT
 kij-ir-di
 come.in-CAUS-PST1.3SG
‘The teacher\(_1\) carried the table into the room, PRO\(_1\) having opened the door.’

As in many other Turkic languages, the converb clause in Balkar usually does not have its own overt subject (Kornfilt, 1997, 68). It has a gap in the subject position, presumably, a PRO argument that is interpreted as co-referent with the subject of the main clause (I will discuss possible controllers for PRO in more detail in section 2.4.1 below).

There are, however, certain semantic conditions (Grashchenkov and Ermolaeva, 2015 and Ermolaeva, 2016), under which a converb clause may have its own overt subject, similar to absolutive adjuncts in English (Stump, 1985). The subject of a converb clause has zero case marking, which means that either it has no case or that it bears nominative, since nominative marking is consistently null:

(8) a. ok [zašciq tabaq-la kel-tir-e] Fatima stol-ira aziq sal-a
 boy plate-PL come-CAUS-CONV Fatima table-DAT food put-CONV e-di
 AUX-PST1.3SG
 Lit.: ‘The boy bringing plates, Fatima was setting the table.’
 ‘While the boy was bringing plates, Fatima was setting the table.’

\(^5\)Sometimes -p may be used with the simultaneous reading as well. It is not clear to me when it is possible, so I am going to assume that for the simultaneity reading both -p and -a are freely available, while the precedence reading can only be expressed by -p.
b.

\[\text{boy-ACC door-ACC open-CONV teacher-ACC table-ACC room-DAT come.in-CAUS-CAUS-PST1.3SG} \]

\text{lit.: ‘The boy having opened the door, the teacher carried the table into the room.’}

\text{‘After the boy opened the door, the teacher carried the table into the room.’}

Here and throughout I will only give the literal translation for converbs with overt subjects, which may not always be a grammatical sentence or may not have the same meaning in English. Whenever it is important for the current discussion, a more detailed description of the meanings of Balkar sentences will be provided in the text.

2.2.3 Scrambling

Balkar has scrambling, which correlates with differences in information structure. Most constituents can be moved away from their base position. In most cases this happens to constituents that are interpreted as given or topical, while focused constituents remain in-situ and, preferably, adjacent to the verb. For instance, in (9) the object of the embedded clause \text{Fatimani kitabin ‘Fatima’s book’} is moved (i.e., scrambled) to the left periphery of the main clause.

\begin{align*}
(9) & \text{\color{red} ok [Fatima-ni kitab-in], men [bu zaşciq -i oqu-sa] süj-e-me} \\
& \text{Fatima-GEN book-ACC I this boy read-COND love-PRS-1SG} \\
& \text{‘I want that boy to read Fatima’s book.’}
\end{align*}

Scrambling is possible out of both converbs with an overt subject and converbs with \text{PRO}, as is shown by (10a) and (10b) respectively.

\begin{align*}
(10) & \text{\color{red} a. \text{ok ešik-ni}, men [[Fatima -i bezgi-ler-in-den teş-ip] Kerim teşek-ni} \\
& \text{door-ACC I Fatima hinge-PL-3-ABL take.off-CONV Kerim bed-ACC} \\
& \text{üj-ge alaj kij-ir-di] de-di-m} \\
& \text{house-DAT thus come.in-CAUS-PST1.3SG say-PST1-1SG} \\
& \text{‘I said Fatima having taken the door, off its hinges, Kerim carried the bed into the house.’}
\end{align*}
However, there are two crucial differences between the configuration in (10a) and in (10b). First, whether a pro-converb can be scrambled out of or not depends on the type of the main verb, as is schematized in (11) and illustrated in (12). The main verb cannot be transitive (11a) or unergative (11b). It has to be an unaccusative verb of position (11c) or motion (11d).

(11) a. * XP₁ ... [main ... [pro-conv ... _₁ ...] ... Vtransitive] ... (12a)
 b. * XP₁ ... [main ... [pro-conv ... _₁ ...] ... Vunergative] ... (12b)
 c. ? XP₁ ... [main ... [pro-conv ... _₁ ...] ... Vposition] ... (12c)
 d. ok XP₁ ... [main ... [pro-conv ... _₁ ...] ... Vmotion] ... (12d)

(12) a. */zariq zir-niʃ/₁ men [Kerim₂ ušuxuur [pro_2₁ zirla-j] xazirla-gan]
happy song-ACC I Kerim food sing-CONV cook-NZR
sun-a-ma
think-PRS-1SG
'I think that Kerim₂ was making dinner, pro₂ singing a happy song.'

b. */zariq zir-niʃ/₁ men [Kerim₂ baxca-da [pro_2₁ zirla-j] išle-gen]
happy song-ACC I Kerim garden-LOC sing-CONV work-NZR
sun-a-ma
think-PRS-1SG
'I think that Kerim₂ was working in the garden, pro₂ singing a happy song.'

c. */meni kitab-im-niʃ/₁ men [Kerim₂ divan-da [pro_2₁ oqu-j] zat-xan]
my book-1SG-ACC I Kerim couch-LOC read-CONV lie-NZR
sun-a-ma
think-PRS-1SG
'I think that Kerim₂ was lying on the couch, pro₂ reading my book.'
A converb with an overt subject behaves differently, that is, the type of the main verb does not affect its transparency:

\[
\begin{align*}
(13) & \quad \text{a. } \text{ok } \text{XP}_1 \ldots \text{[main [subj-conv \ldots] \ldots] } \ldots \text{Vtransitive } \ldots \\
& \quad \text{b. } \text{ok } \text{XP}_1 \ldots \text{[main [subj-conv \ldots] \ldots] } \ldots \text{Vunergative } \ldots \\
& \quad \text{c. } \text{ok } \text{XP}_1 \ldots \text{[main [subj-conv \ldots] \ldots] } \ldots \text{Vposition } \ldots \\
& \quad \text{d. } \text{ok } \text{XP}_1 \ldots \text{[main [subj-conv \ldots] \ldots] } \ldots \text{Vmotion } \ldots
\end{align*}
\]

\[
\begin{align*}
(14) & \quad \text{a. } \text{ok } e\text{šik-ni} \text{men } [[\text{Fatima } \ldots] \text{bezgi-ler-in-den } \text{teš-ip}] \text{ Kerim } \text{tešek-ni} \\
& \quad \text{door-ACC Kerima } \text{hinge-PL-3-ABL } \text{take-off-CONV } \text{Kerim } \text{bed-ACC} \\
& \quad \text{üj-ge } \text{alaj } \text{kij-ir-di] } \text{de-di-m} \\
& \quad \text{house-DAT thus } \text{come.in-CAUS-PST1.3SG } \text{say-PST1-1SG} \\
& \quad \text{‘I said } \text{Fatima having taken the door off its hinges, Kerim } \text{carried} \text{the bed into the house.’}
\end{align*}
\]

\[
\begin{align*}
& \quad \text{b. } \text{ok } \text{Fatima-\text{sa}_1} \text{men } [[\text{Kerim } \ldots] \text{boluš-a}] \text{ baxca-da ol}\text{olaj } \text{išle-gen}] \\
& \quad \text{Fatima-DAT Kerima } \text{help-CONV } \text{garden-LOC 3SG thus } \text{work-NZR} \\
& \quad \text{sun-a-ma think-PRS-1SG} \\
& \quad \text{‘I think Kerim helping Fatima, she }\text{1 worked} \text{in the garden.’}
\end{align*}
\]

\[
\begin{align*}
& \quad \text{c. } \text{ok } t\text{üken-ge}_1 \text{men } [[\text{Fatima } \ldots] \text{ket-ip}] \text{ üj-de } \text{quru } \text{Kerim } \text{tur-gan}] \\
& \quad \text{store-DAT Fatima- } \text{leave-CONV } \text{house-LOC only } \text{Kerim } \text{stay-NZR} \\
& \quad \text{sun-a-ma think-PRS-1SG} \\
& \quad \text{‘I think Fatima going to the store, Kerim } \text{stayed} \text{home alone.’}
\end{align*}
\]

\[
\begin{align*}
& \quad \text{d. } \text{ok } [q\text{art ana-si-na}_1] \text{men } [[\text{Kerim } \ldots] \text{boluš-a}] \text{ zol-da ol}\text{olaj } \text{bar-gan}] \\
& \quad \text{old mother-3SG-DAT Kerima } \text{help-CONV } \text{road-LOC 3SG thus } \text{go-NZR} \\
& \quad \text{sun-a-ma think-PRS-1SG} \\
& \quad \text{‘I think that Kerim helping the old lady, she }\text{1 was walking} \text{down the road.’}
\end{align*}
\]
Second, scrambling a constituent out of a pro-converb has no effect on the transparency of the main clause. As is schematized in (15) and illustrated by (16), it is possible to scramble a constituent out of the main clause (15a), out of the converb clause (15b), and out of both clauses simultaneously (15c).

(15)

a. ok \(\text{XP}_1 \ldots [\text{main}_{-1} \ldots [\text{PRO-conv} \ldots \text{YP}_3 \ldots] \ldots] \ldots \) (16a)
b. ok \(\text{YP}_3 \ldots [\text{main} \ldots [\text{PRO-conv} \ldots _3 \ldots] \ldots] \ldots \) (16b)
c. ok \(\text{XP}_1 \text{YP}_3 \ldots [\text{main}_{-1} \ldots [\text{PRO-conv} \ldots _3 \ldots] \ldots] \ldots \) (16c)

(16)

\(\text{a. ok \[\text{zol-da}_1 \text{Fatima [Kerim}_2_{-1} [\text{PRO}_2 \text{ol \ zir-ni}_3 \text{zirla-j}]] \text{bar-a e-di}]} \)
road-LOC Fatima Kerim that song-ACC sing-CONV go-CONV AUX-3SG
de-gen-di say-PST2-3SG
‘Fatima said Kerim was walking by the road, PRO2 singing that song.’

\(\text{b. ok \[\text{ol zir-ni}_3 \text{Fatima [Kerim}_2 \text{zol-da}_1 \text{PRO}_2_{-3} \text{zirla-j}]] \text{bar-a e-di}]} \)
that song-ACC Fatima Kerim road-LOC sing-CONV go-CONV AUX-3SG
de-gen-di say-PST2-3SG
‘Fatima said Kerim was walking by the road, PRO2 singing that song.’

\(\text{c. ok \[\text{zol-da}_1 \text{ol zir-ni}_3 \text{Fatima [Kerim}_2_{-1} \text{PRO}_2_{-3} \text{zirla-j}]] \text{bar-a e-di}]} \)
road-LOC that song-ACC Fatima Kerim sing-CONV go-CONV AUX-3SG
de-gen-di say-PST2-3SG
‘Fatima said Kerim was walking by the road, PRO2 singing that song.’

At the same time, if scrambling applies from a converb with an overt subject, the main clause becomes opaque. It is possible to scramble a constituent out of the main clause (17a), out of the converb clause (17b), but crucially not out of both clauses simultaneously (17c).

(17)

a. ok \(\text{YP}_2 \ldots [\text{main} \ldots [\text{subj-conv} \ldots \text{XP}_1 \ldots] \ldots] \ldots] \ldots \) (18a)
b. ok \(\text{XP}_1 \ldots [\text{main} [\text{subj-conv} \ldots _1 \ldots] \ldots] \ldots \text{YP}_2 \ldots] \ldots \) (18b)
c. * \(\text{XP}_1 \text{YP}_2 \ldots [\text{main} [\text{subj-conv} \ldots _1 \ldots] \ldots] \ldots] \ldots \) (18c)

52
(18) a. ok üj-ge₂ men
 house-DAT I
 [[Fatima ešik-ni bezgi-ler-in-den teš-ip] Kerim tešek-ni ²
 Fatima door-ACC hinge-PL-3-ABL take.off-CONV Kerim bed-ACC
 kijir-di] de-di-m
carry-PST1.3SG say-PST1-1SG

 ‘I said Fatima having taken the door off its hinges, Kerim carried the bed into
 the house.’

b. ok ešik-ni₁ men
door-ACC I
 [[Fatima ¹ bezgi-ler-in-den teš-ip] Kerim tešek-ni üj-ge₂
 Fatima hinge-PL-3-ABL take.off-CONV Kerim bed-ACC house-DAT
 kijir-di] de-di-m
carry-PST1.3SG say-PST1-1SG

 ‘I said Fatima having taken the door off its hinges, Kerim carried the bed into
 the house.’

c. *ešik-ni₁ üj-ge₂ men
door-ACC house-DAT I
 [[Fatima ¹ bezgi-ler-in-den teš-ip] Kerim tešek-ni ² kijir-di]
 Fatima hinge-PL-3-ABL take.off-CONV Kerim bed-ACC carry-PST1.3SG
de-di-m
 say-PST1-1SG

 ‘I said Fatima having taken the door off its hinges, Kerim carried the bed into
 the house.’

To sum up, extraction out of converses with PRO and out of converses with an overt subject
is different in two ways. First, the transparency of a PRO-converb depends on the type of
the main verb, while the transparency of a verb with an overt subject does not. Second,
scrambling out of a PRO-converb does not make the main clause opaque, while scrambling
out of a verb with an overt subject does.

Remember that the Spell Out theory predicts extraction out of modifiers to be possible,
but under precisely two independent conditions (4). A modifier is transparent if it is merged
with a head (4a), or if its sister is spelled out (4b). Hence, the possibilities of scrambling out
of PRO-converbs and converses with an overt subject in Balkar behave exactly as we expect.
In the remainder of this chapter I will argue that converses with PRO confirm the prediction
in (4a), and converses with an overt subject confirm the prediction in (4b).
2.2.4 Outline

In what follows I will argue that Balkar converses come in three varieties.

CP-converses (with an overt subject) contain a full CP structure. They can contain a causative morpheme, negation, an aspectual auxiliary, a TP-level adverb and an overt subject. They bear a special semantic relation to the main clause, encoded by their silent C (they describe either an event that overlaps with the event described by the main clause or an event that causes it).

TP-converses (with *PRO*) contain a full TP structure. They can contain a causative morpheme, negation, an aspectual auxiliary, a TP-level adverb, but not an overt subject. They do not bear any special semantic relation to the main clause, apart from the temporal one.

νP-converses (with *PRO*) are bare νPs. They can contain a causative morpheme, but not negation, an aspectual auxiliary, a TP-level adverb or an overt subject:

(19) **Converb types in Balkar**

<table>
<thead>
<tr>
<th>Can contain:</th>
<th>causative</th>
<th>negation</th>
<th>Asp</th>
<th>TP-adverb</th>
<th>subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>converses with subject</td>
<td>CP-converbs</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>converses with PRO</td>
<td>TP-converbs</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>νP-converbs</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

CP-converses are attached at the left periphery of the main clause, they cannot be interpreted in the scope of negation or the subject of the main clause. Meanwhile, TP-converses can be interpreted in the scope of negation and the subject of the main clause. They attach at the T', the AspP, the NegP or the $νP$ level. Finally, $νP$-converses have to be attached inside the $νP$ of the main clause, that is, as a sister to $ν'$ or V'. If the main verb does not have its own object and is a verb of motion or position, a $νP$ verb may merge directly with the verb, as its complement:
Interestingly, there seems to be a correlation between the size of the converb clause and its attachment site: “like merges with like”. CP merges with CP, TP merges with a projection between T' and vP, vP merges within the vP. This might be due to the modificational, conjunctive semantics of the converb clause. If it is semantically integrated into the main clause via Predicate Modification, its sister has to be interpreted as a predicate of the same type.

TP-converbs are always opaque for scrambling. This is as predicted by the Spell Out theory. Their sister is a phrase which cannot be spelled out, either because it is not of the same category as the converb (AspP, NegP, vP), or because not all of its features have been satisfied (T').

Only CP- and vP-converbs can be transparent for scrambling. vP-converbs are only transparent in the context of a verb of motion or position. This means that vP-converbs are only transparent if they are merged as complements (sister to head). They are still optional and do not fill any argument slots of the main predicate. They are modifiers, so the modifier accounts predict them to be opaque. But they are merged as complements and are transparent, as predicted by (4a). As expected, their transparency does not affect the transparency of the main clause.

Prediction (4b) is confirmed by CP-converbs. It is possible to scramble a constituent out of the main CP, as schematized in (21a) and illustrated by (18a), a constituent out of
the CP-converb, as schematized in (21b) and illustrated by (18b), but not out of both, as schematized in (21c) and illustrated by (18c). Crucially, it is not the case that scrambling two constituents at the same time is impossible in Balkar in principle. For example, it is possible in the case of a vP-converb (16c). But it is not possible with a constituent inside a CP-converb and a constituent inside its sister:

\[(21) \]
\[
\begin{align*}
 a. \quad & \text{ok } \text{YP}_2 \quad \ldots \ [\text{main } [\text{subj-conv } \text{XP}_1 \ldots] \ldots _2 \ldots] \ldots (18a) \\
 b. \quad & \text{ok } \text{XP}_1 \quad \ldots \ [\text{main } [\text{subj-conv } \ldots] \ldots] \ldots \text{YP}_2 \ldots] \ldots (18b) \\
 c. \quad & \ast \text{XP}_1 \text{YP}_2 \quad \ldots \ [\text{main } [\text{subj-conv } \ldots] \ldots] \ldots _2 \ldots] \ldots (18c)
\end{align*}
\]

CP-converbs are adjuncts. But because their sister is also a CP, either the converb or its sister can be spelled out. The spelled out constituent does not project:

\[(22) \]
\[
\begin{align*}
 a. \quad & \text{Spelling out the converb:} \\
 b. \quad & \text{Spelling out the main clause:}
\end{align*}
\]

The case of CP-converbs will be discussed in detail in section 2.3. TP- and vP-converbs will be discussed in detail in section 2.4.

2.3 Extracting from converbs with subjects

This section focuses on converbs with an overt subject. Here I will argue that (a) they are CPs (with a defective T and a silent C); and (b) that they are attached at the CP level.
2.3.1 CP-coverbs

Size

In this section I will argue that converses with overt subjects contain at least a TP. First, they can contain recursively embedded vPs, that is, a causative construction. For example, in (23) the converb clause contains the causative marker -tir and the corresponding Causer argument (doktor ‘doctor’).

(23) \textit{ok} [doktor Kerim-ge tereze-ni ac-tir-ip] sau-suz igi-rek
doctor Kerim-DAT window-ACC open-CAUS-CONV healthy-CAR good-COMP
bol-\textit{an-di}
become-PST2-3SG

\begin{verbatim}
‘The doctor making Kerim open the window, the patient felt better.’
\end{verbatim}

Second, converses with overt subjects contain enough verbal projections to host negation, that is, they include NegP. This can be easily shown for the -a converb:

(24) \textit{ok} [Kerim Fatima-ni ujat-ma-j] Fatima kece ozuu-nu
Kerim Fatima-ACC wake.up-NEG-CONV Fatima night throughout-ACC
zuqla-\textit{an-di}
sleep-PST2-3SG

\begin{verbatim}
‘Kerim not waking Fatima up, Fatima slept through the night.’
\end{verbatim}

The converb suffix -p is incompatible with the negative suffix regardless of whether the converb has a subject or not, and regardless of whether the converb clause functions as a modifier or as an argument. This is true across Turkic languages (see Grashchenkov, 2015, and for Balkar specifically – Lyutikova et al., 2006). The combination of morphemes ma+p ‘NEG-CONV’ is simply ill-formed:

(25) * ujat-ma-p
wake.up-NEG-CONV

For the present purposes I will assume that this is a morphological gap, and that the verbal structure inside the converb clause does contain the Neg head that hosts negation, as is evident from (24).

Third, converb clauses with overt subjects include aspectual projections, i.e., AspP. In particular, they can contain the aspectual auxiliary tur ‘HAB’:
Finally, converb clauses with overt subjects can contain a temporal adverbial specifying the Topic Time, independent from the Topic Time of the main clause:

(27) ʌ [Aslan tünene mašina-ni sat-ip al-ip] biz bûgün şaxar-va bar-ian-biz
go-PST2-1PL
‘Aslan buying a car yesterday, we drove to the city today.’

However, there cannot be a tense mismatch between the converb clause and the main clause. Thus, in (27) the Topic Times are different (yesterday vs. today), but the tense is the same: past. If the main clause is in the future tense, the converb clause may not be in the past, see (28).

(28) * [Aslan tünene mašina-ni sat-ip al-ip] biz tambla şaxar-va bar-liq-biz
go-FUT-1PL
Intended: ‘Aslan buying a car yesterday, we will drive to the city tomorrow.’

It seems that even though converbs with overt subjects have their own TP, this TP is defective. The tense feature of the converb clause has to match the tense feature of the main clause.

To sum up, converbs with overt subjects contain at least the following set of verbal projections: TP > Asp > NegP > vP (with a defective [–fin(ite)] T).

As established by Grashchenkov and Ermolaeva (2015) and Ermolaeva (2016), whether the converb clause may have an overt subject or not depends on its semantic relation to the main clause. With PRO the simple temporal relation (precedence or simultaneity) is enough, while with an overt subject there is some additional semantic relation to the main clause, similar to absolutive adjuncts in English (Stump, 1985). I will assume that this semantic
relation is encoded by the silent C that embeds the converb clause inside the main one and licenses the overt subject.

There are four cases when a converb may have its own overt subject. The first case is when the subject of the converb clause and the subject of the main clause stand in the part-whole relation:

(29) \[\text{ok} \ [\text{qol-\text{-}lar-i} \ qaltira-j] \ Kerim \ stol-nu \ otou-\text{t\text{-}a} \]
 \[\text{hand-PL-3} \ shake-\text{-}CONV \ Kerim \ table-\text{-}ACC \ room-DAT \]
 \[\text{kir-giz-t-di} \]
 \[\text{come.in-CAUS-CAUS-PST1.3SG} \]
 ‘His\textsubscript{1} hands shaking, Kerim\textsubscript{1} carried the table into the room.’

The second case is when the converb and the main clause “describe the same event”. More precisely, when the event associated with the converb clause and the event associated with the main clause overlap (including cases when one is a subevent of the other and cases when they describe the same event):

(30) \[\text{ok} \ [\text{Fatima bir-inci} \ al\text{-}vi\text{-}\text{\text{\text{\textsubscript{a}}}j}t-ip] \ quancni \ ba\text{-}la-di \]
 \[\text{Fatima} \ one-ORD \ toast \ say-\text{-}CONV \ celebration \ begin-PST1.3SG \]
 ‘\text{Fatima saying the first toast}, the celebrations began.’
 \[\rightarrow \] The celebrations included Fatima saying the first toast.

(31) \[\text{ok} \ [\text{za\text{-}siq tabaq-la kel-tir-e}] \ Fatima \ stol-\text{t\text{-}a} \ aziq \ sal-a \ e-di \]
 \[\text{boy} \ plate-\text{PL} \ come-CAUS-\text{-}CONV \ Fatima \ table-DAT \ food \ put-\text{-}CONV \ AUX-PST1.3SG \]
 ‘The boy bringing plates, Fatima was setting the table (for dinner).’
 \[\rightarrow \] Fatima was using the plates that the boy was bringing.

In (30) the two clauses describe the same event. In (31) we are dealing with an event overlap. To the extent that it is acceptable, the sentence in (31) implies that Fatima was using the plates that the boy was bringing. Otherwise, the speakers find the two clauses “not semantically connected” and judge the sentence as bad. The two events overlap in the sense that they share a participant, namely, the plates. The boy is bringing them, and Fatima is using them to set the table.

\footnote{These authors look at a variety of closely related Turkic languages, like Mishar Tatar and Kyrgyz, but not Balkar. However, their generalizations apply to Balkar as well.}
Perhaps, a careful definition of event overlap will also subsume cases of the part-whole relation between participants, as in (29).

The third case is when the converb clause and the main clause stand in the relation of ‘counterfactual causation’. Lewis (1973) and Dowty 1979, 99-110 define causation through a counterfactual inference. According to them, \(\phi \) causes \(\psi \) if (a) \(\phi \) is true, (b) \(\psi \) is true, and (c) if \(\phi \) wasn’t true, \(\psi \) wouldn’t have been true (the counterfactual inference).

A Balkar converb may have its own overt subject, if the sentence has a counterfactual inference of the form ‘if \(e_1 \) didn’t happen, \(e_2 \) wouldn’t have happened’, where \(e_1 \) is the event associated with the converb and \(e_2 \) is the event associated with the main clause, as in (32).

\[(32)\]
a. \text{ok [Fatima ešik-ni bezgi-ler-in-den teš-ip]} Kerim tešek-ni üj-ge Fatima door-ACC hinge-PL-3-ABL take.off-CONV Kerim bed-ACC house-DAT (alaj) kij-ir-di thus come.in-CAUS-PST1.3SG

‘\text{Fatima having taken the door off its hinges, Kerim carried the bed into the house.}’

\(\rightarrow \) If Fatima didn’t take the door off its hinges, Kerim wouldn’t have carried the bed into the house.

b. \text{ok [zašciq ešik-ni ac-ip]} ustaz stol-nu otou-iba boy door-ACC open-CONV teacher table-ACC room-DAT kir-giz-t-di come.in-CAUS-CAUS-PST1.3SG

‘\text{The boy having opened the door, the teacher carried the table into the room.}’

\(\rightarrow \) If the boy didn’t open the door, the teacher wouldn’t have carried the table into the room.

The sentence in (32a) implies that if Fatima didn’t take the door off its hinges, Kerim wouldn’t have carried the table into the house. The sentence in (32b) implies that if the boy didn’t open the door, the teacher wouldn’t have carried the table into the room. In other words, because Fatima took the door off its hinges, Kerim carried the table into the house; and because the boy opened the door, the teacher carried the table into the room.

By contrast, the sentence in (33) is generally judged as odd with the comment that “the two events (Fatima going to the store and Kerim feeding the dogs) are not connected”.

60
Farima and Kerim do not stand in the part-whole relation, the two events described by (33) do not share participants. Hence, the only option left is the ‘counterfactual causation’. But in this case (33) has to imply that Kerim wouldn’t have fed the dogs if Fatima stayed home, which is a strange inference to make.

In fact, this is precisely how the speakers tend to comment on (33). It could be an acceptable sentence, if, for example, Fatima was very strict and would never let Kerim feed the dogs while she was in the house. Hence, if she did stay home, he wouldn’t have done that.

What is the pragmatic status of the counterfactual inference? Is it an implicature, a presupposition, or an entailment? This question requires more thorough semantic fieldwork and will be left open in this dissertation.

Finally, to a limited extent, Balkar converbs with an overt subject may restrict a modal operator in the matrix clause (similar to conditional sentences):

Lit.: ‘Kerim buying Fatima a car, she will be able to go to the city.’

The difference between the counterfactual causation use in (32) and the conditional use in (34) is that in the latter case the sentence does not entail the truth of the converb clause. Namely, (34) does not entail that Kerim will buy Fatima a car. It can be followed up by ‘but he will not’ without a contradiction.

What happens instead is that the converb clause describes the condition under which Fatima will be able to go to the city. The converb restricts the future tense operator in the main clause, like an if–clause under Kratzer’s (1986) analysis. The sentence in (34) can be paraphrased as ‘if Kerim buys Fatima a car, she will be able to go to the city’.

Not all modal operators can be restricted by converbs with overt subjects. The future tense operator can be, but the circumstantial modal operator -al ‘be able to’, glossed in (34)
as ‘POT’, may not. Take, for example, the present version of the sentence in (34), given in (35). In this case the truth of the converb clause is entailed. The sentence may not be continued by ‘but Kerim will not buy her a car’ without a contradiction.

(35) ok [Kerim Fatima-va1 mašina sat-ip al-ip] ol1 šaxar-va bar-al-a-di
 Kerim Fatima-DAT car buy-CONV take-CONV 3SG city-DAT go-POT-PRS-3SG
 ‘Kerim buying Fatima a car, she is able to go to the city.’

The sentence in (35) has the ‘counterfactual causation’ meaning: because Kerim bought Fatima a car, it is now possible for her to go to the city.

The difference between (34) and (35) is similar to Stump’s (1985) distinction between strong and weak free adjuncts. Stump’s “free adjunct” is a non-finite clause that functions as a modifier: “A free adjunct is a non-finite predicative phrase with the function of an adverbial subordinative clause” (Stump, 1985, 4).

The distinction between strong and weak free adjuncts can be illustrated by the following minimal pair:

(36) a. Wearing that new outfit, Bill would fool everyone.

b. Being a master of disguise, Bill would fool everyone.

(Stump, 1985, 41–42)

In (36a) the adjunct clause wearing that new outfit is interpreted as the restrictor of the modal operator would. The sentence can be paraphrased as ‘If Bill wore that new outfit, he would fool everyone’. This is a weak free adjunct. In (36b) the adjunct clause being a master of disguise is not interpreted as the restrictor of the modal operator. It stands in a causal relation to the main clause. The sentence cannot be paraphrased as ‘If Bill was a master of disguise, he would fool everyone’. But it can be paraphrased as ‘Because Bill was a master of disguise, he would fool everyone’. This is a strong free adjunct.

The difference is supported by the fact that (36a) does not entail that Bill wore that new outfit, while (36b) does entail that Bill was a master of disguise.

Balkar converbs with an overt subject may be interpreted either as weak or as strong free adjuncts. They can be understood causally or as the restrictor of a modal operator in the
main clause. The question of which operators can be restricted by a converb with an overt subject, for example, why they can restrict the future tense operation, but not the ability modal, will have to remain for the future research.

To sum up, there are four circumstances in which a converb clause may have an overt subject in Balkar. First, if the subject of the converb clause and the subject of the main clause stand in the part-whole relation. Second, if the event described by the converb clause and the event described by the main clause overlap (including cases when one is a subevent of the other). Third, if the converb clause and the main clause are related by ‘counterfactual causation’. This leads to the counterfactual inference: if the event described by the converb clause didn’t happen the event described by the main clause wouldn’t have happened. Fourth, if the converb clause restricts a modal operator in the main clause.7

In what follows I will assume that Balkar converbs with overt subjects are CPs with a silent complementizer. This complementizer has a double effect: (a) it licenses an overt subject; and (b) it introduces a special semantic relation to the main clause.

Thus, converb clauses with subjects have a full CP structure: CP > TP[–fin] > AspP > NegP > vP. Henceforth I will refer to them as CP-converbs.

(37) Converb types in Balkar

<table>
<thead>
<tr>
<th>Can contain:</th>
<th>causative</th>
<th>negation</th>
<th>Asp</th>
<th>TP-adverb</th>
<th>subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>converbs</td>
<td>CP-converbs</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>with subject</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>converbs</td>
<td>TP-converbs</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>with PRO</td>
<td>vP-converbs</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
In the previous section I have argued that converbs with overt subjects are CPs. In this section I will argue that CP-converbs attach at the CP level of the main clause.

First, the default surface position for a CP-converb is on the left periphery of the main clause. Other word orders are acceptable, but dispreferred (this is not the case for TP- and vP-converbs, see section 2.4.1):

(39) a.

\[[\text{zašći} \quad \text{ešik-ni} \quad \text{ac-ip}] \quad \text{ustaz} \quad \text{stol-nu} \quad \text{otou-ŋa} \quad \text{kir-giz-t-di} \quad \text{come.in-Caus-Pst1.3sg} \]

\[\quad \text{boy} \quad \text{door-ACC} \quad \text{open-CONV} \quad \text{teacher} \quad \text{table-ACC} \quad \text{room-DAT} \]

b.

\[[\text{zašći} \quad \text{ešik-ni} \quad \text{ac-ip}] \quad \text{stol-nu} \quad \text{otou-ŋa} \quad \text{kir-giz-t-di} \quad \text{come.in-Caus-Pst1.3sg} \]

\[\quad \text{teacher} \quad \text{boy} \quad \text{door-ACC} \quad \text{open-CONV} \quad \text{table-ACC} \quad \text{room-DAT} \]

c.

\[[\text{zašći} \quad \text{ešik-ni} \quad \text{ac-ip}] \quad \text{otou-ŋa} \quad \text{kir-giz-t-di} \quad \text{come.in-Caus-Pst1.3sg} \]

\[\quad \text{teacher} \quad \text{table-ACC} \quad \text{boy} \quad \text{door-ACC} \quad \text{open-CONV} \quad \text{room-DAT} \]
Second, a CP-converb cannot be interpreted in the scope of a causative marker in the main clause, regardless of the surface word order. Given the assumption that causative marking is hosted at v, it means that CP-converbs are attached at least above the main vP.

Neither sentence in (40) has an interpretation, where Fatima makes the boy open the door. The boy opening the door escapes the scope of the causative in the main clause.

Third, a CP-converb escapes the scope of negation in the main clause. This means that a CP-converb is attached at least above the main NegP.

Balkar has a Negative Polarity Item (NPI) of the form bir NP-da ‘one NP-ADD’. Outside the scope of negation it means ‘one more NP’. In the scope of negation it is interpreted as an existential quantifier, like English any. For more details on the particle -da and its relation to the negative polarity see Bylinina et al. (2020).

8 There is an extra causative marker in this verb. The first causative suffix -giz derives the meaning ‘carry.into’ from ‘come.into’ and introduces the teacher as the Causer (Agent) of the carrying event. The third causative suffix -dir introduces Fatima as another Causer. The second causative suffix -t does not introduce any arguments. Here I will assume the analysis developed by Lyutikova and Tatevosov (2012) and Tatevosov (2018), according to which this intermediate causative suffix marks the semantic relation between the two events: Fatima making the teacher carry the table and the teacher carrying the table.
Negation may license this NPI across a clausal boundary:

\[(41) \quad \textit{ok bir ustaz=da [sabij-le bir kitap-ni=da oqu-\text{\textbar}an] sun-ma-j-di}\]
\[\text{one teacher=ADD kid-PL one book-ACC=ADD read-NZR think-NEG-PRS-3SG}\]

‘It is not the case that any teacher thinks that the kids read any book.’

Notice that in (41) the negation on the main verb \textit{sun} ‘think’ licenses both the NPI in the main subject position and the NPI in the embedded clause. This means that negation is in fact interpreted in the main clause (this is not a case of Neg-raising), which means that it ‘genuinely’ licenses the NPI in the embedded clause across a clause boundary.\(^9\)

However, negation in the main clause may not license an NPI inside a CP-converb, regardless of the linear order:

\[(42) \quad \text{a. } \text{[oquucu-la bir üj iš-ni=}da_1 \text{ et-ip]} \quad \text{ustaz a}ja_1\]
\[\text{student-PL one home work-ACC=ADD make-CONV teacher 3SG.DAT}\]
\[\text{qara-ma-\text{\textbar}an-di}\]
\[\text{look-NEG-PST2-3SG}\]

\[\text{b. } \text{[oquucu-la bir üj iš-ni=}da_1 \text{ et-ip]} \quad \text{a}ja_1\]
\[\text{teacher student-PL one home work-ACC=ADD make-CONV 3SG.DAT}\]
\[\text{qara-ma-\text{\textbar}an-di}\]
\[\text{look-NEG-PST2-3SG}\]

1. ‘The students did one more homework, the teacher didn’t grade it.’
2. *‘It is not the case that there was a homework that the students did and the teacher graded.’

In neither sentence in (42) is the NPI licensed by the negation in the main clause. To the extent that these sentences are grammatical, the \textit{bir NP-da} ‘one NP-ADD’ expression has the meaning ‘one more NP’, not ‘any NP’.

Finally, a quantified subject of the main clause may not bind a pronoun inside the CP-converb, regardless of the linear order:

\(^9\)The fact that negation can license an NPI in the subject position means that either negation is interpreted high (above TP) or that the subject may reconstruct below the Neg head. Here and below I will assume the latter. The main reason for this is that negation may not take scope over a CP-converb.
(43) a. ok [Madina aŋa₂/*₁ bilet al-ip] xar zašciq₁ erišiu-ge
 Madina 3SG.DAT ticket take-CONV every boy competition-DAT
qatiš-xan-di
take.part-PST2-3SG

b. ? xar zašciq₁ [Madina aŋa₂/*₁ bilet al-ip] erišiu-ge
 every boy Madina 3SG.DAT ticket take-CONV competition-DAT
qatiš-xan-di
take.part-PST2-3SG

‘Madina buying him₂/*₁ a ticket, every boy₁ took part in the competition.’

In neither sentence in (43) can the pronoun aŋa ‘3SG.DAT’ inside the CP-converb be bound by the quantified subject of the main clause (xar zašciq ‘every boy’).

To sum up, CP-converbs are attached above the main vP, the main NegP and the subject of the main clause (which presumably occupies Spec,TP). In what follows I am going to assume that CP-converbs merge at the CP-level:

(44) The position of a CP-converb in the main clause:

A converb with an overt subject is, thus, a CP that modifies another CP. Some main clause constituents, like the subject, may A'-move above the CP-converb to the left periphery (39b-d). This is A’-movement, because it does not create new binding possibilities, see (43). It also probably requires special information structure, which explains why (39b-d) are not readily acceptable.
2.3.2 Back to extraction

As was shown in section 2.2, it is possible to scramble a constituent out of a CP-converb. However, in this respect CP-converbs show two important properties that distinguish them from PRO-converbs: (a) main clause opacity; and (b) lack of correlation between the possibility of extraction and the lexical meaning of the main verb.

If a CP converb is extracted from, it must be the leftmost constituent in the sentence it modifies, see (45).

doorkind₁ Fatima hingephi-3-ABL takeoffCONV Kerim bedACC
üj-ge alaj kij-ir-di] de-di-m
houseDAT thus comeinCAUS-PST1.3SG sayPST1-1SG

doorkind₁ Kerim Fatima hingephi-3-ABL takeoffCONV bedACC
üj-ge alaj kij-ir-di] de-di-m
houseDAT thus comeinCAUS-PST1.3SG sayPST1-1SG

‘I said Fatima having taken the door off its hinges, Kerim carried the bed into the house.’

More generally, a CP-converb is only transparent if its sister is opaque. Even though it is possible to scramble a constituent out of the main clause (46a) or out of the CP-converb (46b), it is not possible to scramble out of the main clause and the converb simultaneously (46c).

(46) a. ok YP₂ ... [main [subj-conv ... XP₁ ...] ... _₂ ...] ... (47a)
b. ok XP₁ ... [main [subj-conv ... _₁ ...] ... YP₂ ...] ... (47b)
c. * XP₁ YP₂ ... [main [subj-conv ... _₁ ...] ... _₂ ...] ... (47c)
This is what the Spell Out theory predicts. If one CP modifies another CP, the system may choose to spell out either one of them, but at least one must be spelled out. The non spelled out CP will project its category:

(48) a. Spelling out the converb clause:

```
CP
  /\                    /\                        /\          /\      /\    
CP-opaque C'-transparent
CP-converb main CP
```
b. Spelling out the main clause:

```
CP
   /\  
  /   \  
C'_transparent  CP opaque
   \   /  
   CP-converb  main CP
```

This immediately predicts the impossibility of (47c). It is also expected that there will be no correlation between the possibility of extraction and the meaning of the main verb (unlike in the case of \(v_P\)-converbs, which will be discussed in the next section).

2.4 Extracting from converbs with PRO

In this section I will consider Balkar converbs with a PRO subject and argue that they come in two varieties. Some converb clauses with PRO are TPs and are attached to or above the main \(v_P\). Other converbs with PRO are \(v_P\)s and occupy a lower position, within the main \(v_P (v'\) or \(V')\). Only \(v_P\)-sized converbs that are attached as sisters to the main verb are transparent for scrambling.

2.4.1 \(v_P/TP\)-converbs

Size

Let me begin by showing that converb clauses without an overt subject contain a full clausal structure inside them, except the subject.

First, they can contain recursively embedded \(v_P\)s, i.e., a causative construction:

(49) \(ok\ sau-suz\ [\text{\textbf{PRO}_1 Kerim-ge tereze-ni ac-tir-ip}]\ igi-rek\)

\(\text{healthy-CAR Kerim-DAT window-ACC open-CAUS-CONV good-COMP}\)

\(\text{bol-du become-PST1.3SG}\)

‘The patient\textsubscript{1} felt better, \textbf{PRO}_1 having made Kerim open the window.’

Second, a converb with PRO can contain negation:
As before, the negation marker -ma is only compatible with the -a suffix, not with the -p suffix (see section 2.3.1 above).

Third, converbs with PRO subjects can contain the aspectual auxiliary tur ‘HAB’:

(51) ok Fatima₁ Kerim-ni [PRO₁ quru šaxar-va bar-ip tur-up] terk-terk
 Fatima Kerim-ACC constantly city-DAT go-CONV HAB-CONV often
 kör-e e-di
 see-CONV AUX-PST1.3SG

 ‘Fatima₁ saw Kerim often, PRO₁ constantly going to the city.’

Finally, a converb with PRO can be modified by a temporal adverbial, which is independent from the main clause:

(52) ok [PRO₁ tünene mašina-ni sat-ip al-ip] biz₁ bugün šaxar-va
 yesterday car-ACC buy-CONV take-CONV we today city-DAT
 bar-vaan-biz
 go-PST2-1PL

 ‘PRO₁ having bought a car yesterday, we₁ went to the city today.’

As with CP-converbs, the tense of the converb clause has to match the tense of the main clause:

(53) * [PRO₁ tünene mašina-ni sat-ip al-ip] biz₁ tambla šaxar-va bar-liq-biz
 yesterday car-ACC buy-CONV take-CONV we tomorrow city-DAT go-FUT-1PL

 ‘PRO₁ having bought a car yesterday, we₁ will go to the city tomorrow.’

To sum up, a converb with PRO seems to have the same amount of verbal structure as a CP-converb, with two crucial differences. First, it does not contain an overt subject. Second, converbs with PRO do not have to stand in a special semantic relation to the main clause. A simple temporal overlap is enough.
Converb types in Balkar

<table>
<thead>
<tr>
<th>Can contain:</th>
<th>causative</th>
<th>negation</th>
<th>Asp</th>
<th>TP-adverb</th>
<th>subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>converbs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with subject</td>
<td>CP-converbs</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>converbs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with PRO</td>
<td>TP-converbs</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>vP-converbs</td>
<td></td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Let us assume then that converbs with PRO are full TPs (with a defective T that has to match with the temporal reference of the main clause), as is illustrated by (55). They do not contain a C, and as a consequence, they can only have a covert subject and do not stand in any specific semantic relation to the main clause, apart from temporal overlap.

(55) A TP-converb:

Position

What position do TP-converbs occupy within the main clause? It seems that they are attached lower than CP-converbs, but above the vP. The surface position of a TP-converb is not restricted in any way:

(56) a. ³ok [PRO₁ ešik-ni ac-ip] ustaz₁ stol-nu otou-va kij-ir-di
door-ACC open-CONV teacher table-ACC room-DAT come.in-CAUS-PST1.3SG
A TP-converb can be interpreted in the scope of negation. Unlike a CP-converb, an NPI inside a TP-converb can be licensed by the matrix negation (57). Notice that in (57b) the converb clause contains an aspectual auxiliary and is still interpreted in the scope of negation.

(57)
\begin{enumerate}
 \item Fatima₁ \[PRO₁ bir kitap-ni=da oqu-j\] sejirsin-me-gen-di
 Fatima one book-ACC=ADD read-CONV be.surprised-NEG-PST2-3SG
 ‘Fatima₁ wasn’t surprised, PRO₁ reading any book.’
 \item Fatima₁ \[PRO₁ bir kitap-ni=da oqu-j tur-up\]
 sejirsin-me-j-di
 be.surprised-NEG-PRS-3SG
 ‘Fatima₁ isn’t surprised, PRO₁ reading any book.’
\end{enumerate}

At the first glance, a converb with PRO can be interpreted in the scope of the causative suffix as well:

(58)
\begin{enumerate}
 \item Fatima Aslan-\(\text{ba}_2\) \[PRO₂ zir-\(\text{ba}\) tinjila-p\] tūš-ge aziq
 Fatima Aslan-DAT song-DAT listen-CONV sleep-DAT food
 make-CAUS-PST2-3SG
 ‘Fatima made Aslan₂ make dinner, PRO₂ having listened to the song.’
\end{enumerate}

In (58) Fatima brings about a situation where Kerim is both reading a book and listening to a song. Notice that in this case it is Kerim (the Causee) that controls the PRO subject of the converb, not Fatima (the Causer).

However, if a converb clause is interpreted in the scope of the causative marker, it no longer may contain an aspectual auxiliary, nor (for some speakers) negation. Thus, in (59)
the converb clause contains an aspectual auxiliary, and the antecedent for PRO cannot be the Causee, it has to include the Causer.\(^\text{10}\)

\begin{align*}
(59) \quad \text{Fatima}_{1} & \quad \text{Kerim-} \text{ni}_{2} \quad [\text{PRO}_{1/2} \quad \text{zir-} \text{u} \quad \text{ti} \text{jil} \text{a-} \text{p} \quad \text{tur-} \text{up}] \quad \text{aš} \quad \text{üj-} \text{de} \\
& \quad \text{Fatima \quad Kerim-ACC} \quad \text{song-DAT \quad listen-CONV \quad HAB-CONV} \quad \text{food \quad house-LOC} \\
& \quad \text{oltur-t-a-di} \quad \text{sit-CAUS-PRS-3SG} \\
\quad \text{‘Fatima}_{1} \text{ makes Kerim}_{2} \text{ sit in the kitchen, } \text{PRO}_{1/2} \text{ constantly listening to a song.’}
\end{align*}

In (60) the converb clause contains negation, and the antecedent for PRO cannot be the Causee, it must be the Causer. The converb has to be interpreted above the higher causative vP.

\begin{align*}
(60) \quad \text{Fatima}_{1} & \quad \text{Kerim-} \text{ge}_{2} \quad \text{kitap-} \text{ni} \quad [\text{PRO}_{1/2} \quad \text{zir-} \text{u} \quad \text{ti} \text{jil} \text{a-} \text{ma-} \text{j}] \\
& \quad \text{Fatima \quad Kerim-DAT} \quad \text{book-ACC} \quad \text{song-DAT} \quad \text{listen-NEG-CONV} \\
& \quad \text{oqu-} \text{t-xan-di} \quad \text{read-CAUS-PST2-3SG} \\
\quad \text{‘Fatima}_{1} \text{ made Kerim}_{2} \text{ read the book, } \text{PRO}_{1/2} \text{ not listening to a song.’}
\end{align*}

In the light of these data I will assume that converbs with PRO subjects come in two varieties. There are TP-converbs with a PRO subject that contain full TP structure (enough to host negation and aspectual auxiliaries) and attach above the main vP. There are also vP-converbs with a PRO subject that contain just a vP (not enough to host negation or aspectual auxiliaries) and attach within the main vP.

\begin{align*}
(61) \quad \text{Converb types in Balkar}
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{Can contain:} & \text{causative} & \text{negation} & \text{Asp} & \text{TP-adverb} & \text{subject} \\
\hline
\text{converbs} & \text{CP-converbs} & \text{yes} & \text{yes} & \text{yes} & \text{yes} \\
& \text{with subject} & & & & \text{yes} \\
\hline
\text{converbs} & \text{TP-converbs} & \text{yes} & \text{yes} & \text{yes} & \text{no} \\
& \text{with PRO} & \text{vP-converbs} & \text{yes} & \text{no} & \text{no} \\
\hline
\end{array}
\end{align*}

\(^{10}\)For some speakers the sentence may also have a split control interpretation, where both Fatima and Kerim are listening to the song, but it may never have the interpretation where the Causee exhaustively controls PRO.
If PRO has to be controlled by a c-commanding noun phrase, TP-converbs have to attach below the main subject. Otherwise there is no possible controller for PRO.

Possible controllers for PRO

The PRO subject of verb clauses is usually controlled by the subject of the main clause, as in (63).

(63)

\[\text{Fatima Kerim-ge} \quad [\text{PRO}_1 \text{zir-ya} \quad \text{tiпila-j}] \quad \text{kitap oqu-t-xan-di} \]
\[\text{Fatima Kerim-DAT} \quad \text{song-DAT} \quad \text{listen-CONV} \quad \text{book read-CAUS-PST2-3SG} \]

‘Fatima made Kerim_1 read a book, PRO_1 listening to a song.’

As we have seen above, however, the PRO subject of a vP-converb can be controlled by the Causee, as in (64a). For some speakers, PRO could also be controlled by the object of perception verbs, like kör ‘see’ in (64b).

(64)

\[\text{man Kerim-ni} \quad [\text{PRO}_1 \text{bu at-ni} \quad \text{al-a}] \quad \text{kör-gen-me} \]
\[\text{I Kerim-GEN son-3-ACC} \quad \text{this horse-ACC} \quad \text{take-CONV} \quad \text{see-PST2-1SG} \]

‘I saw Kerim’s son_1 PRO_1 taking this horse.’
The PRO subject may not have a cross-sentential antecedent. The two sentences in (65) form a short text. In the second sentence (65b) PRO is controlled by the local subject men ‘I’, not by men qarindašim ‘my brother’ from the previous sentence.

(65) a. ok meni qarindaš-im maŋa qonaq-̣ba kel-di
 my brother-3SG 1SG.DAT guest-DAT come-PST1.3SG
 ‘My brother came to visit me.’

b. ok [PRO2/*1 ụ̈jge kir-ip] men2 a-ni xal-i-n sor-du-m
 house-DAT come-in-CONV 1 3SG-GEN state-3-ACC ask-PST1-1SG
 ‘PRO2/*1 having come into the house, I asked how he was doing.’

The PRO subject could be controlled by a non-local subject, i.e., across a clause boundary, as in (66). Here the subject of sun ‘think’, namely, Fatima, is the understood subject of the converb clause that modifies the complement of sun ‘think’. Fatima thinks that her giving Kerim the key yesterday made it possible for Kerim to enter the house.

(66) ok Fatima1 [[PRO1 tūnene aŋa axtiš-ni ber-ip] Kerim ụ̈jge
 Fatima yesterday 3SG.DAT key-ACC give-CONV Kerim house-DAT
 kir-al-̣ban] sun-a-di
 come.in-POT-NZR think-PRS-3SG
 ‘Fatima1 thinks that PRO1 giving him the key, Kerim was able to enter the house.’

However, there are good reasons to believe that in (66) we are dealing with a CP-converb, not with a TP or a vP-converb. First, the converb has to occupy the leftmost position in the embedded clause:

(67) * Fatima1 [Kerim [PRO1 tūnene aŋa axtiš-ni ber-ip] ụ̈jge
 Fatima Kerim yesterday 3SG.DAT key-ACC give-CONV house-DAT
 kir-al-̣ban] sun-a-di
 come.in-POT-NZR think-PRS-3SG
 ‘Fatima1 thinks that PRO1 giving him the key, Kerim was able to enter the house.’
Second, a pronoun inside the converb may not be bound by a quantifier in the embedded subject position:

\[(68)\]
* Fatima₁ [[\text{PRO}₁ \text{tünene aŋa axtiš-ni ber-ip}] xar zaščiq₂ \text{ųj-ge}]
Fatima yesterday 3SG.DAT key-ACC give-CONV every boy house-DAT
kir-al-\text{-}\text{βan}] \text{sun-a-di}
come.in-POT-NZR think-PRS-3SG
‘Fatima₁ thinks that \text{PRO}₁ giving him₂ the key, every boy₂ was able to enter the house.’

Third, there has to be a special semantic relation between the converb clause and the main clause. In this case it is counterfactual causation: if Fatima didn’t give Kerim the key, he wouldn’t have been able to enter the house. If the counterfactual inference is not supported by the context, the sentence is judged odd:

\[(69)\]
Fatima₁ [[\text{PRO}₁ \text{tünene aŋa axtiš-ni ber-ip}] Kerim tükæn-ge bar-\text{-}\text{βan}]
Fatima yesterday 3SG.DAT key-ACC give-CONV Kerim store-DAT go-NZR
sun-a-di
think-PRS-3SG
‘Fatima₁ thinks that Kerim went to the store, (with) \text{PRO}₁ giving him the key.’

The sentence in (69) implies that Fatima giving Kerim the key caused him to go to the store, which is an odd inference, hence the sentence is judged as strange. The speakers comment that the two events are not connected to each other.

These data are easily explained, if we make two assumptions. First, \text{PRO} has to be controlled by the closest c-commanding noun phrase (see the Minimal Distance Principle in Rosenbaum, 1967, Larson, 1991, among many others). Second, CP-converbs may have an overt subject or \text{PRO}, meanwhile, TP and \text{VP}-converbs can only have \text{PRO} in their subject position.

Crucially, as I have shown above, CP-converbs are base-generated above the main subject. This means that, if they have \text{PRO} for the subject, this \text{PRO} has to be controlled by a
c-commanding noun phrase in a higher clause, as in (66).

Meanwhile, TP and vP-converbs may be base-generated lower, see (62). Correspondingly, their PRO subject is controlled either by the local subject or by some lower argument, depending on the attachment site of the converb. If the converb clause is attached below the Causee, the Causee controls PRO, as in (64a). If the converb clause is attached below the object, the object controls PRO, as in (64b).

2.4.2 Bleached verbs and grammaticalization

Before returning to the discussion of extraction, let us consider certain cases when a vP-converb is attached so low that it becomes the structural complement of the main verb.

It is very common across Turkic languages that in the context of a converb clause certain main verbs lose their lexical semantics and assume the meaning of an aspectual or modal operator, or the meaning that is usually associated with so-called restructuring predicates, like ‘begin’, ‘end’ or ‘allow’. In the literature on Turkic languages this structure is usually called ‘serialization’ or ‘a complex verb construction’ (see Tybykova, 1966, Ganiev, 2003, Lyutikova et al., 2006, Shluinsky, 2009, Grashchenkov, 2012, 2015, among numerous others).

An example of a complex verb construction from Mishar Tatar (a Turkic language spoken predominantly in the Republic of Tatarstan, Russia) is given in (70). Here the verb jat ‘lie down’ no longer means ‘to lie down’, but functions as an aspectual operator (most probably, as the universal perfect marker). One could view this in the same light as the English use of an -ing form with ‘be’ and ‘keep’ to form progressives.
(70) **Mishar Tatar**

ok ä tege ügi kyz [ätä-se belän begun dä jäs-ä-p] jat-a
and this stranger girl father-3SG with today and live-ST-CONV lie.down-PRS
‘And this orphan is still living to this day with her father.’

(Grashchenkov, 2015, 32)

In Balkar itself the verb *tur* can both be used as a lexical verb meaning ‘stand/be.situated’ or as an aspectual auxiliary with habitual or perfect meaning (for more details on the syntax and semantics of this auxiliary see Lyutikova et al., 2006, 362-433).

(71) **Asijat** [Kerim-ni ujat-ip] tur-a-di

Asijat Kerim-ACC wake.up-CONV stand-PRS-3SG
‘Asijat usually wakes Kerim up.’

In these cases the converb clause is usually analyzed as the complement of the bleached verb, as is illustrated by the trees under (70) and (71). One of the arguments in favor of analyzing the converb clause as a structural complement in these cases is that the complex verb construction has several properties of Restructuring or Clause Union (see Wurmbrand, 2001, and much subsequent work).

For example, if the complex verb construction is to be causativized or passivized, the
causative / passive marking sometimes appears both on the bleached verb and on the lexical verb, as in (72). This sentence contains two causative suffixes, but semantically there is only one causation. In fact, adding an extra Causer to the structure makes it ungrammatical (see Grashchenkov, 2015, 159).

(72) **Mishar Tatar**

\[\text{mak marat alsu-dan išek-ne ač-tur-γ-p kuj-dur-dy} \]

Marat Alsu-ABL door-ACC open-caus-st-conv stand-caus-PST

‘Marat made Alsu open the door.’ (Grashchenkov, 2015, 158)

According to Grashchenkov (2015, 154), whether causative or passive morphology appears on the lexical verb, on the bleached verb or on both depends on the language and on the identity of the bleached verb. Double marking seems always to be an option. But there are cases when the causative/passive morphology on the lexical verb is optional, and there are cases when the causative/passive morphology on the bleached verb is optional.

In what follows I am going to assume that one of the suffixes is semantically vacuous and appears only as the result of agreement. For concreteness, let us assume that it is agreement between the \(v/\text{Voice} \) head projected by the lexical verb and the \(v/\text{Voice} \) head projected by the bleached verb, as is schematized in (73). This is similar to Bondarenko’s (2018a) analysis of passive morphology in Buryat Restructuring, building on Wurmbrand and Shimamura (2017).

(73) Agreement in \(v\):
According to Grashchenkov (2015, 92-93), main verbs that become bleached and form complex verb constructions across Turkic languages include verbs of motion (‘go’, ‘come’), verbs of position (‘put’, ‘lie.down’, ‘stand’), transfer of possession (‘give’, ‘take’), perception verbs (‘see’, ‘look’) and copulas (‘be’, ‘stay.put’).

In Balkar verbs of motion or position constitute an interesting “intermediate” case. If a motion verb or a verb of position is modified by a vP-converb, this verb still retains its original lexical meaning, as in (74) and (75). This is evident from the fact that the main verb has its own adverbial modifier, namely, zajau ‘by.foot’ in (74) and šindik-de ‘chair-LOC’ in (75).

(74) ok Fatima₁ zajau [PRO₁ quancl zir-ni zirla-j] bar-a e-di
Fatima by.foot happy song-ACC sing-CONV go-CONV AUX-PST1.3SG
‘Fatima₁ was walking by foot, PRO₁ singing a happy song.’

(75) ok Aslan₁ šindik-de [PRO₁ meni zir-im-ma tiqila-j] oltur-a e-di
Aslan chair-LOC my song-1SG-DAT listen-CONV sit-CONV AUX-3SG
‘Aslan₁ was sitting on the chair, PRO₁ listening to my song.’

However, this configuration does show a Restructuring-Clause Union effect, when it comes to derivational morphology. If a clause like (74) is to be causativized, the speakers strongly prefer to put the causative marking both inside the converb and the main verb.¹¹

¹¹The string in (76a) is grammatical, but it does not have the required meaning. It is acceptable only if the PRO subject of the converb is controlled by the Causer (Fatima), not by the Causee (Kerim). The sentence means “Fatima₁, PRO₁ having left the store, made Kerim go down this road”. The string in (76b) is also grammatical, but also only if PRO is controlled by the Causer (Fatima), not by the Caussee (Kerim). The noun phrase Kerim and the PP bu zol bla ‘this road with’ are interpreted as part of the converb clause. In other words, the sentence means “Fatima₁, PRO₁ having made Kerim leave the store down this road, went”. If the PRO subject is to be controlled by the Caussee (Kerim), only (76c) is acceptable. In other words, if the vP-converb is attached below the Caussee, causative morphology must be doubled.
(76) Fatima Kerim-ni₁ bu zol bla
Fatima Kerim-ACC this road with
 store-DAT come.out-CONV go-CAUS-PST2-3SG
b. * [PRO₁ tüken-den cır-ar-ip] bar-ılan-di
 store-DAT come.out-CAUS-CONV go-PST2-3SG
c. ok [PRO₁ tüken-den cır-ar-ip] bar-dir-ılan-di
 store-DAT come.out-CAUS-CONV go-CAUS-PST2-3SG
 ‘Fatima made Kerim₁ go down this road, PRO₁ having left the store.’

The same is true for converb clauses modifying a verb of position:

(77) Fatima Aslan-ni₁ şindik-de
Fatima Aslan-ACC chair-LOC
a. * [PRO₁ meni zır-im-ma tiğila-j] oltur-t-xan-di
 my song-1SG-DAT listen-CONV sit-CAUS-PST2-3SG
b. * [PRO₁ meni zır-im-ma tiğila-t-a] oltur-ılan-di
 my song-1SG-DAT listen-CAUS-CONV sit-PST2-3SG
c. ok [PRO₁ meni zır-im-ma tiğila-t-a] oltur-t-xan-di
 my song-1SG-DAT listen-CAUS-CONV sit-CAUS-PST2-3SG
 ‘Fatima made Aslan₁ sit on the chair, PRO₁ listening to my song.’

This suggests that the converb clause is, in fact, an optional complement of the main verb. The Clause Union/Restructuring configuration is there, but the higher verb still bears its original lexical meaning.

Notice that this is not the case with all main verbs, only with verbs of motion or position. In particular, while (77a) and (76a) are not acceptable with PRO controlled by the Causee, (78) is perfectly fine, no causative morphology inside the converb clause is required:

(78) ok Fatima₁ Aslan-ıra₂ [PRO₂ zır-ıra tiğila-p] tüş-ge aziq
 Fatima Aslan-DAT song-DAT listen-CONV sleep-DAT food
 et-dir-gen-di make-CAUS-PST2-3SG
 ‘Fatima₁ made Aslan₂ make dinner, PRO₂ having listened to the song.’

Why can converbs only participate in Clause Union/Restructuring with a verb of posi-
tion or a verb of motion in Balkar? This relates to a broader question of why only specific classes of verbs across Turkic languages can form complex verb constructions, and to an even broader question of why only certain verbs get grammaticalized into modal/aspectual auxiliaries cross-linguistically. In the paragraphs to follow I will only offer some preliminary speculations on the matter.

It seems that all the verb meanings that participate in complex verb constructions are very basic in some intuitive sense. For example, verbs of motion and position can describe a very big class of eventualities. An event of Fatima going down the road can simultaneously be an event of Fatima singing a song, walking a dog, or talking to me. An event of Aslan sitting on a chair can simultaneously be an event of Aslan listening to my song, writing a letter, or playing with a dog.12

It may be that a \textit{vP-converb} can only directly merge with a verb if the event argument of the converb and the event argument of this verb are identified (see Truswell, 2007 for English and section 2.5 for discussion). Take, for example the sentence in (74). Suppose the \textit{vP-converb} \textsc{pro} \textsc{1} \textsc{quanci} \textsc{ziri} \textsc{zirjal} ‘\textsc{pro} \textsc{1} singing a happy song’ is interpreted as an <s,t>-type predicate in (79a), and that the main verb \textit{bar} ‘go’ is an <e,\textit{st}>-type predicate in (79b). Crucially, the event argument of the converb in (79a) is only bound by the \textit{\lambda}-operator.

\begin{align*}
(79) & \quad a. \quad [\textit{vP-converb}_{1}] = \textit{\lambda} e. \text{e is an event of } \textsc{pro} \textsc{1} \text{ singing a happy song}.^{13} \\
& \quad \textit{b. } [\textit{bar} \text{ ‘go’ }] = \textit{\lambda} x. \text{e is an event of } x \text{ moving.}
\end{align*}

These two predicates can combine via Kratzer’s (1996) Event Identification rule:

\footnote{This is similar to the observation made by Truswell (2007), who claims that English \textit{ing}-adjuncts are only transparent for movement in the context of a semantically weak predicate. I will discuss those cases in more detail in section 2.5.} \footnote{The \textsc{pro} \textsc{1} argument is probably bound via \textit{\lambda}-abstraction (as soon as its controller is introduced), like other pronouns (Heim and Kratzer, 1998).}
(80) Event Identification

a. The rule (Kratzer, 1996, 122)

\[f \rightarrow g \rightarrow h \]

\[\lambda x. \lambda e. [f(x)(e) \text{ and } g(e)] \]

b. i. \(f = \lambda x. \lambda e. e \text{ is an event of } x \text{ moving.} \)

ii. \(g = \lambda e. e \text{ is an event of } \text{PRO}_1 \text{ singing a happy song.} \)

iii. \(h = \lambda x. \lambda e. e \text{ is an event of } x \text{ moving and } e \text{ is an event } \text{PRO}_1 \text{ singing a happy song.} \)

(81) Structure:

\[
\begin{array}{c}
\text{VP} \\
\text{Fatima} \\
\text{V' (h}_{<\text{e,st}>}\text{)} \\
\text{vP-converb (g}_{<\text{st}>}\text{)} \\
\text{‘PRO}_1 \text{ singing a happy song’} & \text{‘go’} \\
\end{array}
\]

This will result in two predicates applying to the same event: the same event will have to be an event of Fatima moving and an event of Fatima singing a happy song.\(^{14}\) Suppose that this is only possible if at least one of those predicates is very weak, that is, if it is true of a big class of events, like a verb of position or a verb of motion.

If \(vP \)-converbs always have their event argument bound by the \(\lambda \)-operator, as in (79a), this would predict that \(vP \)-converbs can only modify verbs of position and motion.

This is clearly not the case, as is evident from (78). There the verb is attached within the main \(vP \), below the Causee, so it is a \(vP \)-converb. But the main verb is not a verb of motion or a verb of position. In order to account for these cases, we will have to assume that \(vP \)-converbs may have another meaning, namely, one where their event argument is \(\exists \)-bound. It could be something along the following lines:

\(^{14}\)The \(\text{PRO}_1 \) inside the verb clause is probably bound by the noun phrase Fatima after it moves to the subject position.
Because this interpretation has two event variables (e and e'), the event argument of the converb clause will no longer be identified with the event argument of the main clause. The converb will combine with the main clause via Predicate Modification, not Event Identification. This would allow the converb to modify any verb, regardless of its lexical meaning.

There are three independent assumptions at play here. First, νP-converbs are ambiguous between an interpretation like (79a) with an λ-bound event argument and an interpretation like (82) with an \exists-bound event argument. Second, only those νP-converbs that have an interpretation like (79a) can be base generated as structural complements, that is, only they can combine with the main verb via Event Identification. Third, verbs of motion and verbs of position have weak lexical semantics, that is, they can be true of a big class of events.

Together, these assumptions predict that νP-converbs may only serve as complements for verbs of motion or verbs of position. This analysis leaves one potential point of cross-linguistic variation, as to what classes of verbs have weak lexical semantics. This would predict that in different languages different verbs can attach converb clauses as complements and further grammaticalize to form complex verb construction.

Of course, this is only a sketch of an analysis. A more extensive theory will require a more extensive study. What is important for our present purposes is the fact that only certain verbs (verbs of motion and position in Balkar) can attach converb clauses as complements.

2.4.3 Back to extraction

As was shown in section 2.2, it is possible to scramble constituents out of converbs with PRO. But in this respect, they have two important properties that make them distinct from CP-converbs: (a) the main clause is not opaque; and (b) whether extraction is possible depends on the lexical meaning of the main verb.

A PRO-converb is opaque if it modifies a transitive (83a) or an unergative (83b) verb. Extraction out of a PRO-converb is marginally acceptable, if it modifies an unaccusative
position verb (83c), and is definitely grammatical in the context of a unaccusative motion verb (83d).

(83)
\[\begin{align*}
\text{a.} & \quad * \text{XP}_1 \ldots [\text{main} \ldots [\text{PRO-conv} \ldots \text{1} \ldots] \ldots \text{V}_{\text{transitive}}] \ldots \quad (84a) \\
\text{b.} & \quad * \text{XP}_1 \ldots [\text{main} \ldots [\text{PRO-conv} \ldots \text{1} \ldots] \ldots \text{V}_{\text{unergative}}] \ldots \quad (84b) \\
\text{c.} & \quad ? \text{XP}_1 \ldots [\text{main} \ldots [\text{PRO-conv} \ldots \text{1} \ldots] \ldots \text{V}_{\text{position}}] \ldots \quad (84c) \\
\text{d.} & \quad \text{ok} \text{XP}_1 \ldots [\text{main} \ldots [\text{PRO-conv} \ldots \text{1} \ldots] \ldots \text{V}_{\text{motion}}] \ldots \quad (84d)
\end{align*} \]

(84)
\[\begin{align*}
\text{a.} & \quad /\text{zarig zir-nif}/_1 \text{ men} [\text{Kerim}_2 \ u\text{şuxuuur} [\text{PRO}_2 _1 \text{ zirla-j}] \text{xazirla-şan}] \text{happy song-ACC} \text{ I Kerim food sing-CONV cook-NZR} \\
& \quad \text{sun-a-ma} \text{ think-PRS-1SG} \\
& \quad \text{‘I think that Kerim}_2 \text{ was} \text{making} \text{ dinner, PRO}_2 \text{ singing a happy song.’} \\
\text{b.} & \quad /\text{zarig zir-nif}/_1 \text{ men} [\text{Kerim}_2 \ \text{baxca-da} [\text{PRO}_2 _1 \text{ zirla-j}] \text{işle-şen}] \text{happy song-ACC} \text{ I Kerim garden-LOC sing-CONV work-NZR} \\
& \quad \text{sun-a-ma} \text{ think-PRS-1SG} \\
& \quad \text{‘I think that Kerim}_2 \text{ was} \text{working} \text{ in the garden, PRO}_2 \text{ singing a happy song.’} \\
\text{c.} & \quad /\text{meni kitab-im-nif}/_1 \text{ men} [\text{Kerim}_2 \ \text{divan-da} [\text{PRO}_2 _1 \text{ oq}-j] \text{zat-xan}] \text{my book-1SG-ACC} \text{ I Kerim couch-LOC read-CONV lie-NZR} \\
& \quad \text{sun-a-ma} \text{ think-PRS-1SG} \\
& \quad \text{‘I think that Kerim}_2 \text{ was} \text{lying} \text{ on the couch, PRO}_2 \text{ reading my book.’} \\
\text{d.} & \quad /\text{meni zir-im-nif}/_1 \text{ men} [\text{Aslan}_2 \ \text{zol-da} [\text{PRO}_2 _1 \text{ zirla-j}] \text{bar-şen}] \text{my song-1SG-ACC} \text{ I Aslan road-LOC sing-CONV go-NZR} \\
& \quad \text{sun-a-ma} \text{ think-PRS-1SG} \\
& \quad \text{‘I think that Aslan}_2 \text{ was} \text{walking} \text{ down the road, PRO}_2 \text{ singing my song.’}
\end{align*} \]

In other words, a PRO-converb can only be transparent in the context of those intransitive verbs that can attach a vP-converb as a complement. In Balkar these are the verbs that, though not semantically bleached, may show certain restructuring characteristics, as has been shown in the previous section.

These data are easily explained if we assume two things. First, TP-converbs are always
opaque. Second, vP-converbs are only transparent when they are structural complements.

This follows automatically from the Spell Out theory. TP-converbs should not be transparent, because they their sister is a phrase that cannot be spelled out, either because it is not of the same category (AspP, NegP, vP) or because it does not have all of its features specified (T’). Meanwhile, vP-converbs can be structural complements (in the context of a verb of motion or position), in which case they are expected to be transparent.

It is also expected that extraction out of a complement converb does not make the main clause opaque. That is, a constituent can be scrambled out of the main clause (85a), out of the low attached converb (85b), or both simultaneously (85c).

(85) a. ok XP₁ ... [main _₁ ... [PRO-conv ... YP₃ ...] ...] ... (86a)
 b. ok YP₃ ... [main XP₁ ... [PRO-conv ... _₃ ...] ...] ... (86b)
 c. ok XP₁ YP₃ ... [main _₁ ... [PRO-conv ... _₃ ...] ...] ... (86c)

(86) a. ok zol-da₁ Fatima [Kerim₂ _₁ [PRO₂ [ol zir-ni]₃ zirla-j] bar-a e-di]
 road-LOC Fatima Kerim that song-ACC sing-CONV go-CONV AUX-3SG
 de-gen-di say-PST2-3SG
 ‘Fatima said Kerim₂ was walking by the road, PRO₂ singing that song.’

 b. ok [ol zir-ni]₃ Fatima [Kerim₂ zol-da₁ [PRO₂ _₃ zirla-j] bar-a e-di]
 that song-ACC Fatima Kerim road-LOC sing-CONV go-CONV AUX-3SG
 de-gen-di say-PST2-3SG
 ‘Fatima said Kerim₂ was walking by the road, PRO₂ singing that song.’

 c. ok zol-da₁ [ol zir-ni]₃ Fatima [Kerim₂ _₁ [PRO₂ _₃ zirla-j] bar-a e-di]
 road-LOC that song-ACC Fatima Kerim sing-CONV go-CONV AUX-3SG
 de-gen-di say-PST2-3SG
 ‘Fatima said Kerim₂ was walking by the road, PRO₂ singing that song.’

Finally, note that, if the PRO subject is controlled by the object of a transitive perception verb, like kör ‘see’, the converb clause is transparent as well:
Since we have assumed that \(\text{PRO} \) has to be controlled by the closest c-commanding noun phrase (see section 2.4.1 above), the convverb clause in (87) has to be attached low, namely, below the object of the main clause. This means that it is merged directly with the main verb and is structurally a complement. The Spell Out theory predicts it to be transparent, as is the case.

Importantly, the convverb clauses in these cases are still are optional, they do not fill any argument slots of the main predicate. \(vP \)-converbs are combined with the main verb via Event Identification when they are complements and via Predicate Modification otherwise (see section 2.4.2).

2.4.4 Interim summary

To sum up, Balkar convverbs come in three varieties. First, there are CP-converbs with an overt subject and a covert C. They are attached above the subject of the main clause, at the CP level.

Second, there are TP-converbs without an overt subject, but with enough structure to host various verbal projections (e.g., aspectual auxiliaries). They are attached above the main \(vP \), but below the subject of the main clause.

Third, there are \(vP \)-converbs, which also do not have an overt subject, but have less functional structure. They are attached within the main \(vP \). If the main verb is a verb of motion or position, a \(vP \)-converb may merge directly with the verb, as its complement. Across Turkic languages main verbs in this configuration sometimes lose their lexical semantics and become modal or aspectual auxiliaries.
Converb types in Balkar

<table>
<thead>
<tr>
<th>Can contain:</th>
<th>causative</th>
<th>negation</th>
<th>Asp</th>
<th>TP-adverb</th>
<th>subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>verbs with subject</td>
<td>CP-converbs</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>verbs with PRO</td>
<td>TP-converbs</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>verbs with PRO</td>
<td>vP-converbs</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Attachment sites

TP-converbs are always opaque. Scrambling is only possible from a CP-converb or a vP-converb. A CP-converb is only transparent if it occupies the leftmost position in the main clause and the main clause is opaque, as predicted by the Spell Out theory (4b). A vP-converb is only transparent if it is merged directly with the verb (that is, only in the context of a verb of position or motion), as predicted by the Spell Out theory (4a).

In the first case the converb clause is a CP, whose sister is also a CP. The system may choose to spell out either one, resulting in either the converb or the main clause becoming opaque. In the second case the converb clause is structurally a complement and is expected to be transparent.

It is unclear how the modifier accounts could deal with these generalizations. In all the
transparent cases the converb clauses are still optional and do not fill any argument slots in the main clause (they combine with the main clause via Predicate Modification or Event Identification). All modifier accounts would have to stipulate that converb clauses stop being modifiers if they are merged with a head or with a spelled out phrase, which would make these theories virtually identical to the Spell Out theory.

2.5 Extracting from English ing-clauses

2.5.1 Preliminaries

In this section I will briefly consider extraction from ing-clauses in English. The discussion will be limited to ing-clauses for two reasons: (a) they seem to be close in meaning and structure to Balkar converbs; and (b) extraction out of them has already been addressed in the literature, most notably by Truswell (2007).

In what follows I will focus on ing-clauses that serve as modifiers and have a null subject, like whistling Ode to Joy in (90a) or looking after a cat in (90b).

(90)
 a. ok Ludo₁ was walking down the street, [PRO₁ whistling Ode to Joy].
 b. ok Karl₁ was doing his homework, [PRO₁ looking after a cat].

Truswell (2007) argues that whether an ing-clause\(^{15}\) can be extracted from depends on its semantic relation to the main verb:

(91) Truswell’s Generalization

Extraction of a complement from a secondary predicate (including ing-clauses – DP) is permitted only if the event denoted by the secondary predicate is identified with an event position in the matrix predicate. (Truswell, 2007, 1374)

What (91) amounts to is that an ing-clause is transparent if and only if its event argument is identified with one of the event arguments in the main clause. This is only possible if

\(^{15}\)Truswell (2007) uses a broader term ‘secondary predicate’.
the event argument in the main clause is underspecified, which in turn is determined by the
lexical semantics of the main verb.

It is not particularly clear how Event Identification should influence possibilities of
extraction. However, if Event Identification correlates with the attachment site of the ing-
clause, the Spell Out theory provides a ready explanation for (91). Event Identification
is only possible if the ing-clause is a structural complement. In the rest of this section I
will go over the cases of transparent ing-clauses brought up by Truswell (2007), viewing
them from the perspective of the Spell Out theory and assuming that Event Identification
correlates with the attachment site (extending the analysis proposed for Balkar above).

According to Truswell (2007), ing-clauses are transparent in the context of three classes
of main verbs: (a) unaccusative atelic verbs of motion and position, like lie or walk, (b) some
telic unaccusatives, like arrive or die, and (c) telic transitive verbs with underspecified caus-
ing subevent (so-called result verbs), like anger or make happy. In what follows I will
consider the intransitive cases (a-b) and the transitive ones (c) separately.

2.5.2 Intransitives

According to Truswell (2007), there are two classes of intransitive verbs in whose con-
text an ing-clause can be transparent: atelic verbs of motion and position and some telic
unaccusatives. Let us begin with atelic cases.

In both sentences in (92) the ing-clause modifies a verb of position and is transparent
for relativization. These examples are judged as grammatical by all the speakers I have
consulted.

(92) a. **The dish**₂ that Liz₁ was sitting there [PRO₁ eating₂] was delicious.

 b. **The book**₂ that Rosa₁ was lying in bed [PRO₁ reading₂] was boring.

The same is true for verbs of motion:
These examples fall within Truswell’s generalization. Atelic verbs of motion or position can be construed as mono-eventive predicates, for example, walk specifies a set of simple walking events.

Their event argument is underspecified, so it can be identified with the event argument of the ing-clause. An event of Liz sitting there can simultaneously be an event of Liz eating a dish. An event of Ludo walking to the store can simultaneously be an event of Ludo listening to a podcast.

With unergative verbs extraction is slightly worse, although still not completely unacceptable:

(94) 7 This is the house2 that Alex1 worked hard [PRO1 building2].

As Truswell (2007) argues, the decisive factor here is whether the event argument of the main verb and the event argument of the ing-clause can be identified. That, of course, depends on the lexical semantics of the verbs involved. This situation is very similar to vP-converbs in Balkar, discussed in section 2.4 above.

Let us assume that some English ing-clauses have a λ-bound event argument:

(95) [PRO1 whistling a song] = λe. e is an event of PRO1 listening to a podcast.

This meaning can combine with the matrix verb via Event Identification (96), which is only possible, if the main predicate is vague, like a verb of motion or position.
(96) Event Identification

a. The rule (Kratzer, 1996, 122)
\[
\begin{align*}
 f & \quad g & \quad \rightarrow & \quad h \\
\langle e, st \rangle & \quad \langle s, t \rangle & \quad \langle e, st \rangle \\
\lambda x. \lambda e. & \quad [f(x)(e) \text{ and } g(e)]
\end{align*}
\]

b. i. \(f = \lambda x. \lambda e. e \) is an event of \(x \) walking to the store.

ii. \(g = \lambda e. \) \(e \) is an event of \(\text{PRO}_1 \) listening to a podcast.

iii. \(h = \lambda x. \lambda e. e \) is an event of \(x \) walking to the store and \(\text{PRO}_1 \) listening to a podcast.

Apart from atelic verbs of motion or position, some telic unaccusatives also allow extraction from \textit{ing}-clauses that modify them (97). Truswell (2007, 1370) reports extraction with \textit{appear}, as in (97c), as ungrammatical, but the speakers I consulted find it acceptable, though, perhaps, a bit degraded.

(97) a. \(\text{ok I liked the tune}_2 \) that \(\text{Kar}_1 \) arrived \([\text{PRO}_1 \text{ humming }_2] \).

b. \(\text{ok I know the tune}_2 \) that \(\text{Liz}_1 \) died \([\text{PRO}_1 \text{ thinking about }_2] \).

c. \(? \) I liked \(\text{the melody}_2 \) that \(\text{Rosa}_1 \) appeared \([\text{PRO}_1 \text{ whistling }_2] \).

Telic predicates, like \textit{die}, \textit{arrive} or \textit{appear}, can be analyzed as bi-eventive. For example, \textit{arrive} can be construed as describing two events \(e_1 \) and \(e_2 \), \(e_1 \) being an event of Alex moving, and \(e_2 \) being the state of Alex being here\(^{16}\), where \(e_1 \) causes \(e_2 \) (see Dowty, 1979, Levin and Hovav, 1995, Paducheva, 2004, 2009, Ramchand, 2008, Tatevosov, 2015a, among numerous others).

Following Truswell (2007), I will assume that in the case of telic predicates (97) the event argument of the \textit{ing}-clause is identified with the second event argument of the main clause (the result state).\(^{17}\) This can also be achieved via Event Identification, if the \textit{ing}-clause is merged directly with the main verb (as its complement).

\(^{16}\)For simplicity I am assuming here that both processes and states have the same semantic type \(s \), to which I refer as the 'event'-type (see Ramchand, 2008 and Tatevosov, 2015a, among many others, for the same ontology). The process vs. state distinction is not relevant for our present purposes.

\(^{17}\)This would require the event predicate of the \textit{ing}-clause to be atelic. Otherwise it cannot be true of a result state. Indeed, the speakers I consulted found *\textit{The door}_2 that \text{Kar}_1 \text{ arrived} \,[\text{PRO}_1 \text{ breaking }_2] \) unacceptable.
These data are compatible with the Spell Out theory. Adopting the analysis proposed for Balkar above, we can assume that combining an ing-clause with the main verb via Event Identification is only possible, if the ing-clause is base generated as a complement. That is, the ing-clause is merged directly with the main verb (walk or arrive), below the base position of the subject.

(98)
a. Atelic, mono-eventive cases

(the ing-clause is identified with the event argument of walk)

```
<table>
<thead>
<tr>
<th>VP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ludo₁</td>
</tr>
<tr>
<td>V' (h&lt;e,st&gt;)</td>
</tr>
<tr>
<td>V (f&lt;e,st&gt;)</td>
</tr>
<tr>
<td>walk</td>
</tr>
<tr>
<td>PRO₁ listening to the podcast₂</td>
</tr>
</tbody>
</table>
```

b. Telic, bi-eventive cases

(the ing-clause is identified with the result state of arrive)\(^\text{18}\)

```
<table>
<thead>
<tr>
<th>VP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karl₁</td>
</tr>
<tr>
<td>V' (h&lt;e,st&gt;)</td>
</tr>
<tr>
<td>V (f&lt;e,st&gt;)</td>
</tr>
<tr>
<td>arrive (e₁, process)</td>
</tr>
<tr>
<td>PRO₁ listening to the podcast₂</td>
</tr>
</tbody>
</table>
```

\(^{18}\)The structure with two recursively embedded VPs for bi-eventive predicates can be found, among many others, in Ramchand (2008). Although in Ramchand’s (2008) terminology the lower V, associated with the result state, is labeled as R.
ing-clause, not follows it. This can be achieved by extraposing the ing-clause to a position after the PP. If this is what happens, the Spell Out theory predicts that the subextraction from the ing-clause precedes extraposition (derived adjuncts are also islands).

The most crucial assumption here is that for the event argument of the ing-clause and to be identified with one of the event arguments of the main clause the ing-clause must be merged as a complement, i.e., below the subject. This is an assumption I made for Balkar in section 2.4, but it seems reasonable to extend it to English. For Balkar this analysis is independently supported by restructuring effects. Unfortunately, the evidence in English is not so clear.

There are two independent arguments that can be brought up to support the theory that transparent ing-clauses in English are structural complements.

First, if the verb is elided, a transparent ing-clause has to be elided together with it. Consider the pair of sentences in (99). In (99a) the ing-clause is elided together with the main verb walk. The sentence can describe a situation when both Rosa and Karl walked to the store listening to a podcast. In (99b) only the main verb is elided. The sentence can describe a situation when Rosa walked to the store listening to a podcast, while Karl walked to the store thinking about his problems.

(99) a. SITUATION: Rosa walked to the store listening to a podcast, and Karl walked to the store listening to a podcast.
ok Rosa walked to the store listening to a podcast, and Karl\textsubscript{1} did Δ too.

b. SITUATION: Rosa walked to the store listening to a podcast, while Karl walked to the store thinking about his problems.
ok Rosa walked to the store listening to a podcast, and Karl\textsubscript{1} did Δ [\text{PRO\textsubscript{1}} thinking about his problems].

What (99) shows is that ing-clause does not have to be elided together with the main verb. Assuming that eliding a head without its complement is not possible, this means that the ing-clause does not have to be the complement of walk. It can either attach as a complement, in which case it cannot survive ellipsis, or as an adjunct, in which case it can.

\footnote{This argument was pointed out to me by David Pesetsky (p.c.).}
However, if the *ing*-clause is extracted from and the main verb is elided, the *ing*-clause has to be elided with it:

(100)

a. SITUATION: Rosa walked to the store listening to a podcast, and Karl walked to the store listening to a podcast.
This is [the podcast]$_2$ that Rosa walked to the store listening to, and this is [the podcast]$_2$ that Karl$_1$ did Δ.

b. SITUATION: Rosa walked to the store listening to a podcast, while Karl walked to the store thinking about his problems.
This is [the podcast]$_2$ that Rosa walked to the store listening to, and *these are [the problems]$_2$ that Karl$_1$ did Δ [PRO$_1$ thinking about _2].

In both (100a) and (100b) the *ing*-clause is extracted from. In (100a) it is elided together with the main verb, while in (100b) it survives ellipsis, which is only possible if the *ing*-clause is a structural adjunct. All the speakers I consulted perceive a contrast between (100a) and (100b). If the first sentence is acceptable, but degraded, the second sentence is definitely ungrammatical. This suggests that transparent *ing*-clauses have to be structural complements.

Second, with stacked *ing*-clauses only the first one can be transparent for extraction. Thus, all the speakers I consulted perceive a strong contrast between (101b) and (101c), with the former being consistently judged better.

(101)

a. ok Rosa$_1$ walked to the store [PRO$_1$ listening to a podcast], [PRO$_1$ thinking about her problems].

b. ok This is [the podcast]$_2$ that Rosa$_1$ walked to the store [PRO$_1$ listening to _2], [PRO$_1$ thinking about her problems].

c. * These are [the problems]$_2$ that Rosa$_1$ walked to the store [PRO$_1$ listening to a podcast], [PRO$_1$ thinking about _2].

What (101) shows is that, while *ing*-clauses can be stacked (101a), only one of them,

20 This argument was pointed out to me by Norvin Richards (p.c.).
namely, linearly the first one, can be transparent for extraction. This is expected, since there can only be one complement.

2.5.3 Transitives

Extraction out of *ing*-clauses that modify transitive verbs seems to be much more marked. According to Truswell (2007), there are two conditions that have to be satisfied for an *ing*-clause to be transparent in the context of a transitive verb.

First, the main verb has to be an accomplishment specifying result. This is based on the idea that some accomplishments, like *draw* or *write*, specify the manner of a complex eventuality, while others, like *break* or *drive crazy*, specify the result (see Levin and Hovav, 1995 and much subsequent work).

Both classes of verbs can be construed as bi-eventive predicates, describing two events e_1 and e_2, where e_1 causes e_2. Manner verbs specify the first subevent, the causing subevent. Result verbs specify the second subevent, the caused subevent. For example, *draw* describes a pair of events e_1 and e_2 where e_1 is the process of a picture being drawn and e_2 is the state of the picture being complete, and e_1 causes e_2. The verb *draw* specifies e_1. On the other hand, *drive crazy* describes a pair of events e_1 and e_2 where e_1 is the event of making someone crazy, and e_2 is the state of someone being crazy, and e_1 causes e_2. The verb *drive crazy* specifies e_2 and leaves e_1 underspecified (it could be any activity that makes someone crazy).

Extraction from an *ing*-clause is degraded in the context of a stative verb (102a), a semifactive verb (102b), or an accomplishment specifying manner (102c). But it is better in the context of an accomplishment specifying result (102d).

(102)

a. **CONTEXT:** The listener is a wizard with magic hats. They put on hat A, and they speak English. They put on hat B, and they speak Arabic.

 * **Which of your magic hats**$_1$ do you$_1$ know Georgian [**PRO$_1$ wearing**$_2$]?

b. * This is the window$_2$ that Karl$_1$ noticed the rain [**PRO$_1$ looking through**$_2$].

c. * **Who$_2$** did Alex$_1$ draw a circle [**PRO$_1$ talking to**$_2$]?

d. * This is the car$_2$ that Rosa$_1$ drove Liz crazy [**PRO$_1$ trying to fix**$_2$].
Second, the *ing*-clause has to describe the causing subevent. This means that the semantic relation between the *ing*-clause and the main clause is one of immediate causation. The event argument of the *ing*-clause is identified with e_1, the causing subevent.

In particular, indirect causation is out:

(103)

A: **What**$_2$ did John make himself angry [**PRO$_1$ trying to fix**$_2$]?
B: The radiator. It just really got to him.

B': "The radiator. But it wasn’t because he was trying to fix the radiator that he made himself angry, it was that he happened to be trying to fix it while his favorite program was on.

(Truswell, 2007, 1371)

The *ing*-clause has to describe the causing subevent. That is, what caused John to be angry in (103) has to be him trying to fix the radiator, not any other event associated with it.

This, again, is in accordance with Truswell’s generalization (91): the event argument of the *ing*-clause is identified with an event argument of the main clause, which is only possible if the event argument of the main clause is underspecified. Because result verbs do not specify the causing subevent, it can be specified by the *ing*-clause. Consequently, the *ing*-clause can be transparent in the context of a result verb.

If we employ the Event Identification rule again, we will have to conclude that the *ing*-clause is attached high in these cases.

(104) Potential attachment sites for *ing*-clauses modifying transitives

```
  VP
 / \     
/   \    
V'    A
 / \    /   /
/   \  /   
/     /     
    v    
     /     
    /     
   /     
  /     
 vP     
   
Rosa$_1$

V'
 /   /
/     
/   
/     
/     
/     
v
 / \\
/   
/     
/     
/     
/     
drive
 
/ \\
/   
/     
/     
/     
/     
e$_1$

V'
 /   \
/     
/     
/     
/     
/     
V
 
/ \\
/   
/     
/     
/     
/     
crazy
 
/ \\
/   
/     
/     
/     
/     
e$_2$
```

98
Following Kratzer (1996), Harley (1996, 2013), Folli and Harley (2007), Pylkkänen (2008), and Ramchand (2008), among numerous others, I will assume that the causing subevent e_1 is introduced by a high functional head, like v or Voice, that is also responsible for the introduction of the Agent argument (the external argument). Meanwhile caused subevent e_2 is introduced by some lower head, like V, that is also responsible for the introduction of the Theme argument (the internal argument).

If the event argument of the *ing*-clause is to be identified with the causing subevent e_1, and if the *ing*-clause is combined with the main clause via Event Identification, then it has to attach at position A, as represented by the tree in (104). This means that the *ing*-clause is not a structural complement. The Spell Out theory predicts it to be opaque, contrary to fact.

However, attachment site A also means that the *ing*-clause is base generated higher than the internal argument, and there is some evidence against this view. The evidence comes from Condition C. For all the English speakers that I consulted co-reference between a pronominal internal argument and a full noun phrase inside the *ing*-clause leads to a condition C violation. All the speakers I consulted perceive a strong contrast between (105a) and (105b), with the latter being consistently judged worse.

\[(105)\]
\[
\begin{align*}
\text{a. } & \text{ ? Rosa}_1 \text{ killed the guy}_3 [\text{PRO}_1 \text{ hitting him}_3 \text{ with a poker}]. \\
\text{b. } & \ast \text{ Rosa killed him}_3 [\text{PRO}_1 \text{ hitting the guy}_3 \text{ with a poker}].
\end{align*}
\]

The same contrast repeats with extraction:

\[(106)\]
\[
\begin{align*}
\text{a. } & \text{ ?/\ast What}_2 \text{ did Rosa}_1 \text{ kill the guy}_3 [\text{PRO}_1 \text{ hitting him}_3 \text{ with }_2] ? \\
\text{b. } & \ast \text{ What}_2 \text{ did Rosa kill him}_3 [\text{PRO}_1 \text{ hitting the guy}_3 \text{ with }_2] ?
\end{align*}
\]

This suggests that the *ing*-clause is base generated below the internal argument, that is, at position B (104), namely, as the structural complement of the main verb.

Furthermore, as in the case of intransitive verbs, among stacked *ing*-clauses only the first one can be transparent for extraction:
(107) a. ok Rosa₁ drove me crazy [PRO₁ writing down formulas], [PRO₁ scratching the blackboard].

b. ? These are [the formulas]₂ that Rosa₁ drove me crazy [PRO₁ writing down formulas], [PRO₁ scratching the blackboard].

c. * This is [the blackboard]₂ that Rosa₁ drove me crazy [PRO₁ writing down formulas], [PRO₁ scratching formulas].

If the transparent ing-clause is merged as a complement, how does it end up describing the causing subevent? As it turns out, this result can be derived if we assume that not all English ing-clauses have an λ-bound event argument. It could be that some ing-clauses have an ∃-bound event argument, and the causation relation comes from the ing-clause itself:

\[\lambda e. \exists e': e' \text{ is the immediate cause of } e, \text{ and } e' \text{ is an event of } PRO₂ \text{ hitting Karl with a poker.} \]

If a predicate like (108) is base generated as the sister to V, it predicates over the caused subevent e₂ via Event Identification. However, the ∃-bound event argument of the ing-clause ends up describing the causing subevent e₁ due to the semantics of the ing-clause. In other words, the ing-clause itself introduces the causing subevent, which is later identified with the causing subevent introduced by v, simply because there can only be one immediate cause of e₂.

This derives both the semantic relation between the ing-clause and the main verb, and Condition C effects in (105-106). Crucially, the ing-clause is attached low, as a sister to the main verb. Hence it becomes transparent, as predicted by the Spell Out theory.

2.5.4 Summary

In this section I have discussed extraction out of English ing-clauses and the Spell Out theory. This theory gives a structural explanation for Truswell’s (2007) generalization, if
we assume that the semantic relation between the ing-clause and the main clause correlates with the attachment site of the ing-clause. Whenever an ing-clause combines with the main clause via Event Identification, it is merged directly with the main verb. In these cases it is a structural complement and is expected to be transparent for extraction.

2.6 Concluding remarks and finite adjuncts

In this chapter I have considered the effects of the Adjunct Condition in two case studies: converb clauses in Balkar and ing-clauses in English. Both ing-clauses and converbs are clausal non-finite modifiers, that is, they are optional and do not fill any argument slots of the main predicate. Nevertheless, both Balkar converbs and English ing-clauses can be extracted from, but the possibilities of extraction are limited by the structural position of the clause in question.

This confirms the predictions of the Spell Out theory. The Spell Out theory makes the following claim:

(109) a. Before any two phrases are merged at least one must be spelled out.
 b. A spelled out phrase does not project its category.

From (101) it follows that all structural adjuncts must be opaque, because they are maximal projections and are merged with a phrase. But it does not follow that all modifiers are opaque, as modifier accounts predict. The Spell Out theory predicts that modifiers can be transparent in two cases:

(110) a. A modifier is transparent if it is merged with a head (is a complement).
 b. A modifier is transparent if its sister is spelled out.

These predictions are confirmed by Balkar and English. Balkar converbs are transparent for scrambling in two cases. First, a CP-sized converb with an overt subject that is attached at the CP-level is transparent for extraction, but at the same time the matrix CP becomes opaque.
Second, a \(vP\)-sized converb with a covert subject that is attached within the main \(vP\) is transparent if the main verb is a verb of motion or position. With the same set of verbs the \(vP\)-converbs show a restructuring effect (double causative marking), which suggests that they are merged directly with the main verbs, as their complements.

English \(ing\)-clauses are also transparent for movement in two cases. First, they are transparent if they modify a limited set of unaccusative verbs. This set primarily consists of verbs of motion and position, that is, precisely the same lexical class of verbs that show the restructuring effect in Balkar. This suggests that transparent \(ing\)-clauses in English are also attached low, namely, as the complement of the main verb. This assumption if further confirmed by independent evidence from ellipsis and stacked \(ing\)-clauses.

Second, \(ing\)-clauses are transparent if they modify a telic transitive verb that specifies result. In this case the \(ing\)-clause has to be attached below the main object, as supported by independent evidence from Condition C effects and stacked \(ing\)-clauses. This, again, makes the transparent \(ing\)-clause in question a structural complement.

It is not clear how these data can be accounted for under modifier accounts. All the considered cases involve modifiers, which are optional and do not fill any argument slots of the main predicate. Nevertheless, some of them are transparent and some of them are opaque. The defining factor is the attachment site, which correlates with the semantic relation to the main predicate (if the rule of Event Identification is involved).

In this chapter I have only considered non-finite clausal modifiers. Finite clauses that serve as modifiers (e.g., \(if\)-clauses) are typically always opaque. If the Spell Out theory is correct, it means that these modifiers are never complements. However, there are certain exceptions.

In the normal case the \(if\)-clause is opaque for extraction:
(111) Russian

* eto – pros’ba, kotoruju1 on menja pozov-ét, [esli ty ne vypoln-iš
 this.is request which.ACC he me call.PRS-3SG if you NEG fulfill.PRS-2SG
 _1]

‘This is the request1 that he will call me if you don’t fulfill _1.’

(my judgment)

However, as was first discovered by Paducheva and Zaliznyak (1979) for Russian and by Pullum (1987) for English, in some cases if-clauses are transparent. Specifically, if the main verb is a verb of perception, like ‘be.happy’ or ‘be.sad’:

(112) Russian

 ok eto – pros’ba, kotoruju1 on ogorč-it-sja, [esli ty ne vypoln-iš
 this.is request which.ACC he make.sad.PRS-3SG-SE if you NEG fulfill.PRS-2SG
 _1]

‘This is the request1 that he will be upset if you don’t fulfill _1.’

(Paducheva and Zaliznyak, 1979, 100)

In this case the if-clause is attached as the complement of the main verb. Furthermore, it is not interpreted as the antecedent of a conditional. This is usually called the non-logical-if construction (the term from Williams, 1974). For more details on its syntax and semantics, as well as for the arguments in favor of the complement attachment of the if-clause see Longenbaugh (2019, 123-133).

Notably, in Longenbaugh’s (2019) analysis the if-clause still does not fill any argument slots of the main predicate. The Theme argument of the main verb is filled by an expletive it, which is presumably null in Russian. The if-clause modifies this expletive element in the same way a relative clause would modify the head noun (Longenbaugh, 2019, 132). Thus, it is a modifier, not an argument. But because it is a structural complement, it is transparent for extraction, as is predicted by the Spell Out theory. In fact, the same may be true for that-clauses that are complements of attitude predicates. If the so-called Kratzer-Moulton hypothesis is correct (see Kratzer, 2006, Moulton, 2015, among others), that-clauses in sentences like Karl thinks that Rosa is a genius are also semantic modifiers (but structural
complements). The Spell Out theory expects them to be transparent as long as they merge with a head, regardless of the semantic way in which they combine with the main clause.

Interestingly, Paducheva and Zaliznyak (1979) provide a similar example with a *when*-clause. *When*-clauses, like *if*-clauses, are usually opaque:

(113) **Russian**

* u menja est’ novost’, kotoruju on menja pozov-ët, kogda pro uznaj-et _1_
 I have news, which.ACC he me call.PRS-3SG when he
learn.PRS-3SG
‘I have some news that he will call me when he learns.’

(my judgment)

But again, if the main verb is a verb of perception, extraction becomes better:

(114) **Russian**

ok u menja est’ novost’, kotoruju on udiv-it-sja, kogda pro uznaj-et _1_
I have news, which.ACC he surprise.PRS-3SG-SE when he
learn.PRS-3SG
‘I have some news that he will be surprised when he learns.’

(Paducheva and Zaliznyak, 1979, 100)

It is possible that not only *if*-clauses can be structural complements of perception verbs, but *when*-clauses as well.
Chapter 3

The Subject Condition

3.1 Introduction

In this chapter I will talk about the effects of the Subject Condition in two languages: Russian and Balkar. The Subject Condition will be tested against relativization in Russian and scrambling in Balkar. All the data presented in this chapter were collected by elicitation, unless specified otherwise.¹

In what follows I will argue for the strong version of the Subject Condition, that is, the claim that all specifiers (either base-generated or derived) are opaque for extraction. In particular, I will argue that any apparent extraction out of a base generated specifier is better analyzed as the result of Discontinuous Spell Out (or, in other terms, covert pied-piping), as predicted by the Spell Out theory.

This chapter will focus on two apparent challenges to the Subject Condition. We will see that, under closer consideration, these challenges are not detrimental and, in fact, provide some crucial arguments for the strong version of this condition. Despite the exceptional

¹The judgments come from six native speakers of Russian (all were born and grew up in Moscow) and four native speakers of Balkar from the village of Verkhnyaya Balkariya (Republic of Kabardino-Balkaria, Russia). The speakers were offered pairs of sentences and asked to give a relative acceptability judgment (which sentence is better). In addition, they were asked to rank each sentence on the scale from 1 (not acceptable) to 5 (perfectly fine). In most cases the intended interpretation of the sentence was discussed with the speaker in order to make sure they understand the sentence correctly. Marks from 1 to 2 were analyzed as “ungrammatical”, and marks 4 to 5 as “grammatical”. The examples for which the speakers’ evaluations averaged around 3 label 7 is used (marginally acceptable). Those Russian examples that were not elicited from other speakers are marked as (my judgment). The sign ° is used for cases when the speakers disagreed with each other.
cases in Russian and Balkar, one can still observe the effects of the Subject Condition, even if they are obscured by independent factors.

The first apparent challenge (section 3.3) is the fact that subjects of certain verbs are transparent if in-situ. This happens, for example, in Literary Russian. However, a closer look at the data shows that the full paradigm of extraction from in-situ arguments precisely follows the predictions of the Strong Subject Condition. Only those subjects are transparent in-situ that are base-generated as structural complements. This generalization has been supported by experimental evidence both from Russian (Polinsky et al., 2013) and from other languages, namely, German, English, Japanese and Serbian (Jurka, 2010). But in this chapter I will only focus on elicited data from Russian.

The second apparent challenge (sections 3.4 and 3.5) is the fact that in some language grammars, like Balkar or the colloquial register of Russian (Colloquial Russian), noun phrases can be split regardless of their syntactic position or of whether they stay in-situ or not. However, as I will argue below, these cases do not involve genuine subextraction at all. The noun phrases in question are not “deconstructed” in narrow syntax. They are better analyzed as the result of so-called distributed deletion or Discontinuous Spell Out, as proposed by Fanselow and Ćavar (2002) for a variety of languages, and by Pereltsvaig (2008) for Colloquial Russian specifically. Crucially, in Colloquial Russian and Balkar one may still observe certain asymmetries between discontinuous subject noun phrases and discontinuous object noun phrases. Objects may be split more freely than subjects, which suggests that, while objects can be discontinuous as the result of either subextraction or Discontinuous Spelled Out, subjects can only be discontinuous as the result of Discontinuous Spelled Out. Thus, the Subject Condition holds for Colloquial Russian and Balkar as well, although its effects are harder to detect due to the availability of another operation that renders split noun phrases, that is, Discontinuous Spell Out.

The fact that even in languages with Discontinuous Spell Out one may still observe the effects of the Subject Condition speaks strongly in favor of the Subject Condition as a core principle of grammar. Even though young speakers potentially hear sentences that do not

2Here and below I will use the term “Russian” to refer to the literary register of Russian (“Literary Russian”) for brevity.
seem to obey the Subject Condition on the surface, as adults, they still draw a meaningful distinction between subjects and objects when it comes to subextraction. If the Spell Out theory is correct, the Subject Condition directly follows from the basic principles of syntactic derivation (see Chapter 1), which explains its persistence in speakers’ grammars despite them encountering seemingly contradicting evidence during first language acquisition.

Before I begin, I would like to make one disclaimer. As the reader may have noticed, I am assuming that there is a distinction between Colloquial and Literary Russian with respect to the phenomena in question. It does seem that we are dealing with two separate grammars here. The Colloquial Russian system will be discussed in detail in section 3.4. Until then some Russian speaking readers may find themselves not perceiving the contrasts that I am reporting, or rather finding them weaker if one imagines “colloquial speech”. Those speakers are kindly asked to withhold their judgment disagreements until section 3.4, where I discuss this phenomenon in more detail.

3.2 Formulating the Subject Condition

3.2.1 Strong and Weak Subject Condition

The Subject Condition was first proposed by Ross (1967, 241-255) and developed by Chomsky (1973), Kayne (1981), Pesetsky (1982, 313-318) and Huang (1982, 503-514), among numerous others.

For Russian the Subject Condition can be illustrated by the contrast in (1). In (1a) *skol’ko* ‘how many’ is extracted out of the object noun phrase, and the sentence is fine. In (1b) *skol’ko* ‘how many’ is extracted out of the subject noun phrase, and the sentence is not as good. It should be noted that this is a reliable contrast, which is replicated both by elicitation and in carefully controlled acceptability judgment studies: Polinsky et al. (2013) show this for Russian, and Jurka (2010) – for German, English, Japanese and Serbian.

3For a list of systematic grammatical differences between these two systems see Zemskaya (1973) and much subsequent work.
(1) **RUSSIAN**

a. * ok skol’ko₁ ty xote-l-a, čto-by ja kupi-l₁ [₁₁ botinok]₂?
 how.many you want-PST-F that-SBJ I buy-PST.M boots.GEN⁴
 ‘[How many₁ boots]₂ did you want me to buy _₂?’

b. * skol’ko₁ ty xote-l-a, čto-by [₁₁ čelovek]₂ prines-l-i/o⁵ knigi?
 how.many you want-PST-F that-SBJ people.GEN bring-PST-PL/N books.ACC
 Intended: ‘[How many₁ people]₂ did you want _₂ to bring books?’

The noun phrases that are being extracted from have exactly the same internal structure
(skol’ko botinok/čelovek ‘how.many boots.GEN/people.GEN’) and the same pragmatic status
(they are both indefinite). The **only** difference is in the structural position of the noun phrase: subject vs. object. This leads us to the following descriptive generalization:

(2) **Objects are transparent for extraction, but subjects are opaque.**

There are several properties that distinguish subjects and objects. The question is which one of those should the generalization in (2) be attributed to. In the current syntactic literature there are two prevalent answers to this question, and, correspondingly, two prevalent theories of the Subject Condition. Both can be traced back to Cattell (1976), Kayne (1981) and Huang’s Condition on Extraction Domain, or CED (Huang, 1982, 505).⁶

One difference between subjects and objects is that objects are base-generated as complements, while subjects are base-generated as specifiers. The object is the first argument to merge with the verb, while the subject is not. The object [skol’ko botinok] ‘how.many boots’ is merged with a head, the verb root kupi- ‘buy’, while the subject [skol’ko čelovek] is merged with a phrase, the V’ [prines- knigi] ‘bought books’. If we are to capitalize on this observation, then the subject condition should be formulated as in (3).

⁴In Russian numeral constructions the NP receives genitive case.
⁵In Russian noun phrases with numerals, e.g., ‘five NPs’, trigger either third person plural or default (third person singular neuter) agreement on the verb. The choice doesn’t affect the judgment in (1b).
⁶In Huang’s original theory, the crucial difference between subjects and objects is that objects are properly governed, while subjects are not. Depending on how government is defined, CED could draw the line differently. If government is defined in terms of c-command, then CED distinguishes between complements and all specifiers (derived or base-generated). If government is defined in terms of m-command, then CED distinguishes between VP-internal and VP-external arguments.
(3) **Strong Subject Condition.**

All specifiers are opaque for extraction.

The Spell Out theory, developed in this dissertation predicts (3). Because specifiers are merged with phrases (not heads), they have to be spelled out before they undergo this merge. Spell Out renders them opaque for extraction (see technical implementation in Chapter 1).

Another difference between subjects and objects is that in many languages the subject moves away from the verb that it is an argument of to a designated high position within the clause, for example, Spec,TP. Meanwhile the object may stay in-situ.

If we are to capitalize on this observation, then the Subject Condition can be unified with so-called freezing effects. A freezing effect is an independently observed phenomenon, when a moved constituent becomes opaque for extraction (see Wexler and Culicover, 1981, Takahashi, 1994, Rizzi and Shlonsky, 2007, among many others).

Given the common assumption that any moved constituent occupies a specifier position after movement, this amounts to a strictly weaker version of the Subject Condition:

(4) **Weak Subject Condition.**

All derived specifiers are opaque for extraction.

Within the minimalist framework this formulation is taken by freezing-based accounts, such as Stepanov (2007) and Truswell (2007). The idea is to reduce the Subject Condition to a freezing effect and to explain the Adjunct Condition in a principally different manner.

Notice that (3) is strictly stronger than (4). The Spell Out theory derives (3), and hence (4). Freezing-based accounts only derive (4). Prima facie one should choose the stronger, i.e., the more falsifiable theory. However, there are a number of empirical challenges that lead researchers to abandon (3) in favor of (4), or to deny the Subject Condition altogether. In the rest of this chapter I will address the two most fundamental empirical challenges and

7 It has been argued that in Russian preverbal subjects are moved out of the verb phrase, while postverbal subjects stay in-situ. See section 3.3.1 for more details.

8 If we are not willing to commit to this assumption, we should read (4) as “All derived specifiers and all derived adjuncts are opaque for extraction” (following a more basic assumption that after a constituent is moved, it is merged to a phrase, not a head). In this version it is still a strictly weaker condition than the one posited by the Spell Out theory, because the Spell Out theory does not draw a distinction between specifiers and adjuncts.
argue that neither of them should make us discard the Subject Condition. In fact, under
closer consideration, these data are most compatible with its strongest form (3).

In what follows I will focus primarily on the Spell Out theory and the freezing-based
accounts. However, I should mention two other approaches. One is the phase-based theory,
proposed by Müller (2010). This theory relies on the fact that subjects are the highest argu-
ments and tries to draw the line between the outmost specifier and all the other arguments
(including inner specifiers, if they exist, and complements). The other approach is the topicality based theory, pursued, for example, by Goldberg (2006). This theory relies on the
fact that subjects tend to be topics and tries to draw the line between topics and all the other
constituents. Neither of these views matches the Russian data, as I will show in section
3.3.2 below. Jurka (2010) reaches the same conclusion for German, Japanese, English and
Serbian.

3.2.2 Challenges to the Subject Condition

It is sometimes claimed that the Subject Condition is “weak”, that it has a number of excep-
tions and that it is, probably, not a part of the grammar. Some exceptions seem to indicate
that the strong version is wrong, but the weak version can be preserved. Other exceptions
seem to be detrimental to the Subject Condition in any formulation.

In this chapter I will discuss two empirical challenges that are mentioned in the literature.
The first challenge is a challenge for the Strong Subject Condition (3), but seems to support
the weaker version in (4). The second challenge creates a problem for both. However, as
we will see in the rest of this chapter, under closer consideration, a full dismissal of the
Subject Condition based on these data is premature.

The first challenge (to be discussed in section 3.3) concerns VP-internal subjects. It
is well known that there are languages, like Russian or German, which allow subjects to
stay in their base position within the verb phrase (see Chomsky, 1981, among others). It is
sometimes claimed that in-situ subjects are transparent (see Stepanov, 2007, among others).
This seems to be a problem for the Strong Subject Condition and to the Spell Out theory,
and points in the direction of the Weak Subject Condition, that is, freezing-based accounts.
However, as Jurka (2010) shows for German, Japanese, Serbian and English, and as Polinsky et al. (2013) show for Russian, not all in-situ subjects are transparent. As we will see in section 3.3, this is only true for those subjects that are base generated as complements. More precisely, only subjects of certain unaccusative verbs are transparent, but not subjects of transitives or unergatives.

Polinsky et al. (2013) show this experimentally, using left branch extraction of kakoj ‘which’. Below I will examine data on possessor extraction, collected by elicitation, which leads to the same conclusions. It seems that in Russian it is the base generated position (the position of the first external Merge) that matters for extraction, and the line lies between complements and all specifiers.

If so, this is clearly not a challenge for the Strong Subject Condition. On the contrary, the full paradigm of subextraction from in-situ arguments speaks definitively in its favor. As we will see below, neither freezing-based, nor phase-based, nor topicality-based accounts can deal with these data. Thus, the first apparent challenge for the Subject Condition, in fact, provides a crucial piece of evidence for its stronger version.

The second apparent challenge (to be discussed in sections 3.4 and 3.5) has to do with discontinuous noun phrases in Colloquial Russian and Balkar. In colloquial speech, Russian can seemingly split noun phrases regardless of their structural position (see Sekerina, 1997, Pereltsvaig, 2008, Bondarenko and Davis, 2020a, among others). “Splitting a noun phrase” means pronouncing different parts of it in different positions within a clause. This is a challenge for all accounts, because discontinuous noun phrases seem to be able to occupy any position (VP-internal or VP-external) and can be base generated specifiers or complements. This is a problem for the Subject Condition in either the weak or the strong form. All of the accounts discussed above fail to capture these data.

However, as argued by Pereltsvaig (2008) and Bondarenko and Davis (2020a), among others, that split noun phrases in Colloquial Russian may not involve genuine subextraction at all. In narrow syntax it is the whole noun phrase that moves and leaves behind a copy, it is never “deconstructed”. The distinguishing property of Colloquial Russian (as opposed to Literary Russian) is that the PF interface may choose to pronounce only a part of the higher and a part of the lower copy. This analysis is called Discontinuous Spell Out, also
known as *distributed deletion* (Fanselow and Čavar, 2002, Pereltsvaig, 2008) or concealed pied-piping (Bondarenko and Davis, 2020a).

In section 3.4 I will reexamine the existing evidence for this theory and discuss its consequences for the Strong Subject Condition. We will see that, even with the possibility of Discontinuous Spell Out, it is still possible to detect Subject Condition effects in Colloquial Russian.

A similar picture arises in Balkar, which presents an even clearer example of Discontinuous Spell Out. In Balkar, nominal subjects are transparent for extraction, while clausal subjects are not. In section 3.5 I will argue that it is the clausal case that should be taken as basic. Transparent nominal subjects constitute an exception. They involve Discontinuous Spell Out, as in Colloquial Russian.

It is important to note that despite surface evidence to the contrary, the Subject Condition still seems to hold even in Balkar and Colloquial Russian. This suggests that the Subject Condition is a part of the core grammar. The reason is that the Subject Condition is unlikely to be easily acquired from the spoken language, because the spoken language can seemingly violate it at the surface structure.

There are several other challenges to the Subject Condition that have arisen in the literature. I will only mention them briefly here and merely point towards various possible responses to them within the Spell Out theory.

First, Ross (1967) claims that in English, extracting a PP argument is possible out of both subject and object noun phrases, while stranding the preposition creates the subject vs. object asymmetry. However, PP fronting in English may be a hanging topic construction, which does not involve genuine movement (see Jurka, 2010:151-159 for discussion).

Second, Chomsky (2008) claims that Exceptionally Case Marked subjects in English (i.e. *Mary wants a student of linguistics to read this book*) are transparent. This, however, is not confirmed by other speakers (see Jurka, 2010:159-162). Chomsky (2008) also claims that subjects of unaccusative verbs in the *there*-construction are transparent. This follows directly from the Subject Condition in both its weak and its strong form, because those subjects are in-situ and are most probably complements.⁹

⁹In section 3.3 I argue that subjects in the locative construction in Russian are base generated as comple-
Third, the Strong Subject Condition does not seem to affect some instances of covert operator movement. One example is relativization in Turkic languages. Turkic relative clauses do not contain a relative pronoun (only a gap). This gap may be inside a base generated specifier. Stepanov (2007, 90) gives some Turkish examples, citing Hankamer and Knecht (1976) and Kural (1993), see also Kornfilt (1997, 58). The same is true for Balkar relativization. However, pronoun-less relative clause formation may not necessarily involve movement. It is possible that these clauses contain a covert operator that is base generated at the top of the clause and binds a null pronoun in the position of the gap. This type of binding may not be restricted by the Subject Condition, although it may be restricted by other syntactic constraints. Alternatively, it could be that these cases involve covert pied-piping of the whole phrase. Since the supposed movement is itself covert, it is hard or even impossible to determine which constituent has undergone it.\footnote{In addition, there is one potential argument against unifying the Subject Condition and the Adjunct Condition, brought up by Stepanov (2007). The argument is that subject islands may show satiation effects, as is argued by Hiramatsu (1999) and Snyder (2000), among a few others. That is, extraction from subjects may become more acceptable over time for some speakers. This does not seem to be true for adjunct islands. Hence the Subject Condition and the Adjunct Condition should not be unified. However, Snyder (2000) finds only a marginally significant satiation effect with the Subject Condition, while Hiramatsu (1999) only considers subjects of unaccusative verbs, which are base generated as complements.}

\section{3.3 Transparent subjects in Literary Russian}

\subsection{3.3.1 Background}

The first apparent challenge to the Strong Subject Condition comes from subjects that remain in-situ. Russian is a good language to study this, because Russian freely allows subjects to stay in their original (external Merge) position.

Indeed, as we can see by the contrast in (5), extracting \textit{skol’ko} ‘how many’ from a postverbal subject (5b) is considerably better than extracting \textit{skol’ko} ‘how many’ from a preverbal one (5a). This seems to undermine the Strong Subject Condition and point in the direction of the Weak Subject Condition.
Before taking a fuller paradigm into consideration, let me introduce a few definitions and make a few preliminary assumptions about the syntax of a simple finite clause in Russian. First and foremost, here and below I will call ‘subject’ the argument that receives nominative case and agrees with the verb.\footnote{Russian oblique subjects will not be considered in this dissertation.}

The basic word order is in Russian is SVO (subject-verb-object). However, OVS is also possible, if the subject is in narrow focus:

\begin{align*}
\textbf{6a.} & \quad \text{ok} \quad \text{Fanni} \quad \text{pročita-l-a} \quad \text{pis’mo} \quad \text{Rozy} \quad \text{SVO} \\
& \quad \text{Fanni.NOM} \quad \text{read-PST-F.SG} \quad \text{letter.ACC} \quad \text{Rosa.GEN} \\
& \quad \text{‘Fanny read Rosa’s letter.’} \\
\end{align*}

\begin{align*}
\textbf{6b.} & \quad \text{ok} \quad \text{pis’mo} \quad \text{Rozy} \quad \text{pročita-l-a} \quad \text{Fanni} \quad \text{OVS} \\
& \quad \text{letter.ACC} \quad \text{Rosa.GEN} \quad \text{read-PST-F.SG} \quad \text{Fanni.NOM} \\
& \quad \text{‘FANNY read Rosa’s letter.’} \\
\end{align*}

In what follows I will assume that the finite verb in Russian is pronounced in a position above the verb phrase, but lower than T (see Bailyn, 2004, Kallestinova, 2007, Gribanova, 2013, 2017, among many others), which I will call X, as is illustrated by (7). The nature of X is not relevant for us here. For clarity one may assume Gribanova’s (2013, 2017) view, according to which X is the head responsible for negative vs. positive polarity.
The syntactic position of the finite verb:

This automatically means that in (6a) the subject has moved out of the verb phrase, and in (6b) the object has moved out of the verb phrase. The remaining two questions are (a) what position do they move to; and (b) whether the other argument stays in-situ.

As for SVO sentences (6a), I will assume that the preverbal subject is in Spec,TP. The simplest assumption about the postverbal object in (6a) is that it stays in-situ.

As for the preverbal object in OVS sentences (6b), following Bailyn (2004) and King (1995), I will assume that it is also in Spec,TP. It may not be higher than C, because in embedded clauses it follows the complementizer. It has to occupy an A-position, because the scrambling operation that creates the OVS order creates new binding possibilities for O (Bailyn, 2004).

As for the postverbal subject in (6b), the simplest assumption is that it stays in-situ. One may think that post-verbal subjects also obligatory move, for example, undergo obligatory rightward extraposition. The reason for this view may be that postverbal subjects are obligatorily focused. But according to either Weak or Strong Subject Condition, this should make all the postverbal subjects opaque for movement, which is not the case, as was shown by (5b).

All these assumptions, taken together, are illustrated by the structures in (8-9).
(8) \[\textit{Fanni} \text{ pročita-l-a} \text{ pis’mo} \text{ Rozy}\]
\[\textit{Fanni.NOM} \text{ read-pst-F.SG} \text{ letter.ACC Rosa.GEN}\]
‘Fanny read Rosa’s letter.’

(9) \[\textit{Pis’mo} \text{ Rozy} \text{ pročita-l-a} \text{ Fanni}\]
\[\textit{letter.ACC Rosa.GEN} \text{ read-pst-F.SG} \text{ Fanni.NOM}\]
‘FANNY read Rosa’s letter.’
In the rest of this section I will discuss which vP-internal and vP-external arguments are transparent for subextraction. The testing ground for this will be relativization of the possessor, replaced by the pronoun čej/čja/čju/čji ‘whose.M/F/N/PL’. Most of the data below replicate Polinsky et al.’s (2013) experiment with extraction of kakoj/kakaja/kakoje/kakije ‘which.M/F/N/PL’.

To make sure that the noun phrase is linearly discontinuous I will only use long-distance extraction, namely, across a subjunctive complementizer čto-by ‘that-SBJ’, which embeds finite clauses under xotet ‘want’ (for more details on long-distance relativization and scrambling in Russian see Testelets, 2006 and Kallestinova, 2007, among others).

3.3.2 Transitive verbs

Let us begin with the two arguments of a transitive verb, like čitat ‘read’. In the basic SVO order we observe a clear contrast: the subject is opaque, but the object is transparent. All the speakers I consulted judged (10a) to be better than (10b):

(10) vot tot čelovek,
 here.is that man
 ‘Here is the man...’

 a. ok č-ju₁ ty xote-₁-a, čto-by ja pročita-l [₁ knigu]₂
 whose.ACC you want-PST-F that-SBJ I read-PST.M book.ACC
 ‘...[whose₁ book]₂ you wanted me to read _2.’

 b. *č-ej₁ ty xote-₁-a, čto-by [₁ brat]₂ pročita-l
 whose.NOM you want-PST-F that-SBJ brother.NOM read-PST.M
 moju knigu
 my.ACC book.ACC
 Intended: ‘...[whose₁ brother]₂ you wanted _2 to read my book.’

This contrast is compatible with both the Strong Subject Condition and the Weak Subject Condition. The object in (10a) is in the complement position and is expected to be transparent. The subject in (10b) differs from the object in (10a) in two respects. Firstly, it is base generated as a specifier (Spec,vP). Secondly, it has moved out of the verb phrase to Spec,TP. Under both accounts it is expected to be opaque.
Crucially, though, we observe the **same contrast** between postverbal subjects and postverbal objects. If anything, the contrast becomes sharper in these cases:

(11) vot tot čelovek,
here.is that person
‘Here is the person...’

a. ok čju ty xote-l-a, čto-by ja pročita-l [₁ knigu]₂
whose.ACC you want-PST-F that-SBJ I read-PST.M book.ACC
‘...[whose₁ book]₂ you wanted me to read _2.’

b. *čej₁ ty xote-l-a, čto-by moju knigu pročita-l [₁ brat]₂
whose.NOM you want-PST-F that-SBJ my.ACC book.ACC read-PST.M
brother.NOM
Intended: ‘...[whose₁ brother]₂ you wanted _2 to read my book.’

This fact is a definitive argument for the Strong Subject Condition and hence the Spell Out theory. Freezing accounts would have to stipulate obligatory string vacuous movement for postverbal subjects in Russian in order to explain (11b).

None of the other two theories outlined in section 3.2 can deal with these data either. The phase-based theory would have problems explaining the degraded status of (11b). According to Müller (2010) it would have to be a case of melting, because the object scrambles across the subject. In his theory this would make the subject transparent, contrary to what we observe.

Topicality-based accounts (Goldberg, 2006) also predict (11b) to be fine. The signature property of postverbal subjects in Russian is that they are narrow focused, which would make them transparent under the topicality-based view, again, contrary to what we observe.

Remember that the Strong Subject Condition also applies to derived specifiers. It predicts freezing effects as a special case. Complements should become opaque, if they are moved. Is it the case in Russian? The answer is yes and no.

According to my data, there is a mild freezing effect, when one compares extraction from postverbal objects with extraction from preverbal ones. The former is judged better on the whole, but the effect seems weak:
If we compare extraction from preverbal objects with extraction from preverbal subjects, we observe a slight contrast in favor of the former:

(13) eto tot samyj čelovek,
this that.NOM same.NOM person.NOM,
‘This is the very same person...’

a. ?čju₁ ty xote-l-a, čto-by moj brat pročita-l [₁
whose.ACC you want-PST-F that-SBJ my.NOM brother.NOM read-PST.M
knigu] book.ACC

b. *čej₁ ty xote-l-a, čto-by [₁ brat] pročita-l
whose.ACC you want-PST-F that-SBJ brother.NOM read-PST.M
moju knigu my.ACC book.ACC
Intended: ‘...[whose₁ brother]₂ you wanted me to read _₂.’

The full paradigm of extraction from arguments of transitive verbs in Russian is schematized in (14). This replicates the results of Polinsky et al.’s (2013) experiment with extraction of kakoj ‘which’ (Polinsky et al., 2013, figures 4 and 5). Jurka’s (2010, 56-71) experiment shows essentially the same pattern for German with the was-für split.
It is clear that (a) these data support the Subject Condition; and (b) that they match the Strong Subject Condition better, than its weaker version. It is the base generated position that matters for subextraction, and the line lies between base generated complements and base generated specifiers.

The only problem is that the Strong Subject Condition does not distinguish between derived and non-derived specifiers. What is unexpected is the intermediate status of the freezing configuration in (14b), which is exemplified by (12b=13a).

Notice, however, that (14b) has two potential derivations. The first option is movement of the object with the subsequent subextraction, which is predicted to be impossible under either the Strong or the Weak Subject Condition. The second option is extraction followed by subsequent remnant movement, which is not ruled out by either the Strong or the Weak Subject Condition.12

If we assume that remnant movement is possible, although somehow costly, we can explain the intermediate status of (14b). It has a legitimate derivation, namely, the one that involves remnant movement. But remnant movement is costly, which explains the degraded status of the example.

The overall prediction of the Spell Out theory is that moved complements should show freezing effects. But it may be possible to “deconstruct” them first with subsequent remnant movement. Consequently, if we do observe a transparent moved complement, the subextraction must have preceded the remnant movement of the complement itself.

12That is, first the possessor čju in (12b=13a) is extracted out of the complement noun phrase. Then the remnant of the noun phrase knigu is moved and tucked in under the possessor. This could happen at the vP level with subsequent movements of the possessor to the left periphery of the CP and of the remnant to Spec,TP.
3.3.3 Unergative vs. unaccusative verbs

Let us now turn to verbs with only one argument. Those split into two major syntactic categories: unergatives and unaccusatives, as was originally proposed by Perlmutter (1978).

This led many researchers to believe that the verb phrase of an unaccusative verb and the verb phrase of an unergative verb have two different structures. The sole argument of an unaccusative verb is base generated in the position of a transitive object. That is, it is merged with the verb itself.

Meanwhile, the sole argument of an unergative verb is base generated in the position of a transitive subject. It is merged with a more complex structure. Some theories (e.g., Hale and Keyser, 1993) assume that this structure consists of the verb and a silent cognate object. Other theories (e.g., Harley, 1996) assume that this structure consists of the verb and a silent functional head, e.g. \(v \). This does not matter for our purposes. What matters is that the structure that the sole argument of an unergative merges with is more complex:

\[
\begin{align*}
\text{Unaccusative:} & \quad \text{Unergative:} \\
\text{VP} \quad \text{VP} \\
\quad \text{V} \quad \text{vP} \\
\quad \text{DP} \quad \text{DP} \\
\text{V} \quad \text{v'} \\
\text{DP} \quad \text{V}
\end{align*}
\]

Which intransitive verbs behave like unaccusatives (15a) and which intransitive verbs behave like unergatives (15b) varies from language to language. But in general intransitive verbs with a sole Theme argument (i.e. ‘die’, ‘fall’, ‘stand’, intransitive ‘break’) tend to be unaccusative (15a). Meanwhile intransitive verbs with a sole Agent argument (i.e. ‘work’, ‘laugh’, intransitive ‘read’) tend to be unergative (15b), see Sorace (2000) for a
cross-linguistic hierarchy of unaccusativity.

For this reason I will focus on small specific classes of verbs in Russian. As unergatives I will consider (a) intransitive agentive activities: *rabotat’ ‘work’, igrat’ ‘play’; (b) emotive verbs: *smejat’sja ‘laugh’, *plakat’ ‘cry’; and (c) manner verbs with a dropped object: *čitat’ ‘read’, *pisat’ ‘write’.13

As unaccusatives I will only consider positional verbs (*sidet’ ‘sit’, *stojat’ ‘stand’, *naxodit’sja ‘find.oneself’) and the locative *byt’ ‘be’. For discussion of some other unaccusative verbs see the next section.

Russian offers a whole variety of unaccusativity diagnostics (see Babby, 1980, Pesetsky, 1982, Babyonyshev et al., 2001, Harves, 2002 and many others). Unaccusativity diagnostics are syntactic and semantic phenomena that distinguish between unaccusative subjects and transitive objects on the one hand, and unergative subjects and transitive subjects on the other. In what follows I will only consider two such diagnostics.

In the context of a clausal negation Russian can use the genitive case instead of the nominative or accusative. This is only possible for internal arguments of transitive verbs and sole arguments of unaccusatives.

It should be noted that this restriction may only be true for bare genitive noun phrases, like *ljudej ‘people.Gen’. At least according to my own judgments, genitive noun phrases with a negative concord determiner, like *ni-kakix ljudej ‘NCl-which.Gen people.Gen’, have a broader distribution. To avoid that I will only use genitive of negation on bare noun phrases. Note also that when a nominative subject is replaced with genitive of negation, the agreement on the verb is changed to default (third person, neuter, singular).

Examples in (16-17) show that genitive of negation is possible with internal arguments, but not with external ones.

13For the manner vs. result distinction among transitive verbs see Levin and Hovav (1995), among others.
(16) Internal arguments of transitive verbs:

a. \(\text{ok Volodja ne čita-l knigi}\)
 \(\text{Volodya.NOM NEG read-PST.M books.ACC}\)

b. \(\text{ok Volodya ne čita-l knig}\)
 \(\text{Volodya.NOM NEG read-PST.M books.GEN}\)

‘Volodya didn’t read any books.’

(17) External arguments of transitive verbs:

a. \(\text{ok moju knigu ne čita-l-i ljudi}\)
 \(\text{my.ACC book.ACC NEG read-PST-PL people.NOM}\)

b. * \(\text{moju knigu ne čita-l-o ljudej}\)
 \(\text{my.ACC book.ACC NEG read-PST-N people.GEN}\)

‘No people read my book.’

It is also possible for the sole argument of positional verbs and the locative ‘be’:

(18) a. Locative ‘be’:

\(\text{ok v stolovoj ne by-l-o škol’nikov}\)
 \(\text{in the cafeteria NEG be-PST-N schoolkids.GEN}\)

‘There were no children playing in the courtyard.’

b. Positional verbs:

\(\text{ok v našej biblioteke ne stoja-l-o novyx škafov}\)
 \(\text{in our library NEG stand-PST-N new.GEN bookcases.GEN}\)

‘There were no new bookcases in our library.’

Genitive of negation is impossible for the sole argument of agentive activities (19a), emotive verbs (19b), or manner verbs with a dropped object (19c).

(19) a. Intransitive agentive activities:

* \(\text{vo dvore ne igra-l-o detej}\)
 \(\text{in the courtyard NEG play-PST-N children.GEN}\)

Intended: ‘There were no children playing in the courtyard.’
b. Emotive verbs:

* na peremene ne smeja-l-o-s’ škol’nikov
during the break NEG laugh-PST-N-REFL schoolkids.GEN
Intended: ‘There were no schoolkids laughing during the break.’

c. Manner verbs with a dropped object:

* v našej biblioteke ne čita-l-o vzroslyx učenikov
in our library NEG read-PST-N adult.GEN students.GEN
Intended: ‘There were no adult students reading in our library.’

The simplest description of these data is that the syntactic domain where genitive of negation may be assigned is VP, not vP, see (15). This explains, why it can only be assigned to internal arguments of transitives and sole arguments of unaccusatives. For more specific proposals see Pesetsky (1982), Paducheva (1992), Harves (2002), Borschev and Partee (1998, 2002) and many others.

The second diagnostic is the scope of the distributive pere-, originally proposed by Borik (1995) and Schoorlemmer (1995).

Many Russian verbs may take a distributive prefix pere-, which requires one of the arguments to be plural and forces a distributive universal interpretation of it. For an analysis of pere- see, e.g., Babko-Malaya (1999), and on its scope specifically see Tatevosov (2015b).

The distributive pere- may target the internal argument of a transitive verb or the sole argument of an unaccusative verb, but not the external argument of a transitive or the sole argument of an unergative (see, e.g., Tatevosov, 2015b).

Distributive pere- may “range over” internal, but not external arguments:

(20) a. Internal arguments of transitive verbs:

ok Volodja pere-čita-l vse knigi v biblioteke
Volodya.NOM DIST-read-PST.M all.ACC books.ACC in library
‘Volodya has read all the books in the library.’
b. External arguments of transitive verbs:

* moju zametku v gazete pere-čita-l-i vse sotrudniki
 my.ACC article.ACC in newspaper DIST-read-PST-PL all.NOM employees.NOM
 našego instituta
 our.GEN institute.GEN

Intended: ‘All the employees of our institute have read my article in the newspaper.’

The sentence in (20b) is acceptable with a different interpretation of pere-. Namely, with repetitive pere- that roughly means ‘again’. If we fix the reading under which the employees read the speaker’s article only once, the sentence is not acceptable.

Distributive pere- may “range over” sole arguments of unaccusatives:

(21) a. Locative ‘be’:

 ok v etoj biblioteke pere-byva-l-i vse russkie revoljutsionery
 in this library DIST-be-PST-PL all.NOM Russian revolutionaries
 ‘All Russian revolutionaries have been in this library.’

b. Positional verbs:

 ok na etom trone pere-side-l-i vse russkie tsari
 on this throne DIST-sit-PST-PL all.NOM Russian.NOM tsars.NOM
 ‘All Russian tsars have sat on this throne.’

But it may not “range over” sole arguments of unergatives:

(22) a. Intransitive agentive activities:

 * v etom dvore pere-igra-l-i vse deti s našega rajona
 in this courtyard DIST-play-PST-PL all.NOM children.NOM from our district
 Intended: ‘All the children from our district have played in this courtyard.’

b. Emotive verbs:

 * nad mojej šutkoj pere-smeja-l-i-s’ vse sotrudniki našego
 at my joke DIST-laugh-PST-PL-REFL all.NOM employees.NOM our.GEN
 instituta
 institute.GEN

 Intended: ‘All the employees of our instituted laughed at my joke.’
c. Manner verbs with a dropped object:

\[
\begin{array}{c}
\text{v našej biblioteke} \ \text{pere-čita-l-i} \ \text{vse} \ \text{vedušije} \ \text{učonyje} \\
in \text{our library} \ \text{DIST-read-PST-PL} \ \text{all} \ \text{leading.NOM} \ \text{scientists.NOM}
\end{array}
\]

MGU

MSU.GEN

Intended: ‘All the leading scientists of Moscow State University have read in this library.’

As with genitive of negation, it seems that the scope of \textit{pere-} may only include \textit{VP}, not \textit{vP} (see Tatevosov, 2015b for a specific proposal). Notice that we may not simply assume that distributive \textit{pere-} is incompatible with \textit{v}, since it is fine with an agentive transitive verb (20a).

The syntactic structures for unaccusative and unergative verb phrases are repeated in (23). The sole argument of an unaccusative is base generated as a complement, the sole argument of an unergative is base generated as a specifier, .

(23)
\begin{align*}
\text{a. Unaccusative:} & \quad \text{b. Unergative:} \\
\text{VP} & \quad \text{vP} \\
\text{V} & \quad \text{v} \\
\text{DP} & \quad \text{DP} \\
& \quad \text{v'}
\end{align*}

Given these assumptions, the Strong Subject Condition predicts in-situ unaccusative subjects to be transparent, and in-situ unergative subjects to be opaque. The Weak Subject Condition predicts no such difference. Both types of subjects should be transparent while in-situ. The results support the Strong Subject Condition.

The sole arguments of the locative ‘be’ and positional verbs are transparent:

(24)
\begin{align*}
\text{a. Locative ‘be’:} & \quad \text{b. Positional verb:} \\
\text{ok} & \quad \text{person.NOM} \\
\text{...čelovek}^{14} & \quad \text{whose.NOM you want-PST-F} \\
\text{čja} & \quad \text{that-SBJ on our display} \\
\text{ty} & \quad \text{be-PST-F} \\
xote-l-a & \quad \text{by-l-a} \\
čto-by & \quad \text{on our display} \\
nas na vitrine & \quad \text{by-l-a} \\
you wanted & \quad \text{the person [whose_1 book_2]} \\
nas na vitrine & \quad \text{you wanted}_2 \\
you wanted & \quad \text{to be on our display}.
\end{align*}

126
b. Positional verbs:

ok ...čelovek čja ty xote-l-a čto-by u nas na vitrine leža-l-a
person.NOM whose.NOM you want-PST-F that-SBJ on our display lie-PST-F

[_[1 kniga]2
book.NOM

‘...the person [whose1 book]2 you wanted 2 to lie on our display.’

The sole arguments of intransitive agentive activities, emotive verbs and manner verbs with a dropped object are opaque:

(25) a. Intransitive agentive activities:

* ...čelovek čej ty xote-l-a čto-by u nas v kafe rabota-l [_[1
person.NOM whose.NOM you want-PST-F that-SBJ in our cafe work-PST.M
brat]2
brother.NOM

Intended: ‘...the person [whose1 brother]2 you wanted 2 to work in our store.’

b. Emotive verbs:

* ...čelovek čej ty xote-l-a čto-by nad šutkoj posmeja-l-sja [_[1 brat]2
person.NOM whose.NOM you want-PST-F that-SBJ at joke laugh-PST.M-REFL brother.NOM

Intended: ‘...the person [whose1 brother]2 you wanted 2 to laugh at the joke.’

c. Manner verbs with a dropped object:

* ...čelovek čej ty xote-l-a čto-by u nas v kabinete čita-l
person.NOM whose.NOM you want-PST-F that-SBJ at my joke read-PST.M

[_[1 brat]2
brother.NOM

Intended: ‘...the person [whose1 brother]2 you wanted 2 to read in our office.’

Extraction in (24) is reliably judged more acceptable than extraction in (25). These findings, again, replicate the experimental results of Polinsky et al. (2013) with extraction

14All Russian examples with extraction were tested with respect to relativization. The main sentence was always of the form ‘this is the person, whose...’. For the purposes of space I will henceforth omit the beginning of the sentence, only providing the head noun ‘person’ with a relative clause.
of kakoj ‘which’. The same has been confirmed experimentally for the German was-für split (Jurka, 2010, 86-97).

These data are naturally captured by the Strong Subject Condition without any additional stipulations. If we wanted to adopt the Weak Subject Condition, we would not be able to distinguish between different types of subjects in-situ, or else we would be forced to assume a string vacuous movement that would be obligatory and apply only to external arguments. This is a possible theory, of course, but given that the Strong Subject Condition is prima facie the strongest alternative and captures the data without additional stipulations, there seems to be no reason to advocate for the weaker option.

Interestingly, given the Strong Subject Condition, the possibility of subextraction turns into yet another unaccusativity diagnostic. It seems to target the same set of arguments. However, as we will see in the next section, not all unaccusative subjects seem to be equally transparent.

3.3.4 Among unaccusatives

Not all unaccusative subjects are equally transparent. Extraction from subjects of positional verbs and locative ‘be’ is possible, but we find a different picture with verbs of directed motion like prixodit’ ‘come’ or priežat’ ‘arrive.driving’.

(26)

a. Object of a transitive:

 ok ...čelovek čji₁ ty xote-l-a čto-by ja perevodi-l [₁ memuary]₂
 person.NOM whose.NOM you want-PST-F that-SBJ I translate-PST.M
 memoir.NOM
 ‘...the person [whose₁ memoir]₂ you wanted me to translate.’

b. Subject of a positional verb:

 ok ...čelovek čja₁ ty xote-l-a čto-by u nas na vitrine leža-l-a
 person.NOM whose.NOM you want-PST-F that-SBJ on our display lie-PST-F
 [₁ kniga]₂
 book.NOM
 ‘...the person [whose₁ book]₂ you wanted to lie on our display.’
Subject of a verb of directed motion:

* ...čelovek čej ty xote-l-a čto-by k nam domoj prišë-l
 person.NOM whose.NOM you want-PST-F that-SBJ to our house come-PST.M

[1 drug]₂
friend.NOM

Intended: ‘...the person [whose₁ friend]₂ you wanted _₂ to come to our house.’

Unlike the data from the previous section, the paradigm in (26) has not yet been studied in an experimental setting, but according to the speakers I have consulted, (26a) and (26b) are relatively on a par, while (26c) is consistently judged worse.

What is the difference between subjects of positional verbs and subjects of verbs of directed motion? Both types of verbs have two arguments (27). Both types of verbs are unaccusative, given the diagnostics introduced above.¹⁵

(27)
 a. Positional verbs (*ležat* ‘lie’, *stojat* ‘stand’, *naxodit’sja* ‘find.oneself’):
<Location (PP), Theme (DP)>.
 b. Directed motion verbs (*prixodit* ‘come’, *prijezžat* ‘arrive.driving’):
<Goal (PP), Theme (DP)>.

However, the verb phrase structure for these two verb types in Russian may be different. There is some evidence that for positional verbs the Theme DP can be base-generated lower than the Location PP, as in (28a), see also Borschev and Partee’s (2002) perspectival structure for locative ‘be’. For directed motion verbs the Theme DP has to be base-generated higher than the Goal PP (28b).

¹⁵Verbs of directed motion definitely allow genitive subjects under negation (confirmed by elicitation), and, at least according to my intuition, they allow for distributive *pere*- to target their subject: K zabolóvšej Nade *perepříxdili vsë člëny revolútsyonnogo kružka* ‘All the members of the revolutionary group came (at one time or another) to the sick Nadya’.
If the structures in (28) are correct, then the contrast in (26) follows naturally from the Strong Subject Condition. The Theme of a positional verb is base generated as a complement, while the Theme of a verb of directed motion is base generated as a specifier.

At the same time the Weak Subject Condition faces difficulties here. We need to stipulate that not only external arguments undergo an obligatory string vacuous movement, but, in fact, all specifiers. Which makes the weak version indistinguishably close to the strong one. Again, we see that, at least for Russian, it is the base generated structural position (specifier vs. complement) that matters for subextraction. This goes in line with the Subject Condition in its strong form.

There are at least two independent arguments for the structures in (28). The first argument is reconstruction for Binding Condition C. Russian local scrambling, i.e., the operation that moves the argument to the preverbal position, obligatorily reconstructs for Condition C (see e.g. Bailyn, 2004). This means that we could use Condition C to probe the base generated positions of arguments.
Strikingly, there seems to be a sharp contrast in (29).

(29) a. [v kabinete FeliksajLoc naxodi-l-sja on1Theme
in office.LOC Felix.GEN find.oneself-PST.M-REFL he himself
‘In Felix1’s office was he1 (himself).’

b. *[v dom AnnyjGoal prir-l-a ona1Theme
to home.ACC Anna.GEN come-PST-F she herself
Intended: ‘To Anna1’s house came she1 (herself).’

This contrast is easily explainable, if we assume the structures in (28). For positional verbs, as in (29a), the Location argument is (or at least can be) base generated above the Theme argument. There is no position below the Theme, where it would have to reconstruct to and cause a Condition C violation.

For verbs of directed motion, as in (29b), the Goal argument is base generated below the Theme argument. There is a position below the Theme, where it has to reconstruct to, which causes a Condition C violation.

The second argument is binding of possessive reflexives. There is a limited set of cases when the reflexive possessive pronoun svoj ‘self’s’ can modify a nominative argument and still have a bound interpretation. In particular, it could be bound by a PP, although to a limited extent (see e.g. Paducheva, 1974, 235 and 1983 for discussion). That is, only certain PPs allow for this kind of binding.

Note that local scrambling in Russian does not obey Weak Crossover, that is, it creates new binding possibilities (Bailyn, 2004).\footnote{This is a slightly puzzling profile for movement. It obligatory reconstructs for Condition C, but also creates new binding possibilities. However, proposing a principled account for this type of movement lies beyond the scope of this dissertation. What matters for us here is that this movement shows both properties.} This means that a quantified PP that linearly precedes a nominative DP with svoj ‘self’s’ can always bind it (provided this type of binding is possible for this PP). This is regardless of the base generated positions of the PP or the nominative DP in question.

Note also that Russian local scrambling may reconstruct for quantifier binding. That is, a pronoun may be reconstructed in order to be bound (Bailyn, 2004). This means that a nominative DP with svoj ‘self’s’ can also be bound by a quantified PP that follows it, but
only if this DP is base generated below this PP (again, provided that this type of binding is possible for the PP in the first place).

We find a difference between positional verbs (at least, the locative ‘be’) and verbs of directed motion. The sentence in (30a) is consistently judged better than the one in (30b).

(30) a. ok [svoj1 vrač]Theme by-l [v každom gorode1]Loc
 self.NOM doctor.NOM be-PST.M in every.LOC cityLOC
 ‘Every city1 had its1 own doctor.’
 Lit.: ‘Its1 own doctor was in every city1.’

 b. * [svoj1 vrač]Theme priexa-l [v každyj gorod1]Goal
 self.NOM doctor.NOM come-PST-M in every.ACC cityACC
 Intended: ‘Every city1 was visited by its1 own doctor.’
 Lit.: ‘Its1 own doctor came to every city1.’

Again, the structures in (28) naturally explain the contrast in (30). For positional verbs (30a) the Theme may reconstruct to a position lower than the Location and may be bound there. For verbs of directed motion (30b) the Theme may not reconstruct to a position lower than the Goal, because there is no such position.

It should be noted that (30) could alternatively merely show us an idiosyncratic difference between v ‘in’ that takes a locative DP and v ‘in’ that takes an accusative DP. Since not all prepositions allow their argument DPs to bind pronouns outside their PPs, there might be just two different versions of v ‘in’ in Russian.

This alternative can be dismissed on the grounds of (31). To my ear neither (31a) nor (31b) is significantly degraded. This means that both PPs, the Location PP and the Goal PP, can in principle bind the pronoun svoj inside the subject. But crucially, the Goal PP may only do so, if it scrambles above the subject, compare (30b) vs. (31b). Meanwhile the Location PP can also do so in-situ, see (30a).

(31) a. ok [v každom gorode1]Loc by-l [svoj1 vrač]Theme
 in every.LOC cityLOC be-PST.M self.NOM doctor.NOM
 ‘Every city1 had its1 own doctor.’
 (my judgment)

 b. * [v každyj gorod1]Goal priexa-l [svoj1 vrač]Theme
 in every.ACC cityACC come-PST-M self.NOM doctor.NOM
 ‘Every city1 was visited by its1 own doctor.’
 (my judgment)
3.3.5 Summary

In this section we have seen that subextraction from a noun phrase in Russian is sensitive to the base generated position of this noun phrase.

Subjects of transitive verbs, unergatives and directed motion verbs are opaque even when they are in-situ. Meanwhile, objects of transitive verbs, subjects of positional verbs and locative ‘be’ are transparent when they are in-situ. This split is best captured by the complement vs. specifier distinction. The general picture, thus, supports the Subject Condition in its strongest form.17

We have also observed a freezing effect with preverbal objects of transitive verbs. This effect seems to be weaker than expected under the Strong Subject Condition. But this may be due to the possibility of an alternative derivation involving subextraction followed by remnant movement.

In colloquial speech all the contrasts discussed above become somewhat blurred. This applies to noun phrases in all positions, in-situ or not. This means that either the Subject Condition is simply not a part of the grammar of Colloquial Russian, or that Colloquial Russian can ameliorate its effects due to phenomena not tied to subextraction. In the next section I will try to argue for the latter option. The specific hypothesis that I will argue for is that Colloquial Russian, unlike Literary Russian, can spell out a noun phrase discontinuously in two positions at the same time. However, in narrow syntax the noun phrase in question is never truly deconstructed. This means that the Subject Condition is still enforced, even though its effects become less detectable. Crucially, we will see that even in Colloquial Russian there is a distinction between discontinuous specifiers and discontinuous complements, which can only be explained if the Subject Condition is still a part of the Colloquial Russian grammar.

17 Quite a few of Stepanov’s (2007) examples from other languages which seem to be problematic for the Strong Subject Condition involve subjects that are most probably base generated as complements, see Stepanov’s (19), (21), (25), (27) (Stepanov, 2007, 89-91). Which makes them not genuine counterexamples.
3.4 DSO in Colloquial Russian

3.4.1 Literary vs. Colloquial

It has been observed in the literature that Colloquial Russian can split noun phrases more freely than Literary Russian (see Zemskaya, 1973, 380-393, Sekerina, 1997 and Pereltsvaig, 2008 among others).\(^{18}\)

In particular, Colloquial Russian can split subjects of transitive verbs (32). In constructions like this the linearly first part of the noun phrase has to be the Contrastive Topic (see Pereltsvaig, 2008). It should be noted that the possibility of a split is not influenced by the surface or the base position of the noun phrase in question. This is problematic for all theories of the Subject Condition discussed above, in particular, for both the Strong and the Weak Subject Condition.

\((32)\) \(\begin{array}{l}
\text{ok nekotoryeS daże do vos’mi turov dela-j-ut balerinyS some even up.to eight tours do-PRS-3PL ballerinas ‘SOME ballerinasS do even up to EIGHT tours.’}
\end{array}\)

(Zemskaya, 1973, 387)

Obviously, this directly contradicts the observations made in the previous section. Indeed, sometimes the speakers I have consulted did not perceive the contrasts reported above. Crucially, they describe sentences like (32) as “acceptable in colloquial speech” (see also the discussion in Sekerina, 1997, 295-296).

It has long been established in the literature that there are a number of systematic grammatical differences between Literary and Colloquial Russian, (see Zemskaya, 1973 and much subsequent work). The ability to split noun phrases regardless of their structural position is among them.

Literary Russian can split only those noun phrases that are base generated as complements (see the previous section). Colloquial Russian can split all noun phrases regardless of their base-generated or derived position. Consequently, if the speakers switch register to Colloquial Russian, they allow examples like (32).

\(^{18}\)The same is true for Old Russian (Zaliznyak, 2004, 189-190) and poetic Russian.
For the present purposes I will treat Colloquial and Literary Russian as two dialects of the same language. From this point of view, we are dealing with cross-linguistic variation. The question is what kind of variation. The simplest option is to assume that the Subject Condition is not universal. Literary Russian obeys it, while Colloquial Russian does not.

But that is only the right conclusion if sentences like (32) in Colloquial Russian involve genuine subextraction. More precisely, if the discontinuous noun phrase in (32) is indeed deconstructed in syntax, then it is a Subject Condition violation. If the noun phrase is never deconstructed in syntax, then (32) is not a counterexample to the Subject Condition.

There are independent reasons to believe the latter. Pereltsvaig (2008) and Bondarenko and Davis (2020a), among a few others, argue that split noun phrases in Colloquial Russian do not split in narrow syntax. The proposed analyses include Discontinuous Spell Out (henceforth DSO), concealed pied-piping and distributed deletion (see Fanselow and Ćavar, 2002). All of these theories share the crucial assumption that the noun phrase is never truly subextracted from. In this chapter I will take the DSO view for concreteness. But it should be noted that any analysis that does not deconstruct subject noun phrases is compatible with the Spell Out theory.

The idea behind the DSO analysis is that in cases like (32) it is the whole noun phrase that moves to the left periphery in narrow syntax. At the PF interface only a part of the noun phrase is pronounced in the higher position (nekotorye), and the other part is pronounced in the lower position (baleriny).

If this is correct, then the difference between Literary and Colloquial Russian is not in that only the former obeys the Subject Condition, but in that only the latter allows DSO. Colloquial, but not Literary, Russian can distributively pronounce multiple copies of a moved constituent. Consequently, by providing an alternative parse for examples otherwise parsable as subextraction, Colloquial Russian offers a successful analysis for all strings that would otherwise have to be parsed as violations of the Subject Condition. This means that the real difference between Colloquial and Literary Russian lies at the PF interface, not in narrow syntax.

The remainder of section 3.4 is dedicated to a more detailed discussion of this proposal and its consequences for the Spell Out theory. In section 3.4.2 I will reconsider some of the
arguments against the “deconstruction” analysis of examples like (32). In section 3.4.3 I will outline the DSO account. In section 3.4.4 I will point out certain distinctive properties associated with discontinuously spelled out phrases. In section 3.4.5 I will argue that even in languages that allow DSO, like Colloquial Russian, it is still possible to detect certain effects of the Subject Condition. In Colloquial Russian specifiers are split less freely than complements. This means that the Subject Condition is still enforced, even if its effects are obscured.

3.4.2 Arguments against syntactic deconstruction

Consider again the following:

(33) ok nekotoryeS daže do vos’mi turov dela-j-ut balerinyS some even up.to eight tours do-PRS-3PL ballerinas ‘SOME ballerinasS do even up to EIGHT tours.’

(Zemskaya, 1973, 387)

There are at least four ways of analyzing a split noun phrase like the one in (33), two of which involve movement that violates the Subject Condition. The first option is direct subextraction, illustrated by (34). The modifier nekotoryje ‘some’ moves out of the noun phrase to the Contrastive Topic position. This movement, obviously, violates the Subject Condition.

(34) Subextraction:

The second option is remnant movement, illustrated by (35). First, the noun baleriny ‘ballerinas’ moves out of its noun phrase and leaves a remnant nekotorye ‘some’.

136
movement violates the Subject Condition. Second, the remnant of the noun phrase moves to the Contrastive Topic position. This is an account developed by Franks and Progovac (1994) and Sekerina (1997), among others.

(35) Remnant movement:

```
TopP
  DP_SUBJ
    someTop
      ... ...
      ballerinas_1
```

The third option is covert movement followed by Late Merge, illustrated by (36). In its base position, the noun phrase in question consists only of the head noun: *baleriny*. It moves covertly to the Contrastive Topic position, where the adjective *nekotorye* is attached to it by Late Merge. This derivation does not violate the Subject Condition. The Late Merge analysis was originally proposed for English relative clause extraposition by Fox (2002).

(36) Late Merge:

```
TopP
  DP_SUBJ
    someTop
      ballerinas
```

The fourth option is Discontinuous Spell Out, illustrated by (37). For Russian, this analysis was first proposed by Pereltsvaig (2008), building on Fanselow and Čavar (2002).
Under the DSO view the noun phrase is externally merged as a whole (nekotorye baleriny). It then moves to the Contrastive Topic position, because a part of it (namely, nekotorye) is the Contrastive Topic. The rest of the noun phrase is pied-piped. No Subject Condition violation is created. The noun phrase leaves behind an identical copy nekotorye baleriny. In Colloquial Russian the PF interface chooses to pronounce a part of the higher copy (the Contrastive Topic nekotorye) and a part of the lower copy (the pied-piped part baleriny). In other words, the pied-piped part is “reconstructed” to the base position at PF. The distributed deletion and the concealed pied-piping accounts, discussed and developed by Fanselow and Ćavar (2002) and Bondarenko and Davis (2020a), are different formulations of the same theory.

(37) Discontinuous Spell Out (or DSO):

The first two proposals deconstruct the noun phrase in narrow syntax and, thus, create a Subject Condition violation. The last two analyses do not. In the remainder of this section I discuss three arguments against the first two options, and in favor of the DSO view. I will not consider the Late Merge account in detail here. All of the arguments presented below suggest that in split phrase constructions in Colloquial Russian it is the whole phrase that moves in narrow syntax.

Pereltsvaig (2008) offers two arguments in favor of DSO. Her first argument has to do

19I believe that the Late Merge account can derive most of the data, but it is unclear how it can deal with split PPs, as in (1). It could be that both the preposition and the adjective are late merged in (1). But notice that the head noun vlasti ‘regime.GEN’ bears a case assigned to it by the preposition (genitive). In fact, it is not licensed in this configuration without a preposition: *on vystupal vlasti ‘he demonstrated regime.GEN’. But under the Late Merge account this is the base generated structure for (1). It is not clear how a case assigning and nominal licensing P head can be merged late without additional stipulations.
with **weak island effects**. Weak islands (wh-island, negative island, factive island) do not allow non-argument extraction. It should not be possible to move a noun phrase modifier out of a weak island. But in Colloquial Russian, noun phrases can be split across weak island boundaries.

For example, the clausal complement of the factive verb *žalet* ‘regret’ is a weak island. Extracting a noun phrase argument out of it is fine (38a); extracting an adverb is worse, at least to my ear (38b).

(38)
\[\text{a. } \text{ок} \ nesvežu\ ikru \ \text{ты } \text{žale-eš, } \text{что } pro \ poe-l?} \]
\[\text{past.its.best.ACC caviar.ACC you regret-prs.2sg that you eat-pst.m} \]
\[\text{Lit.: ‘Do you regret eating NOT-SO-FRESH CAVIAR?’} \]
\[\text{‘Is it the fact that it was not-so-fresh caviar that you regret?’} \]
\[\text{(my judgment)} \]

\[\text{b. } \text{včera } \text{ты } \text{žale-eš, } \text{что } pro \ poe-l \ nesvežu\ ikru?} \]
\[\text{yesterday you regret-prs.2sg that you eat-pst.m past.its.best.acc caviar.acc} \]
\[\text{Intended: ‘Do you regret eating not-so-fresh caviar YESTERDAY?’} \]
\[\text{‘Is it that fact that your eating was yesterday that you regret?’} \]
\[\text{(my judgment)} \]

At the same time, splitting an adjective from a noun is definitely possible, as shown in (39).

(39)
\[\text{ок} \ nesvežu \ \text{ты } \text{žale-eš, } \text{что } pro \ poe-l \ ikru?} \]
\[\text{past.its.best.acc you regret-prs.2sg that you eat-pst.m caviar.acc} \]
\[\text{Lit.: ‘Do you regret eating NOT-SO-FRESH caviar?’} \]
\[\text{‘Is it the fact that the caviar was not-so-fresh that you regret?’} \]
\[\text{(Pereltsvaig, 2008, 11)} \]

In the context of a weak island we expect adjectives and adverbs to behave the same, both being non-arguments. This suggests that in (39) it is not the adjective that moves, but rather the whole noun phrase.

\[\text{1} \ nesvežu \ \text{их} \ \text{žale-eš, } \text{что } pro \ poe-l \ ikru?} \]
\[\text{past.its.best.acc you regret-prs.2sg that you eat-pst.m caviar.acc} \]
\[\text{Lit.: ‘Do you regret eating NOT-SO-FRESH caviar?’} \]
\[\text{‘Is it the fact that the caviar was not-so-fresh that you regret?’} \]
\[\text{(Pereltsvaig, 2008, 9)} \]

\[\text{139} \]
Furthermore, it is also possible to split non-argument PPs in Colloquial Russian, but not across a factive island boundary (at least, to my ear):

(40) ?? v prošlyj ty žale-eš’, četo pro poe-l nesvežuju ikru
 on last you regret-PRES.2SG that you eat-PST.M past.its.best.ACC caviar.ACC
 ponedel’nik?
 Monday.ACC

Intended: ‘Do you regret eating not-so-fresh caviar on LAST Monday?’
‘Is it that fact that your eating was on LAST Monday that you regret?’

(my judgment)

These contrasts are expected if we assume that what moves in (39) and in (40) is the whole phrase, i.e. the whole DP and the whole PP respectively. In the PP case it is a non-argument extraction, hence (40) has the same status as (38b). In the DP case it is an argument extraction, hence (39) has the same status as (38a). The DSO theory assumes exactly that.

Weak island effects observed in (38-40) constitute a strong argument against direct subextraction, but not against the remnant movement analysis. The direct subextraction analysis incorrectly rules out both sentences in (39) and (40), since both would involve a non-argument movement. But the remnant movement account successfully predicts the contrast. It is the remnant DP that moves in (39) and the remnant PP in (40).

The second argument from Pereltsvaig (2008) has to do with non-constituent splits. In Colloquial Russian the part that splits from a noun phrase does not have to be a constituent:

(41) ok protiv sovetskoy on vystupa-l vlasti
 against Soviet.GEN he demonstrate-PST.M regime.GEN

‘It is against the SOVIET regime that he demonstrated.’ (Pereltsvaig, 2008, 9)

Assuming that non-constituents may not be moved, this is an argument against the direct subextraction account. The sentence in (41) can, of course, be generated by remnant movement. The noun vlasti ‘regime.GEN’ first moves out of the PP, and then the remnant PP moves to the left periphery.

However, neither part of a split phrase has to be a constituent:
Neither odna očen’ ‘one very’ nor elegantnaja rubaška ‘elegant shirt’ are constituents. There is no straightforward way to derive (42) under either the direct subextraction analysis or the remnant movement analysis.

Meanwhile, the DSO view does not have any problems with (41-42). The whole PP moves in (41) and the whole DP moves in (42). There is no a priori restriction that would force the pronounced part of the higher or the lower copy to be a constituent.

One other argument for the DSO account that I will mention briefly here comes from Bondarenko and Davis (2020a). This argument is based on licensing parasitic gaps.

Bondarenko and Davis (2020a) report that a gap inside an adjunct island which is co-indexed with the object in the main clause is not acceptable if the object stays in-situ (43a). At the same time, a moved object licenses the gap (43b). This pair of sentences establishes a typical parasitic gap pattern.

(43) a. *Vasja voznenavide-l [etot podarok], [ne obnaruživ pg pod V.NOM hate-PST.M this.ACC gift.ACC NEG discover.CONV under ėlkoj] pine.tree
 ‘Vasya hated this gift, not having found pg under the New Year tree.’

b. ok [kakoj podarok] Vasja voznenavide-l _, [ne obnaruživ pg pod which.ACC gift.ACC V.NOM hate-PST.M NEG discover.CONV under ėlkoj]?
 pine.tree
 ‘Which gift did Vasya hate _, not having found pg under the New Year tree?’

c. ok kakoj Vasja voznenavide-l podarok, [ne obnaruživ pg pod which.ACC V.NOM hate-PST.M gift.ACC NEG discover.CONV under ėlkoj]?
 pine.tree
 ‘Which gift did Vasya hate _, not having found pg under the New Year tree?’

(Bondarenko and Davis, 2020a, 13-14)
Crucially, splitting the object noun phrase also licenses the gap, see (43c). Yet again we see that a split noun phrase behaves “as if” the whole noun phrase has been moved. Importantly, the gap is co-indexed with the whole phrase, not just with the split element, in this case, the determiner *kakoj* ‘which’ (for more discussion see Bondarenko and Davis, 2020a).

None of these three arguments is definitive, but, taken together, they suggest that split phrases in Colloquial Russian are only split at PF. In narrow syntax it is the whole phrase moves from one position to the other.

3.4.3 Discontinuous Spell Out

A fully developed theory of Discontinuous Spell Out lies beyond the scope of this chapter, but in what follows I will give an outline of how such a theory may work and what properties DSO derivations may have. Consider the basic example again, repeated below.

(44) óm *nekotorye* daže do vos’mi turov dela-j-ut *baleriny*
some.NOM even up.to eight.GEN tours.GEN do-PRS-3PL ballerinas.NOM
‘SOME ballerinas do even up to EIGHT tours.’ (Zemskaya, 1973, 387)

The core idea of the DSO view, as stated above, is that the whole noun phrase *nekotorye* *baleriny* moves to the Contrastive Topic position, because a part of it is the Contrastive Topic (the adjective *nekotorye*). The rest of the noun phrase is pied-piped, so no Subject Condition violation is created:

(45) Discontinuous Spell Out (or DSO):
When dealing with a structure that contains multiple copies of the same element, the PF interface has to choose which part of which copy to pronounce. Usually it chooses between only two options: either to pronounce all of the higher copy and none of the lower one (overt movement); or to pronounce all of the lower copy and none of the higher one (covert movement). This is, perhaps, due to the PF interface trying to preserve overt adjacency relations between the terminals of the moved constituent, possibly, because a moved constituent had been spelled out before it was merged into the matrix structure, and thus, the said adjacency relations have already been established.

However, in some languages, like Colloquial Russian, the PF interface may choose to pronounce only a part of the higher copy (namely, the Contrastive Topic: *nekotorye*) and a part of the lower copy (namely, the part that is not the Contrastive Topic and has merely been pied-piped: *baleriny*). The reason may be that in Colloquial Russian the PF interface prioritizes pronouncing nothing but the Contrastive Topic in the Contrastive Topic position over keeping already established adjacency relations.

As Zaliznyak (2004) puts it, “...in colloquial speech (both old and modern) the higher priority is usually given to a different principle <...>: first the main part of the message (i.e. Topic – DP), and then the comment” (Zaliznyak, 2004, 190).

As Pereltsvaig (2008) points out, this is not a unique example of an interface distributively interpreting a chain of copies. For example, in (46) the LF has to interpret which photos in the left periphery, otherwise the sentence would not have had the semantics of a question. At the same time, *of himself* has to be interpreted in-situ for binding purposes:

\[
(46) \quad \text{[Which photos \underline{of himself}] does Joe like [which photos \underline{of himself}]?}
\]

(Pereltsvaig, 2008)

We can further develop these ideas in Optimality Theory (see Prince and Smolensky, 1993 and subsequent work).

Suppose that there is a faithfulness constraint that demands that the elements that were pronounced adjacent when they are first spelled out must be pronounced adjacent in all the subsequent iterations of Spell Out. Call it \(\text{KA} \) for “keep adjacency”. In the Spell Out theory,\(^{20}\)

\(\ldots\) в разговорной речи (и древней, и современной) приоритет обычно отдается другому принципу <...>: вначале главная часть сообщения, затем уточняющая”.

\(^{20}\)"...в разговорной речи (и древней, и современной) приоритет обычно отдается другому принципу <...>: вначале основная часть сообщения, затем уточняющая”.
presented in Chapter 1, any moved constituent is spelled out at least twice. First, it is spelled out before it is externally merged into the main sentence. Second, it is spelled out as a part of the main sentence. For example, the noun phrase nekotorye baleriny ‘some ballerinas’ in (44) is spelled out before it is externally merged with the rest of the sentence. As the result, the adjective is spelled out as adjacent to the noun. Later the whole sentence is spelled out, including the two copies of the moved noun phrase in it. The constraint KA demands that the PF interface pronounce the adjective and the noun adjacent to each other. This means that the PF interface must either pronounce all of the higher copy or all of the lower copy. This is what happens in languages that do not allow Discontinuous Spell Out, like Literary Russian or English.

Suppose further that there is also a markedness constraint that requires the PF interface to pronounce only the element that is Contrastive Topic in the Contrastive Topic position, without the pied-piped material. Call it No-PIED, for “don’t pronounce pied-piped material in the derived position” or “reconstruct the pied-piped material” (“only pronounce the material that is Topic in the Topic position”).

If KA is ranked higher than No-PIED, no DSO is allowed. Either all of the higher copy or all of the lower copy must be pronounced. However, if No-PIED is ranked higher than KA, the pied-piped material will be pronounced in the base position, while the Contrastive Topic part of the moved constituent will be pronounced in the Contrastive Topic position. We will observe DSO, as in (44).

3.4.4 Restrictions on Discontinuous Spell Out

Although Colloquial Russian allows discontinuous noun phrases regardless of their structural position, there are certain restrictions that these split phrases must obey. In this section I will discuss two of them, which will be important later.

The first restriction has to do with the **relative order of the split elements**. According to Pereltsvaig (2008), Colloquial Russian allows so-called inverse and so-called direct noun phrase splits. A direct split is the one where the order of the split elements is the same as the default order within the noun phrase, as in (47a). An inverse split is the one where the
order of the split elements is not the same as the default order within the noun phrase, as in (47b).

(47) a. ok vologodskogo net masla, devuška?
Vologda.GEN be.NEG.PRS.3SG butter.GEN girl
 ‘Do you have Vologda butter, Miss?’

 b. ok brillianty u tebja xorošije, neskol’ko karat diamonds.NOM at you good.NOM several carats
 ‘You have good diamonds, several carats.’ (Pereltsvaig, 2008, 7)

Notice, however, that both word orders are possible even when the noun phrase is not split. With the appropriate intonation adjectives may either follow or precede the head noun (at least, to my ear):

(48) a. ok Net [vologodskogo masla], devuška?
be.NEG.PRS.3SG Vologda.GEN butter.GEN girl
 ‘Do you have Vologda butter, Miss?’

 b. ok U tebja [brillianty xorošije], neskol’ko karat
at you diamonds.NOM good.NOM several carats
 ‘You have good diamonds, several carats.’ (my judgments)

However, when a PP is split, the preposition has to come first:

(49) a. ok po novoj my poexa-l-i doroge
 on new.LOC we go-PST-PL road.LOC
 ‘We went by the new road.’ (my judgment)

 b. * novoj my poexa-l-i po doroge
new.LOC we go-PST-PL on road.LOC
 ‘We went by the new road.’ (Pereltsvaig, 2008, 33)

 c. * doroge my poexa-l-i po novoj
road.LOC we go-PST-PL on new.LOC
 ‘We went by the new road.’ (Pereltsvaig, 2008, 33)

This is also true for non-split PPs (at least, according to my intuition). The preposition may not be preceded by any phonological material that is part of its complement.²¹

²¹Russian does have a couple of postpositions, but I am leaving them aside here.
Pereltsvaig (2008), building on Pesetsky (1998), states this constraint as a phase-head-first constraint. The idea is that the PF interface demands the head of a phase to be pronounced before the rest of the phase.

Alternatively, we may say that Discontinuous Spell Out has to preserve the internal order of the spelled out constituent. Russian noun phrases have more or less free word order with respect to adjectives and nouns, and the same freedom persists after they are split. Russian preposition phrases have a rigid order in the sense that the preposition has to come first, and the same rigidity persists after they are split.

(50) a. *my poexa-l-i [po novo| doroge]
 we go-PST-PL on new.LOC road.LOC
 ‘We went by the new road.’

b. *my poexa-l-i [novo| po doroge]
 we go-PST-PL new.LOC on road.LOC
 ‘We went by the new road.’

c. *my poexa-l-i [doroge po novo|j]
 we go-PST-PL road.LOC on new.LOC
 ‘We went by the new road.’

(51) **Discontinuous Spell Out. Restriction 1.**

Discontinuous Spell Out preserves the internal order between the elements of the spelled out constituent.

Within the Optimality Theoretic approach to DSO, presented in the previous section, we can account for (51) by introducing another faithfulness constraint. Suppose that apart from KA, there is also a constraint that enforces the PF interface to keep the linearization relations created by the first Spell Out operation, call it KL for “keep linearization”. In Literary Russian both KL and KA outrank NO-PIED, which results rules out Discontinuous Spell Out. In Colloquial Russian the ranking is KL, NO-PIED > KA. The NO-PIED constraint outranks the KA constraint. This allows Discontinuous Spell Out. At the same time, the KL constraint is still ranked high, which predicts (51).

The second restriction has to do with the phonological material between the split parts of a phrase. Split elements should not be too far from each other. What constitutes
as “too far” may be a subject to cross-linguistic variation (see section 3.5 on Balkar). To determine the exact nature of this restriction would require a more careful investigation, which remains beyond the scope of the present study. However, I will outline certain preliminary observations.

(Sekerina, 1997, 186-188) claims that noun phrases in Colloquial Russian may not be split across a clausal boundary. But Pereltsvaig (2008) offers some counterexamples to this generalization. It seems that phrase splits can be non-local, but only to a limited extent.

Both Sekerina (1997) and Pereltsvaig (2008) agree that even though it is possible to have more than one split noun phrase per clause, as in (52a), the splits may not cross or contain each other, see (52b) and (52c).

(52) a. ‘They offered [interesting work]₁ [to my daughter]₂.’

(Pereltsvaig, 2008, 33)

b. ‘We went [to the summer cottage]₂ [by a new road]₁.’

(Pereltsvaig, 2008, 32)

c. ‘We went [to the summer cottage]₂ [by a new road]₁.’

(my judgment)

This could also be viewed as a “too far” effect. Perhaps, for Colloquial Russian “across material from another split” counts as “too far”. Tentatively, I will state this observation as follows:

(53) **Discontinuous Spell Out. Restriction 2.**

No component of a split may intervene between the components of a distinct split.

These data can be incorporated into the Optimality Theoretic analysis from the previous section by switching to gradual evaluations, as in Harmonic Grammars (see Legendre et al.,
1990 and subsequent work). The \texttt{KA} constraint is assigned a violation for each phonological word between the split parts of a phrase. The further the split parts are the more violations of \texttt{KA} they create. Even though \texttt{KA} is ranked low in Colloquial Russian, too many violations of it may end up overriding the other constraints.

To sum up, discontinuous phrases in Colloquial Russian have to obey two restrictions. First, the order of the split elements has to match an acceptable order of elements within a non-split phrase. Second, no component of a split may intervene between the components of a distinct split. Both restrictions can be accommodated into the Discontinuous Spell Out theory presented in the previous section through the two faithfulness constraints: \texttt{KL} “keep linearization” and \texttt{KA} “keep adjacency”, with the latter constraint assigning a violation for each phonological word between the split parts of a phrase.

In the previous two sections I have established a theory of Discontinuous Spell Out and two additional restrictions on split phrases created by it. In the next section we will see that, even with the possibility of DSO, Colloquial Russian still shows clear subject vs. object asymmetries when it comes to discontinuous noun phrases. In other words, the Subject Condition is still detectable.

3.4.5 Detectable Subject Condition effects

If Colloquial Russian has DSO, it seems impossible to see whether any version of the Subject Condition still holds in this language. For any split subject there will be a possible derivation involving DSO, which will make the sentence acceptable.

However, whether we can see Subject Condition effects or not depends on whether Colloquial Russian allows direct subextraction from noun phrases in addition to DSO, that is, subextraction in narrow syntax.

If Colloquial Russian does have direct subextraction and if the Subject Condition is universal, we might expect to find some subject vs. object asymmetries even in colloquial speech. In such a system, overtly split objects can be derived in two ways: direct subextraction and DSO. Meanwhile, overtly split subjects can only be derived as the result of DSO.
Hence we expect objects to split more easily than subjects. In particular, split subjects will necessarily obey the two restrictions on DSO outlined above. While split objects would not (they could be derived by subextraction). There is indeed some preliminary evidence that points in this direction. There are at least two ways in which subject splits are more restricted than object splits.

The **first asymmetry** concerns restriction (53). It can be illustrated by the contrast in (54). All speakers I consulted find (54a) significantly better than (54b).

(54)
\[\text{a. } \text{eto moju}_O \text{ Mašina}_S \text{ včera } \text{sestra}_S \text{ kupi-l-a knigu}_O \]
\[\text{it is my.ACC Masha's.NOM yesterday sister.NOM buy-PST-F book.ACC} \]
\[\text{‘It is MY book that Mary’s sister bought yesterday.’} \]

\[\text{b. *eto moja}_S \text{ Mašinu}_O \text{ včera knigu}_O \text{ kупi-l-a sestra}_S \]
\[\text{it is my.ACC Masha’s.NOM yesterday sister.NOM buy-PST-F book.ACC} \]
\[\text{‘It is MY sister that bought Mary’s book yesterday.’} \]

What is the difference between (54a) and (54b)? In (54a) the object is split “across” the subject, which is also split. The sentence is fine. In (54b) the subject is split “across” the object, which is also split. The sentence is significantly worse.

Clearly, we are dealing with a subject vs. object asymmetry. Splitting the subject is more restricted than splitting the object. This can be explained if splitting the subject can only be derived as the result of DSO, while spitting the object may also be derived via subextraction.

The sentence in (54b) contains two split noun phrases. The subject noun phrase could not have undergone subextraction, because that would have violated the Subject Condition. So the only option left for it is DSO. The object noun phrase could not have undergone subextraction either, because the object is preverbal. The only option left is DSO. But, as we have seen in the previous section, no component of a DSO split may intervene between the components of another DSO split (53). Hence the sentence is bad.

The sentence in (54a) also contains two split noun phrases. The subject noun phrase could not have undergone subextraction, because that would have violated the Subject Condition. So the only option left for it is DSO. The object noun phrase, however, could have undergone subextraction, because it is a complement and is in-situ. The split of the subject
noun phrase does not violate any restrictions on DSO, the subextraction from the object
noun phrase does not violate any constraints on movement, so the sentence is fine.

The second asymmetry has to do with Weak Crossover effects. Consider, first, the pair
of sentences in (55a) and (55b). In (55a) the pronoun ix ‘them’ is co-indexed with the noun
phrase tridcat’ igrušek ‘30 toys’. More accurately: it is co-indexed with the domain NP of
the numeral ‘30’. In the context for this sentence ix ‘them’ refers to the salient set of toys
that we brought from the store. This co-indexation is expected to be possible, because it
does not violate any known binding principles.

In (55b) the noun phrase skol’ko igrušek ‘how many toys’ is moved across the pronoun
ix ‘them’, creating a Weak Crossover effect. As the result, the co-indexed interpretation is
no longer available.22

(55) a. ok [postčitav ix₁], Volodja skaza-l, čto my kupi-l-i
count.CONV them Volodya.NOM say-PST.M that we buy-PST-PL
tridcat’ igrušek₁
30.ACC toys.GEN
‘Having counted them₁, Volodya said that we bought 30 toys₁.’

b. * skol’ko igrušek₁, [postčitav ix₁], Volodja skaza-l, čto my
how.many toys.GEN count.CONV them Volodya.NOM say-PST.M that we
kupi-l-i _₁?
buy-PST-PL
‘How many toys₁, having counted them₁, Volodya said that we bought _₁?’

Having established the contrast in (55), we can now compare it with the sentence in
(56). This is a split object noun phrase. It is either derived by DSO or by subextraction of
skol’ko. Some speakers perceive a contrast between (56) and (55b), with the latter being
better than the former. This is easily explained, if by subextracting skol’ko ‘how many’
(without the NP) these speakers can avoid a Weak Crossover violation. The NP of skol’ko
‘how many’, that is, igrušek ‘toys’, is left in-situ and thus can still be co-indexed with ix
‘them’.

22It should be noted that Weak Crossover effects are stronger with how many phrases than with which
phrases, so the contrast may not replicate with which. In addition, in Russian only long distance movement
shows Weak Crossover effects. Local movement may involve local scrambling, which, as I have already
discussed in section 3.3, does not obey Weak Crossover.
(56) % skol’ko, [postčitav ix₁], Volodja skaza-l, čto my kupi-l-i how many count CONV them Volodya NOM say PST PL igrušek₁? toys GEN

‘How many toys₁, having counted them₁, Volodya said that we bought _₁?’

Importantly, the same speakers who do perceive the contrast between (55b) and (56) do not perceive it between (57b) and (57c), which are both ungrammatical.

(57) a. ok [postčitav ix₁], Volodja skaza-l, čto tridcat’ muzykantov₁ count CONV them Volodya NOM say PST M that 30 NOM musicians GEN igra-j-ut pol’ku play PRS PL Polka ACC

‘Having counted them₁, Volodya said 30 musicians₁ are playing Polka.’

b. * skol’ko muzykantov₁ [postčitav ix₁], Volodja skaza-l, čto how many musicians GEN count CONV them Volodya NOM say PST M that igra-j-ut pol’ku play PRS PL Polka ACC

‘How many musicians₁, having counted them₁, Volodya said _₁ are playing Polka’

c. * skol’ko [postčitav ix₁], Volodja skaza-l, čto muzykantov₁ how many count CONV them Volodya NOM say PST M that musicians GEN igra-j-ut pol’ku play PRS PL Polka ACC

‘How many musicians₁, having counted them₁, Volodya said _₁ are playing Polka’

This is an effect of the Subject Condition. Speakers who do allow subextraction of skol’ko from object noun phrases and thus can avoid the Weak Crossover effect in (56) cannot do so in (57c). In other words, if subextraction is allowed, it is only allowed for objects.

Thus, there are at least two respects in which complements can be split more freely than specifiers even in Colloquial Russian. Hence, despite the possibility of DSO, Colloquial Russian still shows some effects of the Subject Condition.

151
3.4.6 Summary

To sum up, Colloquial Russian, unlike Literary Russian, allows Discontinuous Spell Out. This means that in Colloquial Russian the PF interface may choose to pronounce only a part of the higher copy of a moved noun phrase (the part that triggers the movement, i.e., the Contrastive Topic), and pronounce the rest of it (the pied-piped material) in its base position. As a consequence, Colloquial Russian may seemingly violate the Subject Condition.

In addition, Colloquial Russian may also allow subextraction from noun phrases, but only out of complements (in accordance with the Subject Condition).

Thus, the difference between the Literary and the Colloquial grammar is not in that only the former obeys the Subject Condition, but rather in that only the latter allows Discontinuous Spell Out:

\[
\begin{array}{|c|c|c|}
\hline
\text{Point of variation} & \text{Literary Russian} & \text{Colloquial Russian} \\
\hline
\text{Subject Condition} & yes & yes \\
\text{Extraction from Noun Phrases} & yes & yes \\
\text{Discontinuous Spell Out} & no & yes \\
\hline
\end{array}
\]

Given the fact that we are dealing with two registers of the same language here, which are frequently mixed, it is hard to empirically diagnose the difference. In the next section we will see a more clear example of a language that allows for DSO, namely, Balkar. Crucially, it is possible to show that Balkar also obeys the Subject Condition.

3.5 DSO in Balkar

3.5.1 Background

Balkar is a dialect of Karachay-Balkar (Turkic), spoken in the Republic of Kabardino-Balkaria. Data for this section were collected from speakers from the village of Verkhnaya Balkaria. Balkar is a head-final language with a basic SOV order, but OSV order is also possible if the subject is in narrow focus:
(59) a. ṭok Alim seni et-i[-̱i] aš-a-di
 Alim your meat-2SG-ACC eat-PRS-3SG
 ‘Alim is eating your meat.’

 b. ṭok seni et-i[-̱i] Alim aš-a-di
 your meat-2SG-ACC Alim eat-PRS-3SG
 ‘ALIM is eating your meat.’

The Balkar noun phrase has a more or less rigid internal word order. The genitive
marked possessor usually occupies the most peripheral left position, as in (60). The head
noun agrees with the possessor in person and number, as is exemplified in (60) by the suffix
I23 on nöger-i marking third person singular possessive agreement.

(60) ṭok Fatima-ni beš nöger-i
 Fatima-GEN five friend-3
 ‘Fatima’s five friends.’

In what follows I will show that even though Balkar noun phrases can be linearly dis-
continuous regardless of their syntactic position (section 3.5.2), Balkar nominalized clauses
can only be discontinuous if they are base generated as complements (section 3.5.3). That
is, the Subject Condition is seemingly enforced for nominalized clauses, but not for noun
phrases. As I will argue in sections 3.5.4 and 3.5.5, this pattern is best analyzed if we as-
sume that the Subject Condition is, after all, active in Balkar, but noun phrases constitute a
special case.

The first argument comes from the fact that the Subject Condition is enforced not only
for nominalized clauses, but also for complex noun phrases (section 3.5.4). The second
argument comes from the fact that even among simple noun phrases Balkar splits comple-
ments more freely than specifiers, showing the same set of restrictions on split specifiers,
as Colloquial Russian (section 3.5.5). This suggests that Balkar, like Colloquial Russian,
allows both subextraction and Discontinuous Spell Out.

23Balkar has vowel harmony in backness and roundness, typical for Turkic languages. For naming mor-
phemes I will conventionally use capitalized vowels.
3.5.2 Extraction from noun phrases

In Balkar it is possible to split the possessor from both the object and the subject of a transitive verb (61a, 61b), and from the subject of an unaccusative verb (61c).

(61)

 a. ok Fatima-\textsubscript{ni}\textsubscript{O} tünene Kerim ineg-i-\textsubscript{nO} kör-gen-di
 Fatima-GEN yesterday Kerim cow-3-ACC see-PST2-3SG
 ‘Kerim saw Fatima’s cow\textsubscript{O} yesterday.

 b. ok Aslan-\textsubscript{ni}s tünene it-i\textsubscript{s} Madina-ni qap-xan-di
 Aslan-GEN yesterday dog-3 Madina-ACC bite-PST2-3SG
 ‘Aslan’s dog\textsubscript{s} bit Madina yesterday.’

 c. ok Kerim-\textsubscript{ni}s tünene bu stol-da kitab-i\textsubscript{s} tur-a e-di
 Kerim-GEN yesterday this table-LOC book-3 stand-CONV AUX-3SG
 ‘Kerim’s book\textsubscript{s} was lying on this table yesterday.’

There are speakers who find (61a) and (61c) better than (61b). Those speakers clearly obey the Subject Condition even for split noun phrases. Their judgments are not interesting for the present discussion, so I will disregard them from now on. That is, I will only report the judgments of those speakers who find all of the sentences in (61) acceptable.

The question is whether the grammar represented by (61) does not have the Subject Condition at all, or the Subject Condition is active, but its effects are obscured by the possibility of Discontinuous Spell Out, as in Colloquial Russian.

3.5.3 Extraction from clauses

While Balkar may seemingly disobey the Subject Condition when it comes to noun phrases, nominalized clauses can only be linearly discontinuous if they are base generated as complements.

Before discussing the extraction data, I will introduce nominalized clauses and their syntactic position in more detail. An example of the Balkar nominalized clause is given in (62).

(62)

 ok Kerim [\textit{pro sabij-i} \textit{bu} kitap-ni24 oqu-gan-i-n] kör-gen-di
 Kerim his kid-3 this book-ACC read-NZR-3-ACC see-PST2-3SG
 ‘Kerim saw his kid reading this book.’
The head of the clause is marked with the suffix -gAn (also used to form a relative clause and one of the two past tenses). It agrees with the subject of the clause, using the same agreement markers as possessed nouns, e.g. I for third person singular in (62). The head of the nominalized clause may receive case itself, depending on the structural position of the clause. In (62) the clause is the complement of a transitive verb, so its head is marked accusative.

The subject of a nominalized clause may receive nominative case, as in (62). Genitive and, in rare cases, accusative marking is also possible. However, nominalized clauses with non-nominal subjects will not be considered here. Scrambling out of those seems to be more restricted in general, which may have to do with the syntactic position of the subject or the size of the clause (see Bondarenko, 2018b and Bondarenko and Davis, 2020b for discussion).

Following Bondarenko (2018b), I will assume that Balkar nominalized clauses with nominative marked subjects contain a large verbal structure, at least, TP. Their subject occupies the Spec,TP position.

Nominalized clauses can be objects of perception verbs, as in (63a), objects of psych verbs, as in (63b), and subjects of emotive causatives, as in (63c). The case-marking on the head of the clause tracks its structural position. In (63a) it is marked accusative, in (63b) the nominalized clause receives dative, and in (63c) it is nominative.

(63) a. ok men [sabij ol kitap-ni oqu-\-an-i-n] kör-gen-me
1SG.NOM kid that book-ACC read-NZR-3-ACC see-PST2-1SG
‘I saw the kid reading that book.’

b. ok men [Madina bu kitap-ni oqu-\-an-i-na] büsür-ej-me
1SG.NOM Madina this book-ACC read-NZR-3-DAT be.grateful-PRS-1SG
‘I like Madina reading this book.’

c. ok meni [sabij ol kitap-ni oqu-\-an-i] aculan-dir-\-an-di
1SG.ACC kid that book-ACC read-NZR-3 get.angry-CAUS-PST2-3SG
‘The kid reading that book angered me.’

24Balkar has differential object marking, which means that the object may or may not bear the accusative case. Inside a nominalized clause the object may be accusative (62).

25Suffixes that start with a velar consonant show regular phonologically conditioned allomorphy. They may start with g, k, x, k, q or ı depending on the previous sound and the following vowel.
In all the examples in (63) the nominalized clause may either follow or precede the other argument of the main verb (men ‘I’ or meni ‘me’). To keep the examples maximally parallel, though, I will always put the nominalized clause in the immediately preverbal position.

Under the simplest assumptions, in (63a) and (63b) the nominalized clause is base generated as the complement of the verb and receives either accusative or dative (depending on the verb). The nominal argument (men ‘I’) is base generated as the specifier of the same verb. Meanwhile in (63c) the nominalized clause is base generated as the specifier and the nominal argument (meni ‘me’) is base generated as the complement.

This analysis is illustrated by the structures in (64).

(64) a. The tree for kör ‘see’ (63a).26

b. The tree for büsür ‘be.grateful’ (63b).

26 The verb phrases of ‘see’ and ‘be grateful’ may or may not have a v. If they do, their subjects are probably base generated in Spec,vP. This, however, is immaterial for the present purposes. For a comprehensive syntactic and semantic analysis of Balkar argument structure see Lyutikova et al. (2006).
c. The tree for *aculan-dir* ‘get.angry-CAUS’ (63c).\(^{27}\)

![Diagram](image)

Unlike with noun phrases, nominalized clauses can only be discontinuous if they are base generated as complements. More precisely, scrambling is possible out of the objects of perception verbs (65a), the objects of psych verbs (65b), but crucially not out of the subjects of emotive verbs (65c).

(65)

\(a.\) \[**ok** [ol kitap-ni₁] men [sabij₁ oqu-ıran-i-n] kör-gen-me**

that book-ACC 1SG.NOM kid read-NZR-3-ACC see-PST2-1SG

‘I saw the kid reading THAT BOOK.’

\(b.\) \[**ok** [bu kitap-ni] men [Madina₁ oqu-ıran-i-na] büsür-ej-me**

this book-ACC 1SG.NOM Madina kid read-NZR-3-DAT be.grateful-PRS-1SG

‘I like Madina reading THIS BOOK.’

\(c.\) \[**ok** [ol kitap-ni₁] meni [sabij₁ oqu-ıran-i] aculan-dir-ıran-di**

that book-ACC 1SG.ACC kid read-NZR-3 get.angry-CAUS-PST2-3SG

Intended: ‘The kid reading THAT BOOK angered me.’

The data in (65) follow automatically from the Subject Condition, if we assume the structures in (64). This brings us back to the question posited in the end of the previous section. Does Balkar obey the Subject Condition? At the surface level, it looks like the Subject Condition is enforced for clauses (65), but not for noun phrases (61). There are, in principle, two ways of reconciling these data.

The first option is to assume that Balkar does have the Subject Condition, which explains the data in (65), but also allows Discontinuous Spell Out for noun phrases, which explains

\(^{27}\)I am following Lyutikova et al. (2006) in analyzing the Balkar causative marker as \(v\).
the data in (61). Then Balkar shows us another restriction on DSO. DSO is only available for noun phrases, but not for clauses.

The second option is to assume that Balkar does not have the Subject Condition, which explains the data in (61), while the contrast in (65) is due to some other distinction. One option is the Complex NP Constraint. One can assume that the clausal subject of ‘anger’ in Balkar necessarily has a silent nominal head, while the clausal objects of ‘see’ and ‘be.grateful’ do not. Morphologically, there is no difference between those clauses (they are all nominalized), but it is conceivable that their internal syntactic structures are different in this way.

In the remainder of this section I will argue that the first option is correct. First, in section 3.5.4 we will see that the Complex NP Constraint is not active in Balkar, which leaves (65) without an explanation, unless we assume the Subject Condition. Second, in section 3.5.5 we will see that even when it comes to simple discontinuous noun phrases, there is a meaningful difference between specifiers and complements, which suggests that the Subject Condition is still enforced.

3.5.4 Extraction from complex noun phrases

Apart from nominalized clauses, Balkar has complex noun phrases. Here I will focus on noun phrases headed by belgi ‘sign’, like the boldfaced one in (66).

(66)
\[\text{Kerim [Madina bu üj-ge kir-gen-i-ni belgi-si-n] kör-dü} \]
\[\text{Kerim Madina this house-DAT enter-NZR-3-GEN sign-3-ACC see-PST1.3SG} \]
\[\text{‘Kerim saw signs of Madina having entered the house.’} \]

The head noun bears third person singular possessive agreement (presumably agreeing with the nominalized clause) and case assigned from the matrix clause. The nominalized clause is marked genitive (\textit{Madina bu üjge kirgenini} ‘Madina having entered the house’).

In what follows I will assume that complex noun phrases have the structure in (67). Namely, the nominalized clause is base generated as the complement of the head noun ‘sign’.\[28\]

\[28\]It is possible that it later moves to a higher position within the noun phrase of ‘sign’, but I will leave this for the future research.
(67) Complex noun phrase with belgi ‘sign’ (66)

NP
 Nzp.Gen
 N
 ‘Madina this house entering’ ‘sign’

A complex noun phrase with belgi ‘sign’ can be the subject (68a) or the object (68b) of a transitive verb, as well as the subject of a locative copula (68c).

(68) a. ok meni [[Fatima qoj-nu bišer-gen-i-ni] belgi-si]
 1SG.ACC Fatima meat-ACC cook-NZR-3-GEN sign-3
 sejirsin-dir-di
 wonder-CAUS-PST1.3SG
 ‘Signs of Fatima having cooked the meat surprised me (lit.: made me wonder).’

b. ok Aslan [[Madina qoj-nu bišer-gen-i-ni belgi-si-n] kör-gen-di
 Aslan Madina meat-ACC cook-NZR-3-GEN sign-3-ACC see-PST2-3SG
 ‘Aslan saw signs of Madina having cooked the meat.’

c. ok aš üj-de [[Madina qoj-nu bišer-gen-i-ni belgi-si] bar-d
 eat house-LOC Madina meat-ACC cook-NZR-3-GEN sign-3 exist.PRS-3SG
 ‘There are signs of Madina having cooked the meat in the kitchen.’

As before, the relative order between meni ‘me’ and the complex noun phrase in (68a), between Aslan ‘Aslan’ and the complex noun phrase in (68b) and between aš üjde ‘in the kitchen’ and the complex noun phrase in (68c) is not fixed. In all cases the complex noun phrase may either be immediately preverbal or clause-initial. To keep the examples parallel I will keep all the complex noun phrases in the immediately preverbal position.

In what follows I will assume that Balkar and Russian have the same syntactic structure for their locative copulas (see section 3.3.4 above). If so, then the verb phrase structures in (68) look like (69).
(69) a. The tree for *sefisin-dir* ‘wonder-CAUS’ (68a).

```
VP
  CompDP.NOM
    'Madinathishouseentering sign'
  v'
    v
      DP.ACC
      'me'
      V
      CAUS
      'wonder'
```

b. The tree for *kör* ‘see’ (68b).

```
VP
  DP.NOM
    Aslan
  V'
    CompDP.ACC
      'Madinathishouseentering sign'
    V
      'see'
```

c. The tree for *bar* ‘exist’ (68c).

```
VP
  DP.LOC
    'in-the-kitchen'
  V'
    CompDP.NOM
      'Madinathishouseentering sign'
    V
      'exist'
```

Crucially, scrambling out of complex noun phrases is possible in Balkar, but only out of those complex noun phrases that are base generated as complements:
Although the sentences in (70b) and (70c) are not acceptable for all speakers, the sentence in (70a) was rejected by all my consultants. What (70) shows us is that Balkar scrambling does not obey the Complex NP Constraint. At the same time, it has to obey the Subject Condition, grouping unaccusative subjects with objects of transitive verbs.

For some speakers it is even possible to scramble out of relative clauses, but again, only those relative clauses that modify complements:

(71) Relative clause modifying the object:

b. % [meni at-im-mi], Fatima [tambla _ sat-ip al-liq adam-ni] my horse-1SG-ACC Fatima tomorrow buy-CONV take-FUT man-ACC kör-gen-di see-PST2-3SG

‘Fatima saw the man who is going to buy my horse tomorrow.’
a.
\[\text{ok Fatima-ni [tambla [meni at-im-mi] sat-ip al-liq adam]} \]
Fatima-ACC tomorrow my horse-1SG-ACC buy-CONV take-FUT man
kör-gen-di
see-PST2-3SG

b.
\[*[meni at-im-mi]_1 \text{ Fatima-ni [tambla }_1 \text{ sat-ip al-liq adam]} \]
my horse-1SG-ACC Fatima-ACC tomorrow buy-CONV take-FUT man
kör-gen-di
see-PST2-3SG

‘The man who is going to buy my horse tomorrow saw Fatima.’

This makes a Complex NP Constraint explanation of the data presented in the previous section untenable. It seems that the best way to explain the restrictions on scrambling from nominalized clauses and complex noun phrases in Balkar is to appeal to the Subject Condition.

3.5.5 DSO and Subject Condition effects

Consider split noun phrases again:

(73)
\[\text{a. ok Fatima-niΟ tünene Kerim ineğ-i-nο kör-gen-di} \]
Fatima-GEN yesterday Kerim cow-3-ACC see-PST2-3SG
‘Kerim saw Fatima’s cowΟ yesterday.'

\[\text{b. ok Aslan-niΣ tünene it-iΣ Madina-ni qap-xan-dι} \]
Aslan-GEN yesterday dog-3 Madina-ACC bite-PST2-3SG
‘Aslan’s dogΣ bit Madina yesterday.’

If Balkar obeys the Subject Condition and also allows Discontinuous Spell Out, we expect to find some subject vs. object asymmetries. More precisely, we expect to find objects to be split more freely than subjects. Split objects, as in (73a), can be derived either by subextraction or as the result of DSO. Split subjects, as in (73b), may only be derived by DSO. There are two data points that suggest that this is, in fact, correct.

The first data point has to do with the linear order of the split elements. Consider the contrast in (74).
We saw that it is possible to split the possessor from the rest of the noun phrase in both subject and object position (73). But, as we see from (74), it is not possible to move out an NP and leave the possessor in-situ if the noun phrase is in the subject position (74b). Crucially, it is possible to do so with a noun phrase in the object position (74a).

How can we reconcile the data in (73) with the data in (74)? The answer comes from the first property of Discontinuous Spell Out, as stated in (51). Discontinuous Spell Out keeps the internal order of the elements within the phrase. Since in Balkar the possessor is on the left periphery, it should be the first element pronounced, even if the noun phrase is discontinuously spelled out. In the same way as for split PPs in Colloquial Russian: the preposition must always come first.

This means that neither (74a) nor (74b) may be derived by Discontinuous Spell Out. The only option left is subextraction. As expected under the Subject Condition, subextraction is possible in (74a), but not in (74b).

The second data point has to do with multiple splits. Consider the contrast in (75).

As in Colloquial Russian, in Balkar splitting the subject noun phrase is more restricted than splitting the object noun phrase. In particular, it is possible to split the object “across” the split subject, but not vice versa. This can be explained, if we assume that splitting the subject can only be achieved via DSO, while splitting the object can also be done by
In fact, DSO in Balkar seems to be even more restricted than in Colloquial Russian. In particular, Balkar is more sensitive to the violations of the “keeping adjacency” constraint. Not much phonological material can come between the two parts of a split subject:

\[(76)\]

a. **Fatima-nis nöger-is tünene ijer-de bu illau-nu sin-dir-ban-di**
 Fatima-GEN friend-3 yesterday evening-LOC this toy-ACC break-CAUS-PST2-3SG

b. **Fatima-nis tünene ijer-de nöger-is bu illau-nu sin-dir-ban-di**
 Fatima-GEN yesterday evening-LOC friend-3 this toy-ACC break-CAUS-PST2-3SG

c. **Fatima-nis tünene ijer-de bu illau-nu nöger-is sin-dir-ban-di**
 Fatima-GEN yesterday evening-LOC this toy-ACC friend-3 break-CAUS-PST2-3SG

‘Yesterday Fatima’s friend broke this toy.’

Meanwhile, for split objects there is no such restriction:

\[(77)\]

a. **Fatima-nio qarindaš-i-nio šaxar-ba ustaz elt-di**
 Fatima-GEN brother-3-ACC city-DAT teacher drive-PST1.3SG

b. **Fatima-nio šaxar-ba qarindaš-i-nio ustaz elt-di**
 Fatima-GEN city-DAT brother-3-ACC teacher drive-PST1.3SG

c. **Fatima-nio šaxar-ba ustaz qarindaš-i-nio elt-di**
 Fatima-GEN city-DAT teacher brother-3-ACC drive-PST1.3SG

‘The teacher drove Fatima’s brother to school.’

This is as expected. There are two derivational paths to split objects, but only one for split subjects. With subextraction all the sentences in (77) should be fine, because subextraction is not sensitive to the amount of the intervening phonological material. The only option for (76), however, is DSO, and DSO does not tolerate too much intervening phonological material.

These two data points, taken together, constitute another argument that split noun phrases in Balkar can be derived by DSO, and thus seemingly avoid a Subject Condition violation.
3.5.6 Summary

To sum up, Balkar obeys the Subject Condition. It also allows DSO, like Colloquial Russian, which obscures the effects of the Subject Condition for noun phrases.

If this analysis is correct, we have to concede that DSO (at least in Balkar) is for some reason limited to noun phrase material. It is not possible to discontinuously spell out a clause. For the present I do not have an explanation for this fact. This would require a more fully worked out theory of Discontinuous Spell Out, which lies beyond the scope of this dissertation.

The emerging typology (based on the comparison of the two versions of modern Russian and Balkar) looks as follows:

(78) Point of variation.

<table>
<thead>
<tr>
<th></th>
<th>Literary Russian</th>
<th>Colloquial Russian</th>
<th>Balkar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject Condition</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Extraction from DPs</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>DSO</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

This suggests that the true point of variation is not the Subject Condition, which is active in all the three systems. The true point of variation is located at PF. The supposed parameter is whether the PF of a given language could distributively interpret multiple copies of one noun phrase.

3.6 Conclusion

In this chapter I have argued for the Strong Subject Condition, based on data from Literary and Colloquial Russian and Balkar. The condition itself is repeated below.

(79) **Strong Subject Condition.**

All specifiers are opaque for extraction.

Two challenges for the Subject Condition have been discussed.
The first challenge has to do with subjects in-situ. In some languages some in-situ subjects are transparent. An example of this is Literary Russian. This fact has lead some researchers to believe that (79) is too strong and should be relaxed. However, as I have shown in section 3.3, only those subjects are transparent in-situ that are base generated as complements (subjects of certain unaccusative verbs). As the result, subject transparency in-situ provides an argument in favor of the Strong Subject Condition, not against it.

The second challenge comes from Colloquial Russian and Balkar. These two grammar systems allow to split even those noun phrases that are base generated as specifiers. This is a problem for either the weak or the strong formulation of the Subject Condition. However, as I have shown in sections 3.4 and 3.5, split noun phrases of this kind do not involve direct subextraction or remnant movement. They should be analyzed in terms of Discontinuous Spell Out, as was proposed by Pereltsvaig (2008) and others. According to this analysis, split noun phrases in Balkar or Colloquial Russian are not split in narrow syntax. The whole noun phrase is moved, but only a part of it is pronounced in the higher position, namely, the movement trigger. The pied-piped material is pronounced in-situ.

There seems to be real cross-linguistic variation as to whether a language allows its PF to discontinuously parse a moved constituent. Meanwhile, the Subject Condition seems to be universal. Crucially, even in Colloquial Russian and Balkar we still observe its effects. Even in those languages splitting a noun phrase that is base generated as a complement is less restricted than splitting a noun phrase that is base generated as a specifier.

This means that even in languages that on the surface allow Subject Condition violations, this condition is still an active part of the grammar. This strongly suggests that the Subject Condition is universal. The reason is that most of the examples that are encountered by a first language learner seemingly violate the Subject Condition at the surface structure. Nevertheless, adult speakers demonstrate its effects in more complex sentences. This is easily explained, if the Subject Condition is not acquired, but rather follows from the basic principles of syntactic derivation, in accordance with the Spell Out theory, presented in Chapter 1.
4.1 Spell Out and discourse anaphora

In this chapter I will discuss the semantic effects of Spell Out, in particular, how it interacts with discourse anaphora. For most of the chapter I will consider data from English, but in Appendix C I show how the same generalizations apply to Russian.1

Consider the two main claims of the Spell Out theory, repeated in (1). From (1a) and (1b), taken together, it follows that all adjuncts and all specifiers must be spelled out before they are merged with the rest of the sentence, because adjuncts and specifiers are, by definition, maximal projections that merge with a phrase.

(1) a. Before any two phrases are merged at least one must be spelled out.

b. A spelled out phrase does not project its category.

The result of Spell Out in narrow syntax is opacity for movement. A spelled out constituent is assigned its phonological and semantic interpretation and becomes a terminal, like a lexical item. Hence, from (1) it follows that all specifiers and all adjuncts are opaque.

Since Spell Out assigns semantics, it also follows that all specifiers and all adjuncts

1The data in sections 4.1-4.4 of this chapter and Appendix C were collected by elicitation with five Russian speakers and four English speakers. Every piece of data (with a couple of exceptions) is a pair of sentences. In each case the speakers were asked to give a relative grammaticality judgment with the given co-indexations between noun phrases and pronouns. They were also asked to evaluate each member of the pair individually (on the scale from 1 to 5). Sentences evaluated at 4 or 5 are analyzed as acceptable (marked ok); at 1 or 2 – as unacceptable (marked *); and at 3 – as marginally acceptable (marked ?).
are interpreted before they are integrated with the rest of the sentence. One may plausibly expect this to have some effect at the syntax-semantics interface. However, to the best of my knowledge, there has been little or no discussion of any semantic consequences of Spell Out independent from movement. In this chapter I will argue that there are some semantic and pragmatic phenomena that are sensitive to Spell Out. The focus of this chapter will be on discourse anaphora.

By discourse anaphora I will understand the anaphoric relation between an indefinite and a pronoun where the indefinite is not interpreted in the scope of any other operator (no negation, quantifiers etc.), as in (2).

(2) Ok Rosa saw a cat on the street and gave it some fish.

In the sentence in (2) the pronoun it is to be understood as referentially dependent on the indefinite a cat. All the existing accounts of discourse anaphora (see Paducheva, 1974; Kamp, 1981; Heim, 1982; Groenendijk and Stokhof, 1991; Chierchia, 1995; Barker and Shan, 2008; Schlenker, 2009, 2011; Mandelkern, 2020; Elliott, 2020, among many others) assume that for this relation to be possible the indefinite must be interpreted before the pronoun. In some theories the indefinite introduces a discourse referent that the pronoun later “picks up”, in other theories the indefinite changes the context in such a way that satisfies the presupposition of the pronoun, in yet other approaches the indefinite creates the appropriate local context for the pronoun. Regardless of the terminology and framework, however, all these theories assume that the semantic component must in some sense interpret the indefinite before the pronoun.

The question that this chapter will address is what this relation of “being interpreted before” is determined by. To the best of my knowledge, all the existing accounts assume that “interpreted before” is equivalent to “linearly precedes”. That is, they assume that the semantic component has access to the linear order between the terminals in a given sentence and interprets it, accordingly, from left to right. Consequently, for a discourse anaphoric relation to be possible the indefinite must linearly precede the pronoun.

Apart from implying a non-trivial assumption about the architecture of the grammar (the semantic component has access to the surface linear order), this view faces certain empirical
difficulties. There are acceptable cases of cataphora, even with an indefinite antecedent, as was first pointed out by Chierchia (1995).

On the one hand, in a coordinate structure discourse anaphora can only “proceed” from the left conjunct to the right one, and not vice-versa, as is evident from the contrast in (3).

(3)
 a. ⁠ok Karl [saw a cat1 on the street] and gave it1 some fish.
 b. * Karl saw it1 on the street and gave a cat1 some fish.

Furthermore, in the “classical donkey-anaphoric configuration” (between a specifier and its sister), discourse anaphora also obligatory “proceeds” from left to right:

(4)
 a. ⁠ok [A person who saw a cat1 on the street] gave it1 some fish.
 b. * A person who saw it1 on the street gave a cat1 some fish.

On the other hand, however, with post-posed adjuncts discourse anaphora can “proceed” from right to left (5a). Crucially, discourse cataphora is only possible in the case of a post-posed adjunct, not a post-posed complement (5b). Native speakers perceive a reliable contrast between (5a) and (5b).

(5)
 a. ⁠ok Rosa informed his1 parents [when she caught a student1 smoking].
 b. * Rosa informed his1 parents that she caught a student1 smoking.

In order to account for the acceptability of (5a) existing accounts have to introduce additional assumptions. For example, within the dynamic framework one could say that (5a) contains a (potentially, silent) dynamic quantifier whose first argument (the restrictor) is the when-clause and whose second argument (the scope) is the main clause. This quantifier licenses the observed cataphoric relation.

The problem is that there is no difference between (5a) and (5b) in the interpretation of the indefinite. In fact, there seems to be no obvious difference in the interpretation of the indefinite throughout (3-5). All these sentences are episodic, in all of them the indefinite introduces a text-level discourse referent (it can be “picked up” by pronouns in the following sentences). This means that whatever stipulations can be added to the theory to make (5a)
work can also make (5b) work, as well as (3b) and (4b). For example, if there is a dynamic quantifier that licenses cataphora in (5a), why couldn’t it be used in (5b)? Why couldn’t it take the complement clause as its restrictor and the rest of the clause as its scope? It is possible to have such a quantifier and still predict the correct truth-conditions for (5b). The same is true for (4b). Why is there no dynamic quantifier that takes T' as its restrictor and Spec,TP as its scope, which would license cataphora in (4b)? In other words, there seems to be no obvious semantic generalization that distinguishes between a-sentences and b-sentences in (3-5). But there might be a syntactic one.

The starting observation is that the difference between the bad cases and the good ones is in the syntactic structure, not in the interpretation of the pronoun or the indefinite. In all the good cases the indefinite is inside a specifier or an adjunct that c-commands the pronoun. In (5a) the indefinite is inside an adjunct clause and this adjunct clause c-commands the pronoun. In (4a) the indefinite is inside a specifier and this specifier c-commands the pronoun. In neither (4b) nor (5b) is there a specifier or adjunct that contains the indefinite and c-commands the pronoun. Furthermore, if we assume that coordination has a ConjP-structure (which has been argued for independently, see Ross, 1967; Johannessen, 1993, 1998; Kayne, 1994), this observation covers (3) as well. The first conjunct is the specifier of ConjP, and the second conjunct is the complement of ConjP. The specifier c-commands the complement. In what follows I will state this observation as a generalization called the Island Condition.

The Island Condition requires the indefinite to be inside a specifier or adjunct that c-commands the pronoun. As was shown in the first half of this dissertation, specifiers and adjuncts form a natural syntactic class, both by definition (maximal projections whose sister is a phrase) and empirically (strong islands).

From the perspective of the Spell Out theory the Island Condition is not at all surprising. Discourse anaphora does not “proceed” from left to right. It proceeds from a spelled out to a non-spelled out sister. That is, the semantic component interprets any specifier before its sister (3, 4) and any adjunct before its sister (5). The Island Condition, then, can be derived as a consequence of how the semantic component assigns interpretation to a piece of syntactic structure. Given a node $\gamma=\{\alpha \beta\}$, where α has been spelled out (its meaning...
is “known”) and β has not been spelled out (its meaning is not yet “known”), the semantic component accommodates the already available meaning of α, and only then proceeds to interpret β. Thus, α creates the local context for β.

This contribution can be seen as a friendly amendment to the existing theories of discourse anaphora. All of them make reference to the linear order in some way. The present proposal is to replace this reference by the Island Condition. In what follows I will show how the Island Condition can be integrated into the classical dynamic semantics (Heim, 1982), but this choice is not essential.

In the remainder of the chapter I will, first, introduce and formulate the Island Condition in more precise terms (section 4.2); second, show how it covers the three basic contrasts introduced above, as well as some other cases of discourse anaphora (section 4.3); third, propose some basic assumptions about the mechanism of Spell Out at LF that derive the Island Condition, relying on the classical dynamic framework (section 4.4); fourth, discuss potential extensions of the proposed theory to the phenomena of presupposition projection and temporal iconicity (section 4.5); and fifth, consider some of the issues faced by the proposed approach (section 4.6).

4.2 The Island Condition

4.2.1 The Island Condition

In this section I will formally introduce the Island Condition and some background assumptions about the Logical Form and the place of the Island Condition with respect to other known restrictions on anaphoric relations.

Let me begin by defining the notion of a Spell Out domain (or so-domain) as a constituent that is spelled out as soon as it is built. By this definition and assuming the Spell Out theory, the set of so-domains includes all specifiers, all adjuncts, the whole sentence and nothing else. It is important to note that in this dissertation the term “Spell Out” is reserved only for specifiers and adjuncts. Spell Out as defined in chapter 1 does not apply
to complements. The reason is that only specifiers and adjuncts are strong islands.²

(6) **Spell Out Domain (so-Domain)**

All specifiers, all adjuncts and the whole sentence are spell out domains.

Consider the following sentence and its structure (for the purposes of this chapter I will ignore the contribution of tense and aspect):

(7) \textit{ok [A girl who had a donkey] _1 let [a boy who liked it] _2 pet it.}

\[
\text{DP}_1 \quad \text{vP} \\
\text{a girl who had a donkey} _3 \\
\text{v} \\
\text{let} \\
\text{DP}_2 \\
\text{a boy who liked it} _3 \\
\text{v'} \\
\text{pet it} _3 \\
\text{D}_3
\]

According to the Spell Out theory, this sentence is generated in the following way. First, \text{DP}_1 and \text{DP}_2 are generated and spelled out (in some order). Second, the rest of the sentence is generated with the use of \text{DP}_1, \text{DP}_2 and lexical items (\textit{let}, \textit{pet} and \textit{it}). Third, the resulting structure, represented by the tree under (7), is sent to Spell Out again. This is the first point of Spell Out when the semantic component “sees” the indefinite \textit{a donkey} and the two pronouns \textit{it} as parts of the same structure. In other words, the constituent represented by the tree under (7) is the minimal Spell Out domain that contains the indefinite and the two pronouns that are anaphoric to it.

At this point the meanings of all the previously spelled out constituents are “known” (\text{DP}_1 and \text{DP}_2). In addition, the meanings of all the terminal nodes (\textit{let}, \textit{pet} and \textit{it}) are “known”, because they come from the lexicon. What is crucial for the Island Condition is that at this point in the derivation the indefinite is inside an interpreted node that c-commands the pronoun.

²Certain complements, namely, phases, may also restrict movement. But this restriction is different from the restriction on movement out of strong islands. Movement out of a phase is possible through its left edge (Chomsky, 2001; Fox and Pesetsky, 2005). Movement out of a strong island is not possible at all (see chapters 2 and 3).
The final auxiliary notion that we will need before formally introducing the Island Condition is the notion of so-command (so for Spell Out), which is an extension of c-command (Reinhart, 1976) defined in the following way:

(8) **so-Command**
A node α so-commands a node β if and only if within the minimal so-domain XP that contains both α and β, the maximal so-domain YP that contains (or is) α (and is not XP itself) c-commands β.

For example, in (7) the indefinite *a donkey$_3$* so-commands both pronouns *it$_3$*. The minimal so-domain that includes the indefinite and the pronouns is the whole sentence. Within it the maximal so-domain that contains the indefinite is DP$_1$. DP$_1$ c-commands both pronouns.

The Island Condition can now be stated as the following requirement:

(9) **Island Condition**
Discourse anaphora is possible between an indefinite and a pronoun if and only if the indefinite so-commands the pronoun.

4.2.2 Anaphoric relations

Before turning to the discussion of how the Island Condition applies to discourse anaphora, I will briefly introduce some background assumptions about restrictions on anaphoric relations. In what follows I will assume that an anaphoric relation between a noun phrase and a pronoun can be established by two independent semantic mechanisms: *Variable Binding* and *Dynamic Binding*.

A pronoun can be bound as a variable by another noun phrase (see Paducheva, 1974, 1985; Partee, 1975, 1978; May, 1977; Heim, 1982; Haïk, 1984; Chierchia, 1995; Heim and Kratzer, 1998, and numerous others). Variable Binding is possible with quantified, indefinite or definite noun phrases. It is restricted by conditions A, B and C of the classical binding theory (Reinhart, 1976, 1983; Chomsky, 1981). In addition, the noun phrase must take scope over the pronoun.
In the case of Dynamic Binding the pronoun “picks up” the discourse referent introduced by the noun phrase. This mechanism is only available for indefinite noun phrases. Dynamic Binding is also restricted by conditions A, B and C of the classical binding theory. In addition, all the operators that take scope over the indefinite must take scope over the pronoun (see Heim, 1982, 130 and Haïk, 1984). Furthermore, the indefinite must be interpreted before the pronoun. It is this “interpreted before” relation that is determined by the Island Condition.

These assumptions are summarized in the table in (10).

(10) Semantic mechanisms establishing anaphoric relations

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Participants</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable Binding</td>
<td>DP_{quantified} − pro</td>
<td>A, B, C</td>
</tr>
<tr>
<td></td>
<td>DP_{indefinite} − pro</td>
<td>DP >^3 pro</td>
</tr>
<tr>
<td></td>
<td>DP_{definite} − pro</td>
<td></td>
</tr>
<tr>
<td>Dynamic Binding</td>
<td>DP_{indefinite} − pro</td>
<td>A, B, C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q > DP → Q > pro</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DP is interpreted before pro</td>
</tr>
</tbody>
</table>

As the result, an indefinite noun phrase can bind a pronoun either via Variable Binding or via Dynamic Binding. Crucially, the Island Condition only applies to Dynamic Binding.

In addition, I will assume that noun phrases can take scope via Quantifier Raising (or QR), which is subject to all the standard restrictions on movement. The Island Condition applies at the level of Logical Form (or LF), after all the noun phrases have moved to their scope positions, either overtly or covertly via QR.

Finally, specific indefinites, which take exceptional scope, will not be considered in this chapter. The Island Condition only applies to non-specific indefinites.

\[^{3}X > Y \] is to be read ‘X takes scope over Y’.
4.3 Indefinite anaphora and structure

4.3.1 The main argument

The main argument for the Island Condition is that it can account for all the three basic contrasts established in section 4.1 and repeated below as (11-13), without additional stipulations. That is, if we assume independently motivated syntactic structures for the constructions involved, the indefinite so-commands the pronoun in (11a), (12a) and (13a), but not in (11b), (12b) or (13b).

(11) a. \(ok \) [A person who came in with a woman\(_2\)] offered her\(_2\) drinks.
 b. \(* \) A person who came in with her\(_2\) offered [a woman\(_2\)] drinks.

(12) a. \(ok \) Rosa informed his\(_1\) parents [when she caught a student\(_1\) smoking].
 b. \(* \) Rosa informed his\(_1\) parents that she caught [a student\(_1\)] smoking.

(13) a. \(ok \) Rosa\(_1\) [came in with a woman\(_2\)] and offered her\(_2\) drinks.
 b. \(* \) Rosa\(_1\) came in with her\(_2\) and offered [a woman\(_2\)] drinks.

In what follows I will discuss these three syntactic configurations separately. Anaphora between a specifier and its sister, as in (11), will be discussed in section 4.3.2, anaphora between an adjunct and its sister, as in (12), will be discussed in section 4.3.3, anaphora between in a coordinate structure, as in (13), will be discussed in section 4.3.4.

4.3.2 Specifiers

A specifier is, by definition, a maximal projection that is merged with a phrase (see chapter 1), as is schematized in (14).
The Island Condition predicts that any indefinite inside a specifier can create an accessible antecedent for any pronoun that this specifier c-commands. In (14) α so-commands β. The minimal SO-domain that contains both α and β is either XP or some larger constituent. Within it, the maximal SO-domain that contains α is YP, which c-commands β. Any SO-domain that is larger than YP and contains α also contains β and is thus either the minimal SO-domain that contains both or larger.

This prediction is borne out for discourse anaphora. All the speakers I have consulted perceive a contrast between (15a) and (15b).

(15)
 a. ok $[\text{DP} \text{A person who came in with a woman}_2]$ offered her_2 drinks.
 b. * A person who came in with her_2 offered $[\text{DP} \text{a woman}_2]$ drinks.

The indefinite a woman$_2$ so-commands the pronoun her$_2$ in (15a), but not (15b). In (15a) the minimal SO-domain that contains both the indefinite and the pronoun is the whole sentence. Within it, the maximal SO-domain that contains the indefinite is the subject DP. There is no larger specifier or adjunct within this sentence that contains the indefinite. The subject DP c-commands the pronoun, the Island Condition is satisfied.

In (15b) the minimal SO-domain that contains both the indefinite and the pronoun is the whole sentence again. Within it, the maximal SO-domain that contains the indefinite is the indefinite itself. There is no larger specifier or adjunct within this sentence that contains the indefinite. The indefinite does not c-command the pronoun, the Island Condition is not satisfied.

4Thus, the Island Condition also subsumes as a special case a restriction on donkey anaphora proposed and defended by Büring (2004), according to which the quantified DP that contains the indefinite must c-command the pronoun.

176
satisfied.

Importantly, the contrast in (15) has to do with the structural configuration and not with the semantic context of the indefinite. For example, it is not due to the fact that in (15a) the indefinite is inside a relative clause that modifies the restrictor of an existential quantifier, and in (15b) it is not. The very same contrast can be observed in cases like (16).

(16) a. **ok** [DP The proof that a woman₁ was in the building at the moment of the crime] means that we will have to question her₁ in court.

 b. * The proof that she₁ was in the building at the moment of the crime means that we will have to question [DP a woman₁] in court.

In both (16a) and (16b) the indefinite is embedded under an attitude predicate. Nevertheless, discourse anaphora is possible in (16a), but not in (16b). The reason is that in (16a) the indefinite so-commands the pronoun, while in (16b) it does not. Here the same reasoning applies, as in the case of (15):

(17) The structure for (16a)

\[
\begin{array}{c}
\text{TP} \\
\text{DP} \\
\text{the proof that ... a woman₁ ...} \\
\text{T'} \\
\text{means that ... her₁ ...}
\end{array}
\]

Importantly, these contrasts should not be explained away by some restriction on specific indefinites taking exceptional scope. The indefinites in (15-16) are not specific, or at least, do not have to be specific. The same contrast is replicated in cases when the indefinite is interpreted in the scope of another quantifier, that is, in donkey anaphoric configurations:

(18) a. **ok** [DP Every professor who supervised a student₁ read her₁ thesis.

 b. * Every professor who supervised her₁ read [DP a student₁]'s thesis.
In both sentences in (18) the indefinite is to be interpreted in the scope of *every*. In (18a) the indefinite so-commands the pronoun, and the bound reading is fine. In (18b) the indefinite does not so-command the pronoun, and the bound reading is not fine.

In the case of multiple specifiers the Island Condition predicts that an indefinite inside a higher specifier will create an accessible antecedent for any pronoun inside a lower specifier, but not vice-versa. As is schematized in (19), a node inside a higher specifier (α) always so-commands a node inside a lower one (β). The maximal so-domain that contains α, but not β, is YP₁, which c-commands β. The maximal so-domain that contains β, but not α, is YP₂, which does not c-command α.

(19) Multiple specifiers

In English it is hard to find a configuration with multiple specifiers. But Russian clauses with the SOV word order may be a good example of that. It has been argued independently that both preverbal subjects and preverbal objects in Russian occupy the Spec,TP position (see Bailyn, 2004; Testelets, 2006; Kallestinova, 2007 and chapter 3 of this dissertation for discussion). If both the subject and the object appear before the verb, we may assume that they are both specifiers of the TP.

With the SOV word order an indefinite inside the subject can create an accessible antecedent for a pronoun inside the object, but not the other way around, as the Island Condition predicts:

(20) Russian

a. ok [sženšina, kotoraja vzjala odnu iz moix knig₁], [œë₁]
woman.NOM which.NOM take.PFV.PST one.ACC of my.GEN books.GEN she.ACC
tak i ne pročitala
such and NEG read.PFV.PST

‘[S The woman who took one of my books\textsubscript{1} ended up never reading [o it\textsubscript{1}].’

b. * [ženšina, kotoraja eë\textsubscript{1} vzjala], [o odnu iz moix knig\textsubscript{1}]
 woman.NOM which.NOM she.ACC take.PFV.PST one.ACC of my.GEN books.GEN
tak i ne pročitala
such and NEG read.PFV.PST

‘[S The woman who took it\textsubscript{1} ended up never reading [o one of my books\textsubscript{1}].’

The Island Condition can be violated if the indefinite is interpreted as specific. In particular, it can be violated, if the indefinite is modified by the adjective certain or the PP of mine. Thus, in (21) discourse anaphora is possible:

(21) \textit{ok} A professor who knows her\textsubscript{1} thinks [DP a student of mine\textsubscript{1}] got a job.

Specific indefinites, however, do not fall under the Island Condition. They may take exceptionally high scope, which can be achieved by a variety of semantic mechanisms proposed in the literature (see Fodor and Sag, 1982; Kratzer, 1998b; Charlow, 2014, 2020, and others). In what follows, I will assume that in cases like (21) the indefinite can bind the pronoun due to the same mechanism that allows it to take exceptional scope, without committing to any particular analysis.

The claim that the Island Condition can only be violated when a specific indefinite is involved could be supported by the following contrast:

(22) Every professor who knows her\textsubscript{1} thinks [DP a student of mine\textsubscript{1}] got a job.

a. \textit{ok} Σ>∀

b. * ∀>∃

Donkey anaphora is only possible in (22) if the indefinite has the highest scope. It is not possible if the indefinite takes scope below the universal quantifier. For example, with the adjective different, indicating the surface ∀>∃ scope, that is, with the indefinite a different student of mine the sentence in (22) becomes considerably worse. This is easily explained, if we assume that binding in a configuration like (22) is only possible with a specific indefinite.
4.3.3 Adjuncts

Indefinites inside adjuncts

The Island Condition predicts that an indefinite inside an adjunct can be an antecedent of a pronoun inside the main clause, but an indefinite inside a complement cannot.

A complement is, by definition, a maximal projection that is merged with a head, like YP in (23). An adjunct is, by definition, a maximal projection that is merged with a phrase, like ZP in (23).

(23) YP is the complement, ZP is an adjunct

\[
\begin{align*}
\text{XP} & \quad \text{YP} \quad \leftarrow \text{complement} \\
\text{X'} & \quad \text{X'} \\
\ldots & \quad \ldots \\
\beta & \quad \alpha_2 \\
\text{X} & \quad \text{YP} \quad \leftarrow \text{complement} \\
\ldots & \quad \ldots \\
\alpha_1 &
\end{align*}
\]

In (23) \(\alpha_1\) does not so-command \(\beta\), but \(\alpha_2\) does. The maximal so-domain that contains \(\alpha_1\), but not \(\beta\), is somewhere within YP. Whatever this constituent is, it does not c-command \(\beta\). However, the maximal so-domain that contains \(\alpha_2\), but not \(\beta\), is ZP, which does c-command \(\beta\).

This prediction is borne out:

(24) a. \(\text{OK}\) Ms. Brodie\(_2\) informed \textbf{his}_1 mother \([\text{CP}\text{after she caught an eight-grader}_1\text{ smoking in the bathroom}]\).

b. *Ms. Brodie\(_2\) informed \textbf{his}_1 mother that she caught \([\text{DP}\text{an eight-grader}_1]\) smoking in the bathroom.

Importantly, the contrast in (24) cannot be attributed to condition C. If we replace the
indefinite with a definite, for example, a proper name, like Karl, the contrast disappears.

But this contrast is predicted by the Island Condition. In (24a) the indefinite so-commands the pronoun. The minimal so-domain that contains both is the whole sentence. Within it, the maximal so-domain that contains the indefinite is the adjunct CP. There is no larger specifier or adjunct that contains the indefinite within this sentence. The adjunct CP c-commands the pronoun.

One can show independently that in English postposed temporal adjunct clauses are attached below the subject and above VP-internal arguments (see, e.g., Iatridou, 1991). In particular, in (24a) the adjunct CP is attached above the addressee argument his\textsubscript{1} mother. This is evident from the lack of condition C effects in sentences, like (25).

(25)
ok Ms. Brodie\textsubscript{2} informed him\textsubscript{1} that he\textsubscript{1}’s on probation [\textsubscript{CP}after she caught Karl\textsubscript{1} smoking in the bathroom].

These independently motivated assumptions lead us to the following structure:

(26) The structure for the vP in (24a)5

\begin{center}
\begin{tikzpicture}
 \node (vp) at (0,0) {vP};
 \node (vp_prime) at (-2,2) {v'};
 \node (t2) at (-4,4) {t\textsubscript{2}6};
 \node (vp_prime_prime) at (-5,6) {v'};
 \node (cp) at (2,2) {CP};
 \node (inform) at (-3,0) {inform his\textsubscript{1} mother};

 \draw (vp) -- (vp_prime);
 \draw (vp_prime) -- (vp_prime_prime);
 \draw (vp_prime_prime) -- (inform);
 \draw (inform) -- (t2);
 \draw (vp_prime) -- (cp);
 \draw (cp) -- (inform);
\end{tikzpicture}
\end{center}

If (26) is the correct representation of (24a), then in (24a) the adjunct CP, which is the maximal so-domain that contains the indefinite, but not the pronoun, c-commands the pronoun. Thus, the Island Condition is satisfied.

As for (24b), both the complement CP and the addressee DP his\textsubscript{1} mother are arguments of the verb inform. However, the complement clause is attached below the addressee, which

5For simplicity I will assume that post-posed adjunct clauses are attached at the vP-level. The predictions of the Island Condition will not change, if they are attached higher.

6Here and throughout I follow the standard assumption for English that the subject is base-generated as a specifier of vP and later moves to Spec,TP.
can also be shown independently by the presence of a condition C effect in (27a). The fact that (27b) is better than (27a), shows that the unacceptability of (27a) should be attributed to condition C.

(27) a. *Ms. Brodie₂ informed him₁ that Karl₂ is on probation.
 b. ok Ms. Brodie₂ informed his₁ mother that Karl₂ is on probation.

Given these assumptions, the VP in (24b) has the following syntactic structure:

(28) The structure for the VP in (24b)

Given (28), the indefinite does not SO-command the pronoun in (24b). The minimal SO-domain that contains both is the whole sentence. Within it, the maximal SO-domain that contains the indefinite is the indefinite itself. There is no larger specifier or adjunct that contains the indefinite within this sentence. The indefinite does not c-command the pronoun.

As before, the contrast in (24) should not be attributed to some restriction on exceptional scope. The indefinites in (24) do not have to be specific. The same contrast is replicated in the scope of a quantifier:

(29) a. ok Each time, Ms. Brodie informed his₁ mother [CP after she caught one of the eight-graders₁ smoking in the bathroom].
 b. * Each time, Ms. Brodie informed his₁ mother that she caught [DP one of the eight-graders₁] smoking in the bathroom.

This contrast is not particular to temporal when/after/before-clauses. Cataphora is possible with a variety of adjuncts, for example, with an if-clause (30a), a purpose clause (30b)
and a locative PP (30c). According to speakers’ judgments, (30b-c) are not ideal sentences, but they are definitely better than (24b).

(30) a. Ok Rosa will send him\textsubscript{1} to the hospital \([\text{CP} \text{if} \ a \ \text{boy}\textsubscript{1} \text{breaks} \text{his}\textsubscript{1} \text{leg}]\).

b. \textit{Recently Mr. Smith asked me to give him her\textsubscript{1} father’s phone number, \([\text{CP} \text{in order to discuss the progress of one of the eight-graders}\textsubscript{1}]\).}

c. \textit{Peter tells me he screened some of her\textsubscript{1} movies \([\text{PP} \text{at the party of one of the female directors}\textsubscript{1}] \text{a couple of days ago.}\)

Indefinites inside the main clause

The Island Condition predicts an indefinite in the object position inside may not create an accessible antecedent for a pronoun inside an adjunct, contrary to fact:

(31) ok Mary\textsubscript{2} wrote about \([\text{DP} \text{a witness}\textsubscript{1}] \) after PRO\textsubscript{2} hearing his\textsubscript{1} testimony.

In (31) the indefinite does not so-command the pronoun. The minimal so-domain that contains both is the whole sentence. Within it, the maximal so-domain that contains the indefinite is the indefinite itself. There is no larger specifier or adjunct that contains the indefinite within this sentence. The indefinite does not c-command the pronoun.

However, importantly, unlike any of the cases discussed above, this configuration also allows Variable Binding:

(32) ok Mary\textsubscript{2} wrote about \([\text{DP} \text{every witness}\textsubscript{1}] \) after PRO\textsubscript{2} hearing his\textsubscript{1} testimony.

Remember that quantified noun phrases can only establish a referential dependency with a pronoun via Variable Binding (see section 4.2.2). For Variable Binding the noun phrase must take scope over the pronoun. If this is correct, then the acceptability of (32) shows that a VP-internal object may take scope over a post-posed adjunct and bind a pronoun inside it as a variable.

This means that this scope should also be available in (31). If anything, indefinites are less restricted in their scope taking possibilities, than other quantifiers. As the result, the indefinite in (31) can bind the pronoun as a variable, which makes the sentence acceptable.

\footnote{For other adjuncts see section 4.6.1.}
Furthermore, if the Island Condition applies at LF (see section 4.2.2) and scope taking is achieved via QR, then (32) shows that a VP-internal object can undergo QR above a postposed adjunct. After QR the object will both c-command and so-command the pronoun inside the postposed adjunct. Thus, Dynamic Binding should also be possible in (31).

One may worry that the proposed QR-movement would violate the Weak Crossover condition. However, it has been established in the literature that Weak Crossover can be violated when binding from the object position into a postposed adjunct is involved (see Lasnik and Stowell, 1991; Pesetsky, 1995; Chierchia, 2020, and others). A possible explanation for this is that in these cases QR targets an A-position. Perhaps, it is the same position that is targeted by the so-called object shift in some Germanic languages (see Holmberg, 1986 and subsequent work), namely, an A-position above the vP, but below Spec,TP. If so, then it is not expected to obey Weak Crossover in the first place, since A-movements in general do not.

4.3.4 Coordination

In coordination discourse anaphora “proceeds” from left to right. That is, an indefinite inside the first conjunct creates an accessible antecedent for a pronoun inside the second conjunct, but not vice-versa, as is evident from the contrast in (33). This is the type of example that led most researchers to conclude that discourse anaphora in general “proceeds” from left to right.

(33) a. ok [Some woman$_3$ came in] and the host offered her$_3$ drinks.

b. * She$_3$ came in and the host offered [some woman$_3$] drinks.

However, the Island Condition may cover (33) as well, if we take into account independently established facts about the syntax of coordination. It has been argued that in a semantically symmetric coordination, as in (33), the connective *and* projects a ConjP structure, taking the second conjunct as its complement and the first conjunct as its specifier (see Ross, 1967; Johannessen, 1993, 1998; Kayne, 1994):
The indefinite so-commands the pronoun in (34a). The minimal so-domain that contains both is ConjP. Within it, the maximal so-domain that contains the indefinite is CP₁, which c-commands the pronoun.

However, the indefinite does not so-command the pronoun in (34b). The minimal so-domain that contains both is ConjP. Within it, the maximal so-domain that contains the indefinite is the indefinite itself, which does not c-command the pronoun.

The structure in (34), thus, predicts that an indefinite inside the first conjunct can create an accessible antecedent for the pronoun inside the second one, but not the other way around.

Interestingly, cataphora with an indefinite antecedent is sometimes possible even in coordination, contra to what standard theories would expect. This is possible in so-called concessive and or but:

(35) a. OK You can give it₁ fresh meat every day, [and still not make a tiger₁ your friend].

b. OK You can give it₁ fresh meat every day, [but still not make a tiger₁ your friend].

Crucially, the possibility of cataphora in coordination correlates with extraction asymmetries. In concessive coordination extraction is possible out of the first conjunct, but not out of the second one (Ross, 1967; Postal, 1998, 77-90):
(36) a. **ok** How much\textsubscript{1} can you [drink \textsubscript{-1}], [and still stay sober]?

b. **ok** How much\textsubscript{1} can you [drink \textsubscript{-1}], [but still stay sober]?

(37) a. */\textit{What}_{1} can you [drink a lot of liquor], [and still be able to do \textsubscript{-1}]?*

b. */\textit{What}_{1} can you [drink a lot of liquor], [but still be able to do \textsubscript{-1}]?*

In other words, in the case of concessive coordination, unlike in the case of semantically symmetric coordination, the second conjunct behaves like an island. Following Postal (1998), I will assume that in concessive coordination the second conjunct is, in fact, an adjunct. That is, there is no ConjP, rather the second conjunct is a maximal projection that is attached at some position within the first conjunct:

(38) The second conjunct as an adjunct (Postal, 1998, 87)

This explains (a) that the second conjunct is opaque for extraction (37), because it is an adjunct; (b) that the first conjunct is transparent (36), because it is the main clause; and (c) that concessive coordination allows cataphora with an indefinite antecedent.

If the structure in (38) is correct, then the indefinite so-commands the pronoun. The minimal so-domain that contains both is the whole sentence. *Within it,* the maximal so-domain that contains the indefinite is butP, which c-commands the pronoun.

Thus, the Island Condition successfully predicts that the possibility of cataphora with indefinite antecedents in coordination should correlate with the possibility of extraction out of the first and the second conjunct. Namely, cataphora is possible in the case of concessive coordination, but not in the case of semantically symmetric coordination.
4.3.5 Summary

To sum up, given independently motivated assumptions about the syntactic structure of the constructions involved, the Island Condition successfully derives the three contrasts involving discourse anaphora introduced in section 4.1:

(39)
\begin{align*}
 \text{a. ok [A person who came in with a woman}_2\text{] offered her}_2\text{ drinks.} \\
 \text{b. * A person who came in with her}_2\text{ offered [a woman}_2\text{] drinks.}
\end{align*}

(40)
\begin{align*}
 \text{a. ok Rosa informed his}_1\text{ parents [when she caught a student}_1\text{ smoking].} \\
 \text{b. * Rosa informed his}_1\text{ parents that she caught [a student}_1\text{] smoking.}
\end{align*}

(41)
\begin{align*}
 \text{a. ok Rosa}_1\text{ [came in with a woman}_2\text{] and offered her}_2\text{ drinks.} \\
 \text{b. * Rosa}_1\text{ came in with her}_2\text{ and offered [a woman}_2\text{] drinks.}
\end{align*}

4.4 Spelling Spell Out out

4.4.1 Semantic framework

In this section I will offer some assumptions about the mechanism of Spell Out at LF that derive the Island Condition. The ultimate proposal is that Spell Out assigns semantics to a piece of syntactic structure in a “top-to-bottom” fashion, proceeding from a spelled out to a non-spelled out sister, which enforces the Island Condition.

All the semantic frameworks that have an account for discourse and donkey anaphora, including indefinites-as-variables accounts (Paducheva, 1974, 1985, 1989a,b; Heim, 1982; Diesing, 1992), discourse representation theory (Kamp, 1981), dynamic semantics and dynamic predicate logic (Heim, 1982; Groenendijk and Stokhof, 1991; Chierchia, 1995), continuation semantics (Barker and Shan, 2006, 2008), local contexts (Schlenker, 2009, 2011) and pseudo-dynamic theories (Mandelkern, 2020; Elliott, 2020), at some point make reference to the surface linear order. The current proposal is to replace this reference with the Island Condition. Whenever a semantic theory of discourse anaphora makes reference to the “left – to – right” relation, it should be replaced by “spelled out – to – non-spelled out”
relation. From this perspective, the choice of the semantic framework does not matter, since all of the existing accounts make reference to the “left – to – right” relation. In other words, the Island Condition can be integrated into every theory mentioned above with minimal changes.

In what follows I will show how the Island Condition can be incorporated into Heim’s (1982) dynamic semantics. The reason for this particular choice is that in the case of dynamic semantics, we only need to amend one interpretation rule, namely, Dynamic Conjunction, because this is the only rule in this system that makes reference to the surface linear order. However, for the reasons discussed above, the choice of semantic framework is not essential.

The core proposal concerns the nature of Spell Out. Remember that Spell Out is an operation that takes a syntactic object and assigns it a phonological and semantic representation. The focus of this chapter is on the semantic side of this operation.

The input to Spell Out is a piece of syntactic structure, after all the overt and covert movements have occurred. This piece of syntactic structure will be called the Logical Form (or LF). The output of Spell Out is meaning (whatever meaning is assumed to be), assigned by a set of interpretation rules.

In what follows I will, first, discuss some background assumptions about the Logical Form (section 4.4.2); second, introduce Heim’s (1982) interpretation rules with an amended version of Dynamic Conjunction (section 4.4.3); third, go over a sample derivation (section 4.4.4); fourth, briefly discuss donkey anaphora and quantifiers (section 4.4.5); and fifth, discuss how the Island Condition can be derived from the Spell Out theory (section 4.4.6).

4.4.2 Logical Form

Let me begin by stating an assumption about the Logical Form, borrowed from Heim (1982), and an observation that follows from the Spell Out theory.

First, following Heim, I will assume that at LF all non-pronominal noun phrases must have moved out of their base argument positions overtly or covertly. In Heim’s system this

8In order to extend the Island Condition to donkey anaphora we will also need to amend the rule for quantifiers.
is guaranteed by a special NP-prefixing rule (Heim, 1982, 87). In the present system this is just a filter-principle applied to LF. Non-pronominal phrases may move out of their base positions for different reasons and by different types of movement, overtly or covertly, but at point of LF they must have moved.

This means that at LF the base argument positions are occupied either by pronouns or by traces. At the bottom of LF there will always be a V′ node dominating only the verb and all of its arguments, each of which is either a trace or a pronoun.

This results in LFs like the one in (42). Notably, here and throughout this section I will ignore the semantic contribution of tense and aspect (for simplicity) and assume that the root node at LF is always a VP or a vP.

(42) The LF for [A₂ girl who liked a₁ donkey] petted it₁.

Second, because of the Spell Out theory, every non-terminal node at LF has at most one uninterpreted daughter. Assuming binary branching for simplicity, there are only three logical possibilities. A non-terminal node can be the result of the Merge of (a) a head and a head; (b) a head and a phrase (head-complement configurations); or (c) a phrase and a phrase (X'-specifier/adjunct configurations).

In the first case both daughters bear interpretation, because they come from the lexicon. In the second case the head daughter bears interpretation, because it comes from the lexicon. In the third case, because of the Spell Out theory, at least one of the daughters has previously been spelled out and thus bears the interpretation assigned to it at some previous iteration of Spell Out. In fact, if branching is always binary, at LF every non-terminal node has either one interpreted and one uninterpreted daughter or two interpreted daughters.

For example, in (42) the VP node has one interpreted and one uninterpreted daughter.
(DP₂ and V’a respectively); the node V’a also has one interpreted and one uninterpreted daughter (t₂ and V’b respectively); finally, the node V’b has two interpreted daughters: petted and it₁.

4.4.3 Interpretation rules

In this section I will introduce Heim’s (1982) interpretation rules, which take an LF and assign it a context change potential. Only one of them, namely, Dynamic Conjunction, will be amended in order to incorporate the Island Condition.

Leaving aside quantifiers for now, in Heim’s system the meaning of every node is a context change potential (or CCP). A CCP is a function from contexts to contexts. A context c is a set of pairs of a world w and an a assignment function g. An assignment function g is a partial function from the set of natural numbers \(\mathbb{N} \) to \(D_a \) (g can also be represented as a sequence of individuals). In the present version of dynamic semantics assignment functions in a given context c can be of variable length. That is, among the world assignment pairs \(\langle w,g \rangle \) in a given context c, g may be defined for different sets of numbers.

In what follows, I will say that “a discourse referent” with number i is old (has been introduced) in c if for all the pairs \(\langle w,g \rangle \) in c g is defined for i (shorthand: \(i \in \text{dom}(g) \)). Otherwise “a discourse referent” with number i is new in c.⁹

The meaning of an indefinite DP, then, will be a context change potential that introduces a new discourse referent:

\[
\text{[a₁ donkey]} = \\
\lambda c. \{ \langle w,g \rangle | \langle w,g \rangle \in c \text{ and } 1 \in \text{dom}(g) \text{ and } g(1) \text{ is a donkey in } w \}.
\]

After the function in (43) is applied to a context c, the output context c’ will only contain those world-assignment pairs \(\langle w',g' \rangle \) where the assignment function g’ is defined for 1. The general interpretation rule for indefinite DPs is given in (44).

⁹“I find that identifying them (discourse referents – DP) with file cards (indexes in sets of assignments – DP) does away with questions as to their ontological status that are at best uninteresting and at worst confusing.” (Heim, 1982, 183)
Interpretation Rule 1. Indefinites

If a node DP$_i$ immediately dominates an indefinite D$_i$ and N, then $\left[DP_i \right] = \lambda c. \left\{ <w,g> | <w,g> \in c \text{ and } i \in \text{dom}(g) \text{ and } g(i) \text{ is in the extension of } N \text{ in } w \right\}$.

The meaning of the minimal V' node that dominates the verb and all of its argument positions (occupied by traces and pronouns due to our assumption about LF) is also a context change potential, which imposes pronominal and trace presuppositions on its input context:

(45) $\left[t_2 \text{ petted it}_1 \right] = \lambda c. \forall <w,g> \in c: 1,2 \in \text{dom}(g). \left\{ <w,g> | <w,g> \in c \text{ and } g(2) \text{ petted } g(1) \text{ in } w \right\}$.

The function in (45) is only defined for a context where in all the world-assignment pairs the assignment function is defined for 1 and 2. The general interpretation rule for predicates with pronominal or trace arguments is stated in (46).

Interpretation Rule 2. Predicates

If V' is the minimal node that dominates a verb V and all of its argument positions, occupied by pronouns and traces with indexes i...j, then $\left[V' \right] = \lambda c. \forall <w,g> \in c: i...j \in \text{dom}(g). \left\{ <w,g> | <w,g> \in c \text{ and } <g(i)...g(j)>^{10} \text{ is in the extension of } V \text{ in } w \right\}$.

Rules 1 and 2 correspond to Heim’s (1982, 234) rule I for atomic formulas. The new amendment concerns the basic composition rule Dynamic Conjunction (Heim’s rule II for cumulative molecular formulas, see Heim, 1982, 234).

Interpretation Rule 3. Dynamic Conjunction

If $\gamma=[\alpha \beta]$, where α is spelled out and β is not, then

$$\left[\gamma \right] = \lambda c. \left[\beta \right] \left(\left[\alpha \right] (c) \right).$$

The rule in (47) composes two context change potentials to receive a complex function. Crucially, the order in which the two context change potentials are composed corresponds

10 The order in which arguments are fed to the verb is determined by the internal structure of V'.

191
not to the linear order of the corresponding daughter nodes, but to the “spelled out – non spelled out” distinction.

4.4.4 Sample derivations

We can now derive the test sentence \(A_2 \) girl \(\text{who}_2 \) liked \(a_1 \) donkey petted \(it_1 \). The first step is to generate the LF of the subject DP, which looks as follows:

\[
\text{(48)} \quad \text{The LF of the subject DP } a_2 \text{ girl who}_2 \text{ liked } a_1 \text{ donkey.}
\]

The object inside the relative clause \((a_1 \text{ donkey})\) has moved out of its base position because of Heim’s requirement on LFs. The relative pronoun, corresponding to the subject of the relative clause, has also moved out of its base position, leaving behind a co-indexed trace. For the present purposes I will assume that the relative pronoun is semantically vacuous.

The second step is to spell out the subject DP, that is, assign it a CCP. Given the interpretation rules introduced above, Spell Out assigns the following meanings to the non-interpreted nodes of (48):

\[
\text{(49)} \quad \begin{align*}
\text{a. } & [\text{DP}_{\text{subj}}] = \lambda c. [\text{RelP }]([\text{DP}_2](c)). & \text{by Dynamic Conjunction (47)} \\
\text{b. } & [\text{RelP }] = [\text{VP }]. & \text{who}_2 \text{ is vacuous} \\
\text{c. } & [\text{VP }] = \lambda c. [V'_a]([\text{DP}_1](c)). & \text{by Dynamic Conjunction (47)}
\end{align*}
\]
d. $\llbracket V_a' \rrbracket = \lambda c: \forall <w,g> \in c: 1,2 \in \text{dom}(g).
\{ <w,g> \mid <w,g> \in c \text{ and } g(2) \text{ liked } g(1) \text{ in } w \}.

As the result, the meaning of DP_{subj} is a complex CCP, composed of three CCPs: (1) the CCP of DP_2, (2) the CCP of DP_1 and (3) the CCP of $V_a' – \text{in that order}$. The order is fully determined by Dynamic Conjunction, which relies on the “spelled out – non-spelled out” distinction. The CCP of the subject DP, then, introduces two new discourse referents, a girl and a donkey:

\begin{equation}
[\text{DP}_{\text{subj}}] = \lambda c. \{ <w,g> \mid <w,g> \in c \text{ and } g(2) \text{ is a girl, } g(1) \text{ is a donkey and } g(2) \text{ liked } g(1) \}\.
\end{equation}

The third step is to generate the LF for the rest of the sentence:

\begin{equation}
\text{The LF of the test sentence } [a_2 \text{ girl who}_2 \text{ liked } a_1 \text{ donkey] petted it}_1.
\end{equation}

The fourth step is to spell this LF out. Given the interpretation rules above, Spell Out assigns the meanings to the non-interpreted nodes in (51) as follows:

\begin{equation}
\begin{align*}
\text{a. } [\text{VP}] & = \lambda c. [V_a']([\text{DP}_2](c)). \text{ by Dynamic Conjunction (47)} \\
\text{b. } [V_a'] & = \lambda c: \forall <w,g> \in c: 1,2 \in \text{dom}(g).
\{ <w,g> \mid <w,g> \in c \text{ and } g(2) \text{ petted } g(1) \text{ in } w \}.
\end{align*}
\end{equation}
As the result, the meaning of the VP is a complex CCP, composed of two CCPs: (1) the CCP of DP_2 (the subject DP) and (2) the CCP of V′_a — *in that order*. The order is, again, fully determined by Dynamic Conjunction. The CCP of the VP, then, introduces two new discourse referents: a girl and a donkey. The pronoun *it_1* is dynamically bound by the indefinite inside the subject:

(53)
\[
 \lambda c. \{ <w,g> | \begin{align*}
 &g(2) \text{ is a girl,} \\
 &g(1) \text{ is a donkey} \\
 &g(2) \text{ liked } g(1) \\
 &\text{and } g(2) \text{ petted } g(1) \}
\]

Cases of discourse cataphora with adjunct clauses will receive a very similar treatment. For simplicity, I will continue to ignore the contribution of tense and aspect and assume that *when* is semantically vacuous. As the result, a *when*-clause is simply a CCP that is composed with the CCP of the main clause via Dynamic Conjunction:

(54)
The LF for *Rosa called his_1 parents when she caught a_1 student smoking*.

Importantly, the CCP of the main clause will apply to the result of the CCP of the *when*-clause, because Dynamic Conjunction is sensitive to Spell Out:

(55)
\[
 \lambda c. [V'_a]([CP](c)).
\]

Because the CCP of the *when*-clause updates the context before the CCP of its sister V′_a, the indefinite inside the *when*-clause can dynamically bind any pronoun inside V′_a (any pronoun that the *when*-clause c-commands).
The Island Condition is enforced in the following way. At LF any non-terminal node has at most one uninterpreted daughter. Dynamic Conjunction (47) updates the context by the CCP of the interpreted daughter first. Between an interpreted and an uninterpreted sister the former will update the context before the latter. As the result, an indefinite inside the interpreted node introduces a discourse referent before any of the pronouns inside the sister of this interpreted node come into play. Hence, an indefinite inside an interpreted node will introduce a new discourse referent before all the pronouns that this interpreted node c-commands impose their presuppositions on their local input context (the Island Condition).

4.4.5 Quantifiers

Let me briefly point out that the Island Condition is satisfied in cases of donkey anaphora as well, that is, cases when the indefinite is interpreted in the scope of another quantificational operator. The Island Condition subsumes the structural restriction on donkey anaphora introduced by Haïk (1984) and Büring (2004), namely, that the quantificational DP that contains the indefinite must c-command the pronoun.

In the case of donkey anaphora with adnominal quantifiers the indefinite is inside the NP (called “the restrictor”), and the pronoun is inside the sister of the DP projected by the quantifier (called “the scope”):

\[
(56) \begin{align*}
\text{a. } & \text{ok } \left[\text{Every girl who liked } a_1 \text{ donkey} \right] \text{ petted } it_1. \\
\text{b. } & \text{ok } \left[\text{Most girls who liked } a_1 \text{ donkey} \right] \text{ petted } it_1. \\
\text{c. } & \text{ok } \left[\text{No girl who liked } a_1 \text{ donkey} \right] \text{ petted } it_1.
\end{align*}
\]

This is in accordance with the Island Condition, since in all the sentences in (56) the indefinite so-commands the pronoun.

In the case of donkey anaphora with adverbial quantifiers the indefinite is inside an adjunct clause (called “the restrictor”), and the pronoun is inside the main clause (called “the scope”):
This is also in accordance with the Island Condition. In all the sentences in (57) the indefinite so-commands the pronoun.

In dynamic theories these data are accounted for by the following assumptions. First, an adnominal quantifier takes its NP as its first argument (restrictor) and the sister of its DP as its second argument (scope). Second, an adverbial quantifier takes an adjunct CP as its first argument (restrictor) and the sister of this CP as its second argument (scope). Third, indefinite anaphora always proceeds from the restrictor to the scope of any given quantifier.

This raises the following explanatory question: Why is this the case? Why is the noun phrase always the first argument of an adnominal quantifier and why is an adjunct clause always the first argument of an adverbial quantifier? Perhaps, in adnominal cases this can be due to the fact that the quantifier forms a constituent with its first argument (the restrictor). But in adverbial cases this is not true, or at least, there are no independent reasons to believe it to be true. There is no independent data that would suggest that always forms a constituent with the when-clause in (57a) at any point of syntactic derivation.

A principled explanation may come from the Spell Out theory. In a configuration ‘Q(quantifier) α β’ α serves as the first argument of Q, because α has been spelled out and β has not.

Heim’s (1982) LF's for quantifiers involve ternary branching. Adnominal quantifiers move from their base position leaving a co-indexed indefinite D as a trace:
(58) The LF for Every₂ girl who liked a₁ donkey petted it₁.

![Diagram of LF for Every₂ girl who liked a₁ donkey petted it₁.]

The interpretation rule for adnominal quantifiers treats the left node after every as the restrictor and the right node after every as the scope. That is, [every DP V′] means something like “for every update by DP a subsequent update by V′ does not result in an empty context”.

Adverbial quantifiers are base generated as a third daughter to a node that immediately dominates the adjunct clause, if there is one:

(59) The LF for Rosa always treats him₁ when a₁ boy gets sick.

![Diagram of LF for Rosa always treats him₁ when a₁ boy gets sick.]

The interpretation rule for adverbial quantifiers treats the adjunct CP as the restrictor and the main clause as the scope. That is, [always V′ CP] means something like “for every update by CP a subsequent update by V′ does not result in an empty context”.

In the present system these two facts are not accidental. The first argument is always a spelled out constituent. The interpretation rules for adnominal and adverbial quantifiers can be unified:
Interpretation Rule 4. Quantifiers

If $\gamma = [\text{every/always } \alpha \beta]$, where α is spelled out and β is not, then

$$[\gamma] = \lambda c. \{ <w,g> | <w,g> \in c \text{ and } \forall <v,h> \in [\alpha]({\{<w,g>\}}): \exists <v',h'> \in [\beta]({\{<v,h>\}}) \}.$$

The rule in (60) delivers Heimian truth-conditions for quantificational sentences and, as a consequence, leads to all of the shortcomings of Heim’s system, including the famous proportion problem. However, for the present purposes it is important that, thanks to the reference to Spell Out, this rule extends the Island Condition to donkey anaphora.

4.4.6 Spell Out at LF

The theory presented above begs an explanatory question. Why do interpretation rules (Dynamic Conjunction and the rule for quantifiers) make reference to Spell Out? Why is the spelled out daughter always the first argument for any dynamic connective?

A potential answer to this question comes from an assumption that Spell Out applies to LF “from top to bottom”. For example, consider the following LF:

(61) The LF for $[A_2 \text{ girl who liked } a_1 \text{ donkey}] \text{ petted } it_1$.

$$\text{VP}$$

$$\text{DP}_2$$

$$a_2 \text{ girl who liked } a_1 \text{ donkey}$$

$$t_2$$

$$V_a'$$

$$V_b'$$

$$V$$

$$D_1$$

petted

it_1

Spell Out is a function that receives a syntactic object and returns a meaning. When Spell Out receives the LF in (61), it receives a set $\text{VP} = \{\text{DP}_2 V_a'\}$. It has to assign this set a meaning, which should be calculated based on the already known meaning of DP_2 and the not yet known meaning of V_a'.

11The question of whether Spell Out applies “from bottom to top” or “from top to bottom” is widely discussed with respect to PF (see Bobaljik, 2000, and subsequent literature), because these two options lead to different predictions. Similarly, it makes perfect sense to ask the same question about Spell Out at LF.
Suppose that at this point Spell Out records the meaning of the VP as the already available meaning of DP$_2$ (a CCP that introduces two discourse referents). After that Spell Out proceeds to interpret V$'_a$. The meaning of V$'_a$ is calculated based on the interpretation rule for predicates. After that, Spell Out “appends” the already recorded meaning (the CCP of DP$_2$) by the newly calculated meaning of V$'_a$. As the result, the CCP of the VP is a composition of the CCP of DP$_2$ and the CCP of V$'_a$ in that order. The order is determined by the order in which Spell Out interprets LF (“from top to bottom”).

Assume that Spell Out receives LF, a syntactic structure, which is a set $\gamma = \{\alpha, \beta\}$. It starts by creating a vacuous CCP, call it CCP$_{root}$, and writing it as $\lambda c.c$. Then Spell Out applies whichever interpretation rule fits γ. Each interpretation rule “appends” CCP$_{root}$ and includes instructions about what to interpret next:

(62) **Interpretation Rule 3. Dynamic Conjunction** (new version)

Given CCP$_{root}$ and $\gamma = \{\alpha, \beta\}$, where α is interpreted and β is not and $[[\alpha]]$ is a CCP, do the following:

a. Rewrite CCP$_{root}$ as $\lambda c. [[\alpha]]$ (CCP$_{root}(c)$).

b. Proceed to interpret β, with the new rewritten CCP$_{root}$.

(63) **Interpretation Rule 2. Predicates** (new version)

Given CCP$_{root}$ and γ, which is a minimal node that dominates a verb and its arguments that are pronouns and traces with indexes i...j, do the following:

a. Rewrite CCP$_{root}$ as $\lambda c. [[\gamma]]$ (CCP$_{root}(c)$), where

$$[[\gamma]] = \lambda c. \forall <w,g> \in c: i...j \in \text{dom}(g).$$

$$\{ <w,g> | <w,g> \in c$$

$$\quad \text{and } <g(i)...g(j)> \text{ is the extension of } V \text{ in } w \}.$$

b. Terminate Spell Out.
(64) **Interpretation Rule 1. Indefinites** (new version)

Given \(\text{CCP}_{\text{root}} \) and \(\gamma \), which is a node that immediately dominates an indefinite \(D_i \) and \(N \), do the following:

a. Rewrite \(\text{CCP}_{\text{root}} \) as \(\lambda c. \{ \gamma \} (\text{CCP}_{\text{root}}(c)) \), where

\[
\{ \gamma \} = \lambda c. \{ <w,g> | <w,g> \in c \\
\text{and } i \in \text{dom}(g) \\
\text{and } g(i) \text{ is in the extension of } N \text{ in } w \}
\]

b. Terminate Spell Out.

Meanwhile, quantifiers create an auxiliary CCP (\(\text{CCP}_{\text{aux}} \)):

(65) **Interpretation Rule 4. Quantifiers** (new version)

Given \(\text{CCP}_{\text{root}} \) and \(\gamma = \{\text{every/always } \alpha \beta\} \), where \(\alpha \) is interpreted and \(\beta \) is not and \(\{ \alpha \} \) is a CCP, then

a. Create \(\text{CCP}_{\text{aux}} \) and write it as \(\lambda c. c \).

b. Proceed to interpret \(\beta \) with \(\text{CCP}_{\text{aux}} \) instead of \(\text{CCP}_{\text{root}} \).

c. After step b terminates, rewrite \(\text{CCP}_{\text{root}} \) as \(\lambda c.\{ \gamma \}(\text{CCP}_{\text{root}}(c)) \), where

\[
\{ \gamma \} = \lambda c. \{ <w,g> | <w,g> \in c \text{ and } \\
\forall<v,h> \in \{ <w,g> \} : \exists<v',h'> \in \text{CCP}_{\text{aux}}(\{<v,h>\}) \}
\]

d. Terminate Spell Out.

Every interpretation rule, first, “records” the meaning of the spelled out daughter and only then proceeds to interpret the non-spelled out one. Consequently, any spelled out constituent (any specifier and any adjunct) updates the input context before its sister.

For example, when Spell Out applies to the LF in (61), it begins by creating a vacuous \(\text{CCP}_{\text{root}} = \lambda c. c. \)

The input LF is a piece of syntactic structure, a set \(\text{VP} = \{ \text{DP}_2 \ V'_{\text{a}} \} \), where \(\text{DP}_2 \) is interpreted and \(V'_{\text{a}} \) is not and \(\{ \text{DP}_2 \} \) is a CCP. Given this description, the rule of Dynamic Conjunction (62) applies. According to (62a), \(\text{CCP}_{\text{root}} \) is rewritten as \(\lambda c.\{ \text{DP}_2 \}(\text{CCP}_{\text{root}}(c)) \), which is equivalent to \(\lambda c.\{ \text{ DP}_2 \}([\lambda c'.c'](c)) \), which is equivalent to \(\lambda c.\{ \text{DP}_2 \}(c) \). Ac-
According to (62b), the next step is to proceed to interpret \(V'_a \).

The node \(V'_a \) is the minimal node that dominates a verb \(V \) and all of its argument positions, occupied by pronouns and traces with indexes 2 and 1. Given this description, the rule for predicates (63) applies. According to (63a), CCP\(_{\text{root}}\) is rewritten as \(\lambda c.[[V'_a]](\text{CCP}_{\text{root}}(c)) \), which is equivalent to \(\lambda c.[[V'_a]][[[DP_2]](c)) \). According to (63b), Spell Out is terminated.

The result is a complex CCP composed of the CCP of DP\(_2\) and the CCP of \(V'_a \) in that order. The order is fully determined by the fact that the Spell Out rules (the interpretation rules) apply to LF in a top-to-bottom fashion, proceeding from a spelled out to a non spelled out sister.

4.5 Extensions\(^{12}\)

4.5.1 Presupposition projection

One of the key contributions of dynamic semantics is a uniform treatment of presupposition projection and discourse anaphora. The pronoun introduces a presupposition, which can be satisfied by the indefinite, if the indefinite is “interpreted before” the pronoun.

The central prediction of theories that followed dynamic semantics in unifying these two phenomena is that the “direction” of discourse anaphora should match the “direction” of presupposition projection. The presuppositions of an expression \(\alpha \) can be filtered out by another expression \(\beta \), if \(\beta \) is interpreted before \(\alpha \). In other words, \(\beta \) can filter out the presuppositions of \(\alpha \), if \(\alpha \) is interpreted in the local context of \(\beta \). This is to be understood as a necessary, but not sufficient condition.

In the previous sections I have argued that the direction of discourse anaphora is determined by Spell Out, i.e., the Island Condition. In terms of local contexts the same generalization can be stated in the following way:

\[(66) \quad \textbf{The Island Condition (local context version)} \]

The local context of \(\alpha \) includes all interpreted nodes that c-command \(\alpha \).

\(^{12}\)The data in sections 4.5 and 4.6 were only checked with a couple of speakers.
In the existing theories of presupposition projection (see e.g. Schlenker, 2009, 2011) the local context for any expression α includes all the nodes that linearly precede α. The proposal that this chapter advocates for is to replace “precede” by “so-command”. A presuppositions of an expression α can be filtered out by any material inside an interpreted node that c-commands α. That is a necessary, though not sufficient condition.

Indeed, at least, preliminary, it seems that the three basic configurations introduced in section 4.1 and discussed in section 4.3 show the same behavior when it comes to presupposition projection, as they do with respect to discourse anaphora.

In coordination the first conjunct may filter out the presuppositions of the second one. Thus, the sentence in (67a) presupposes that Rosa used to smoke, while the sentence in (67b) does not.

(67)
 a. Rosa stopped smoking.
 b. Rosa used to smoke and then stopped smoking.

First, the proposition ‘Rosa used to smoke’ is entailed by both (67a) and (67b), as is evident from the fact that both (68a) and (68b) are contradictions.

(68)
 a. Rosa stopped smoking. #But she didn’t use to.
 b. Rosa used to smoke and then stopped smoking. #But she didn’t use to.

Second, this entailment projects from downward entailing environments for (67a), but not for (67b). If the clause in (67a) is embedded inside the prejacent of a conditional, the whole sentence still entails ‘Rosa used to smoke’. Thus, (69a) is a contradiction. Meanwhile, if the clause in (67b) is embedded inside the prejacent of a conditional, the whole sentence does not entail ‘Rosa used to smoke’. Thus, (69b) is not a contradiction.

(69)
 a. If Rosa stopped smoking, our anti-smoking campaign was a success. #But she didn’t use to.
 b. If Rosa used to smoke and then stopped smoking, our anti-smoking campaign was a success. ok But she didn’t use to.
This is in accordance with the Island Condition. Since the first conjunct is the specifier of ConjP, which c-commands the second conjunct, we expect that material inside it can filter out the presuppositions of the second conjunct.

In conditional sentences the prejacent (the *if*-clause) can filter out the presuppositions of the main clause, *regardless* of the surface linear order. Thus, the sentence in (70a) presupposes that Rosa used to smoke, while the sentence in (70b) does not.

(70)
\begin{enumerate}[a.]
 \item Rosa *stopped smoking*.
 \item Rosa *stopped smoking*, if she *used to smoke*.
\end{enumerate}

In fact, the sentence in (70b) does not even entail that Rosa smokes. The sequence in (71a) leads to a contradiction, while the sequence in (71b) does not.

(71)
\begin{enumerate}[a.]
 \item Rosa *stopped smoking*. #But she didn’t use to smoke.
 \item Rosa *stopped smoking*, if she *used to smoke*. \textcolor{green}{\textit{ok}}But she didn’t use to smoke.
\end{enumerate}

Finally, with the noun phrase of an adnominal quantifier can filter out the presuppositions of its scope. The sentence in (72a) presupposes that every boy used to smoke, while the sentence in (72b) does not even entail it.

(72)
\begin{enumerate}[a.]
 \item Every boy *stopped smoking*.
 \item Every boy who *used to smoke* stopped smoking.
\end{enumerate}

This is evident from the fact that the sequence in (73a) leads to a contradiction, while the sequence in (73b) does not.

(73)
\begin{enumerate}[a.]
 \item Every boy *stopped smoking*. #But not every boy used to smoke.
 \item Every boy who *used to smoke* stopped smoking. \textcolor{green}{\textit{ok}}But not every boy used to smoke.
\end{enumerate}

To sum up, in coordination the first conjunct can filter out the presuppositions of the second conjunct; in conditional sentences the adjunct *if*-clause can filter out the presuppositions of the main clause; and a quantified DP can filter out the presuppositions of its scope:
(74)
 a. Rosa stopped smoking.
 b. Rosa [used to smoke], and then stopped smoking.

(75)
 a. Every boy stopped smoking.
 b. [Every boy who used to smoke] stopped smoking.

(76)
 a. Rosa stopped smoking.
 b. Rosa stopped smoking, [if she used to smoke].

These data are in accordance with the Island Condition. Any specifier creates the local context for its sister. In coordination the local context of the second conjunct includes the first conjunct (74). The local context of any X'-projection includes Spec,XP (75). In addition, any adjunct creates the local context for its sister. Thus, an adjunct clause always creates the local context for its sister regardless of the surface linear order (76).

If we assume that the presuppositions of a presupposition trigger α must be satisfied in the local context of α (Schlenker, 2009, 2011) and the Island Condition view of local contexts (66), then we have a natural explanation for all the contrasts in (74-76) without additional stipulations. In (74a), (76a), (75a) there is an interpreted node that c-commands the presupposition trigger and entails the presupposition. The presupposition is filtered out. In (74b), (76b), (75b) there is no such node. The presupposition is not filtered out.

4.5.2 Temporal iconicity

Consider the pair of sentences in (77). Both of them contain two clauses, one perfective and one imperfective, one of which is embedded under *when*.
a. Rosa was reading a book, when Karl opened the door.

b. Karl opened the door, when Rosa was reading a book.

Where OPEN marks the runtime of the opening event; READ marks the runtime of the reading event; UT stands for the utterance time.

Regardless of which clause is the main clause and which clause is the embedded clause, the imperfective clause introduces a background event, while the perfective one introduces an event temporally included in the runtime of this background event (Dahl, 1985; Klein, 1994). In other words, in both (77a) and (77b) the event of Rosa reading a book temporally includes the event of Karl opening the door, as is illustrated by the scheme under (77).

This fact can be accounted for if we introduce a symmetric conjunctive semantics for when. This complementizer simply identifies the Topic Time of the main clause with the Topic Time of the embedded clause.

Aspect (perfective or imperfective) introduces a time interval, standing in a particular temporal relation to the event of the verb phrase (Klein, 1994; Kratzer, 1998a). Imperfective introduces a time interval that is included in the event time (78a). Perfective introduces a time interval that includes the event time (78b):

\[(78)\]
\[\text{PFV} \leadsto \lambda P_{\langle vP \rangle}. \lambda t. \exists e: P(e) \land \tau(e) \subseteq t.\]
\[\text{IMP} \leadsto \lambda P_{\langle vP \rangle}. \lambda t. \exists e: P(e) \land t \subseteq \tau(e).\]

Assuming the anaphoric theory of tense (Partee, 1973; Kratzer, 1998a), the predicate of time-intervals that the Aspect head returns, after applying to the vP, is predicated over a salient time interval in the past (the Topic Time):

\[(79)\]
\[\text{‘Karl opened the door’} \leadsto \exists e: \text{open-the-door-by-Karl}(e) \land \tau(e) \subseteq \text{TT}.\]
\[\text{‘Rosa was reading a book’} \leadsto \exists e: \text{read-a-book-by-Rosa}(e) \land \text{TT} \subseteq \tau(e).\]
Suppose that *when* conjoins two clauses, while requiring their Topics Times to match:¹³

\[(80)\] Attachment of the *when*-clause:

\[
\begin{align*}
\text{CP} & \quad \text{TT} \quad 1 \\
\text{CP} & \quad \text{TT} \quad 1
\end{align*}
\]

PFV Karl open the door
when IMP Rosa read a book

As the result, the Topic Time of the main clause stands in two different temporal relations to two events:

\[(81)\] ‘IMP when PFV’ = ‘PFV when IMP’ \(\sim\) \(\tau(e_{\text{open}}) \subseteq \text{TT} \subseteq \tau(e_{\text{read}})\)

Crucially, because the interpretation of the *when*-clause is “symmetric” (it is combined with the main clause via Dynamic Conjunction or predicate modification), it does not matter which clause is perfective and which clause is imperfective. The temporal relation will always be as is illustrated in (81): the event described by the imperfective clause temporally includes the event described by the perfective clause.

If both clauses are perfective, the sentence has a precedence inference. The event described by the *when*-clause is either simultaneous with or precedes the event described by the main clause, regardless of the linear order between the clauses. Thus, the sentence in (82) can describe a situation when Rosa coming in preceded Karl opening the door (82a), a situation when Rosa coming in happened simultaneously with Karl opening the door (82b), but not a situation when Rosa coming in happened after Karl opening the door (82c).

¹³In the dynamic semantic framework, presented in the previous section, this could be done via Dynamic Conjunction of two CCPs. In more conservative theories the *when*-clause can combine with the main clause Asp' via predicate modification.
Karlopenedthedoor,whenRosacamein.

The sketch theory presented above makes no predictions about the temporal relation between two events described by two perfective clauses. Both events should be included in one salient time interval in the past, the Topic Time. The temporal order between them should not be specified:

(83) Predicted truth-conditions (no entailment about the order of events):

a. 'Karl opened the door’ \(\leadsto \exists e. \) open-the-door-by-Karl(e) & \(\tau(e) \subseteq TT \).

b. 'Rosa came in’ \(\leadsto \exists e. \) come-in-by-Rosa(e) & \(\tau(e) \subseteq TT \).

c. ‘a when b’ \(\leadsto \tau(e_{\text{come.in}}) \subseteq TT \& \tau(e_{\text{open}}) \subseteq TT \).

There is a way of deriving the precedence inference, however, without changing our assumptions about the meaning of when. It crucially relies on the Island Condition view of the semantic side of Spell Out. That is, it crucially relies on the fact the the adjunct clause is interpreted before its sister, regardless of the surface linear order between them.

Suppose that there is a general pragmatic principle of the following form:
(84) **Temporal Iconicity**

The order of context updates introducing new events within an utterance corresponds to the temporal order between these events, unless this contradicts the truth-conditions.

The context update created by the *when*-clause precedes the context update created by the main clause (due to the Island Condition). Hence, if the temporal order between the events described by the two clauses is unspecified, as in the case of two perfective clauses, the temporal order matches the update order. That is, the event described by the adjunct clause precedes the event described by the main clause.

A similar effect has been observed in TP-coordination (Bjorkman, 2013, 2014, among many others), which also leads to asymmetric inferences. There the event described by the first conjunct may not follow the event described by the second conjunct. This is also in accordance with the Island Condition. The first conjunct, being the specifier of ConjP, is interpreted before the second conjunct, which is the complement of ConjP.

4.6 Issues

In this section I will briefly discuss two potential issues with the presented theory. One concerns discourse and donkey anaphora with non-temporal and non-conditional adjunct clauses (section 4.6.1). The other concerns disjunction (section 4.6.2).

4.6.1 Other Adjuncts

The key advantage of the Island Condition is that it accounts for the possibility of cataphora in a principled way. More precisely, it predicts that cataphora will only be possible to an indefinite in a postposed adjunct.

However, the Island Condition predicts that cataphora is possible to an indefinite inside *any* adjunct, which is not the case. It is possible with postposed temporal *after/when/before*-clauses, *if*-clauses, locative PPs (see section 4.3.3 above), but not with *because*-clauses, *while*-clauses or *since*-clauses:
(85) a. * I had to call his\textsubscript{1} parents, [since a boy\textsubscript{1} got sick].
 b. * Last summer Rosa had to call his\textsubscript{1} parents, [because a boy\textsubscript{1} got sick].
 c. * I was talking to his\textsubscript{1} parents, [while a boy\textsubscript{1} was playing in the garden].

In all the three sentences in (85) the adjunct clause is attached higher than the pronoun, which means that the indefinite so-commands the pronoun. This is supported by the lack of condition C effects in the following sentences:

(86) a. ok I had to visit him\textsubscript{1}, since Karl\textsubscript{1} wasn’t feeling well.
 b. ok I had to visit him\textsubscript{1}, because Karl\textsubscript{1} wasn’t feeling well.
 c. ok I had to visit him\textsubscript{1}, while Karl\textsubscript{1} was sick.

Nevertheless, discourse anaphora is not possible. Either we must abandon the Island Condition or discourse anaphora in (85a-c) must be ruled out independently. In the latter case we would have to assume that the Island Condition is a necessary, though not sufficient requirement on dynamic binding. Since the solution may be different for since-clauses, on the one hand, and because-clauses and while-clauses, on the other hand, I will discuss them separately.

Let me begin with since-clauses. Iatridou (1991) argues that since-clauses are obligatory presupposed and do not participate in any binding relations with the main clause. In particular, while variable binding is possible into a temporal or if-clause, it is not possible into a since-clause:

(87) a. * Every boy\textsubscript{1} had to go to bed since he\textsubscript{1} had to be up by 5. (Iatridou, 1991, 83)
 b. ok Every boy\textsubscript{1} came when I called him\textsubscript{1}.
 c. ok Every boy\textsubscript{1} will come if I call him\textsubscript{1}.

While temporal and if-clauses can be associated with focus, since-clauses cannot:
(88)
 a. * John left home only/just since he was short of money. (Iatridou, 1991, 84)
 b. ok Rosa came only/just when I called her.
 c. ok Rosa will come only/just if I call her.

A since-clause necessarily escapes the scope of main clause negation, while a temporal or if-clause can be interpreted in its scope:

(89)
 a. He did not leave since he was sick.
 # In fact, he wasn’t sick. (Iatridou, 1991, 88)
 b. Rosa did not come when I called her.
 ok In fact, I never did (call her).
 c. Rosa will not come if I call her.
 ok In fact, she will come if I don’t.

These data can be accounted for, if we assume that since-clauses have the structure in (90). In (90) since serves as a connective between two clauses, taking the clause after it as its complement and the “main” clause as its specifier (cf. Frey’s 2016; 2020 analysis of so-called non-integrated adjunct clauses).

(90) The syntax of since-clauses:

\[
\text{SinceP} \\
\text{CP}_1 \quad \text{Since'} \quad \text{CP}_2 \\
\text{I had to visit him}_3 \quad \text{since} \quad \text{Karl}_3 \text{ wasn’t feeling well}
\]

If (90) is the correct structure, it is expected that since-clauses may not be bound into or focused and that they escape the scope of main clause negation. The same is true for the second conjunct in a semantically symmetric coordination, which has the same structure, as (90), but with and instead of since:

(91)
 a. * Every boy$_2$ went to bed early, and he$_2$ got up at five.
b. * John left, **only/just** and he was short of money.

c. He did **not** leave, and he was sick. *In fact, he wasn’t sick.*

If the structure in (90) is correct, then the impossibility of indefinite cataphora in (85a) is expected. The indefinite in (85a) does not so-command the pronoun. The maximal so-domain that contains the indefinite, but not the pronoun, is the indefinite itself (the *since*-clause is an X′-projection, *Since'*, and thus, is not an so-domain). The indefinite does not c-command the pronoun.

The impossibility of indefinite cataphora with *because* and *while*-clauses can be explained in a different way. Notice, first, that *because*- and *while*-clauses, like temporal and *if*-clauses, are attached above the VP-internal object, as is evident from the lack of condition C effects in the following sentences:

(92) a. **ok** I will have to visit **him**₁, if **Karl**₁ gets sick.

b. **ok** I had to visit **him**₁, when **Karl**₁ got sick.

c. **ok** I had to visit **him**₁, because **Karl**₁ wasn’t feeling well.

d. **ok** I had to visit **him**₁, while **Karl**₁ was sick.

At the same time, while temporal and *if*-clauses can attach above the main clause subject, *because* and *while*-clauses cannot. This is supported by the fact that, while (for some speakers) the sentences in (93a-b) are acceptable, the sentences in (93c-d) do not seem to be as good:

(93) a. **ok** Obviously, **it**₁ will eat all the meat, if you leave **the tiger**₁ alone in the enclosure.

b. **ok** Obviously, **it**₁ ate all the meat, when you left **the tiger**₁ alone in the enclosure.

c. * Obviously, **it**₁ ate all the meat, because you left **the tiger**₁ alone in the enclosure.

d. * Obviously, **it**₁ ate all the meat, while you were not watching **the tiger**₁ in the enclosure.

At the same time variable binding is possible between a quantified object of the main
clause and all these four types of adjunct clauses:

(94)
 a. ³ok I will eat **every dish you cook**₁, if you don’t put flour in **it**₁.
 b. ³ok Rosa asked **every guest who came to our house**₁ to wash their₁ hands, when **they**₁ were about to eat.
 c. ³ok Rosa kicked out **every guest who came to our house**₁, because **they**₁ couldn’t behave.
 d. ³ok Rosa interrogated **every guest who came to our house**₁, while **they**₁ were eating.

Crucially, though, variable binding into a temporal or *if*-clause is not possible, if it is attached above the main clause subject (if it contains a referential expression, co-indexed with a pronoun in the subject position):

(95)
 a. * **She**₂ will eat **every dish**₁ you cooked, if you try to put **it**₁ on the **cat**₂’s plate.
 b. * **She**₂ always eats **every dish**₁ you cook, when you put **it**₁ on the **cat**₂’s plate.

The data in (92-95) can be explained, if we make the following two assumptions. First, the only available attachment site for *because* and *while* clauses is above the main clause object, but below the main clause subject. Consequently, there are no condition C effects in (92c-d), but there are condition C effects in (93c-d). The object may undergo Quantifier Raising to a position above the attachment site of *because* and *while*-clauses and, thus, bind into them, which explains (94c-d).

Second, temporal and *if*-clauses can attach either at the same level, as *because* and *while* clauses, or above the main clause subject. Hence, we observe condition C effects in neither (92a-b), nor (93a-b). At the same time, a quantified object can bind into a temporal or *if*-clause, if this clause is attached low, as in (94a-b), but not if it is attached high, as in (95). The reason for this could be that there are no A-positions *above* the main clause subject, which the object could have raised to in order to bind into a high-attached temporal or *if*-clause.

If these assumptions are correct, a potential explanation for the impossibility of cat-
aphora with *because* and *while* clauses may come from a competition between variable and
dynamic binding (cf. the competition based approach to condition C, proposed by Reinhart,
1983). Suppose that whenever variable binding is possible, variable binding must be used:

(96) If two syntactic positions α and β are intended to be anaphorically related and can
be anaphorically related by variable binding, they must be anaphorically related
by variable binding.

Whenever the speaker intends to express an anaphoric relation between an expression
α inside the main clause and another expression β inside an adjunct clause and variable
binding is an option, variable binding must be used.

If this is correct, then all the low attached adjunct clauses (temporal, *if*, *because* and
while-clauses) do not allow for indefinite cataphora between an indefinite β inside the ad-
junct clause and a pronoun α inside the main clause. The reason is that for low attached
adjunct clauses there is always an option of variable binding, if β is replaced by a pronoun
and α is replaced by an indefinite, which undergoes QR above the adjunct clause.

At the same time, high attached adjunct clauses (temporal and *if*-clauses) cannot be
“bound into” from the main clause. As the result, dynamic binding is available. Hence,
indefinite cataphora is possible, in accordance with the Island Condition. Crucially, because
because and *while*-clauses cannot be attached that high, this option is not available for them.

One prediction of this account is that indefinite cataphora should only be possible with
temporal and *if*-clauses that are attached above the subject. This prediction, however, will
have to be left for the future research.

4.6.2 Disjunction

Another issue with the proposed theory comes from disjunction. Consider the pair of sen-
tences (97a) and (97b), which illustrate the so-called *bathroom disjunction*.

(97) a. $^{\text{ok}}$ Karl didn’t bring *any books*$_1$, or he hid *them*$_1$ in his room.

 b. $^{\text{ok}}$ Karl hid *them*$_1$ in his room, or he didn’t bring *any books*$_1$.

213
This construction creates two problems for theories of discourse anaphora. First, in order to create an accessible antecedent for the pronoun in another disjunct the indefinite must be negated, compare (97) and (98). This problem concerns the semantics of the indefinite and negation and is, thus, irrelevant for the Island Condition.

(98) * Karl brought some books₁, or he hid them₁ in his room.

Second, the order of disjuncts can be reversed: both (97a) and (97b) are acceptable. This fact does create a problem for the Island Condition. If we assume that disjunction has a DisjP structure, parallel to semantically symmetric conjunction (see e.g. Wu, 2021), the Island Condition predicts that indefinite anaphora can only “proceed” from the left disjunct to the right one. That is, the Island Condition predicts (97a) to be acceptable and (97b) to be ungrammatical, contrary to fact.

Notice, however, that bathroom disjunctions require an exclusive interpretation of or. That is, in (97) each disjunct must contextually entail the negation of the other disjunct. Either Karl didn’t bring any books, or else he did, and he hid them in his room.

At the same time, exclusive disjunction seems to be behave differently from standard disjunction when it comes to extraction. More precisely, exclusive disjunction does allow extraction out of the first disjunct:

(99) a. Which book₁ do you have to read _₁, or you’ll fail the course?

 b. ok Which book₁ do you have to read _₁, or else you’ll fail the course?

 c. ok Which book₁ do you have to read _₁, else you’ll fail the course?

It is possible that exclusive disjunction is syntactically ambiguous between a DisjP structure and a structure like (100), where the second disjunct is a maximal projection (orP), which merges with the first disjunct as an adjunct.

(100) The second disjunct as an adjunct:
If (100) is a possible structure for exclusive disjunction, this can explain the possibility of indefinite cataphora in (97b). In (100) the indefinite does so-command the pronoun, because the second disjunct is an adjunct.

Suppose that exclusive disjunction is syntactically ambiguous. It may have either a DisjP structure or the structure in (100). The DisjP parse licenses indefinite anaphora in cases like (97a), while the parse in (100) licenses indefinite anaphora in cases like (97b).

4.7 Conclusion

In this chapter I have argued that Spell Out has semantic consequences. More precisely, the fact that certain parts of a sentence are spelled out before the whole affects the way in which the semantic component assigns interpretation to syntactic structure. We can see this effect in discourse anaphora.

From the two core claims of the Spell Out theory, repeated again in (101), it follows that all specifiers and all adjuncts are spelled out. In this chapter I have argued that any spelled out constituent is interpreted before its sister.

(101) **The Spell Out theory**

 a. Before any two phrases are merged at least one must be spelled out.

 b. A spelled out phrase does not project its category.

 With the notion of so-command, as defined in section 4.2, the Spell Out theory predicts that, if \(\beta \) so-commands \(\alpha \) (\(\beta \) is inside an interpreted node that c-commands \(\alpha \)), it creates the local context for \(\alpha \):

(102) **The Island Condition** (local context version)

 The local context of \(\alpha \) includes all interpreted nodes that c-command \(\alpha \).

 The immediate consequence for discourse anaphora is that for an indefinite to dynamically bind a pronoun it has to so-command this pronoun (the Island Condition). In this chapter I have argued that the Island Condition correctly restricts both indefinite anaphora and indefinite cataphora in a principled way. Thus, the predictions of the Spell Out theory
are confirmed. All specifiers and all adjuncts are spelled out and, as a result, interpreted before their sisters.
Appendix A

The Island Condition and movement

If the Island Condition is a binding principle, it is important to know how it interacts with different types of movement. A comprehensive research into this question lies beyond the scope of this dissertation, but in what follows I will lay out some preliminary observations.

Remember that an indefinite inside a complement clause cannot create an accessible antecedent for a pronoun inside the main clause. However, if the complement CP is topicalized, discourse anaphora becomes possible, as is evident from the contrast in (1).

(1) a. *Ms. Brodie told his\textsubscript{1} parents [\textsubscript{CP}that she caught an eight-grader\textsubscript{1} smoking in the bathroom].

 b. ? [\textsubscript{CP}\textsubscript{1}That Ms. Brodie caught an eight-grader\textsubscript{1} smoking in the bathroom\textsubscript{2}, [\textsubscript{CP}\textsubscript{2}she told his\textsubscript{1} parents ______]].

This can be explained, if CP-topicalization occurs before the Island Condition is evaluated and does not have to reconstruct. The derived position of the fronted clause in (1b) is presumably Spec,CP. If only this position is taken into account, the indefinite does indeed so-command the pronoun. The minimal so-domain that contains the indefinite, but not the pronoun, is the topicalized CP, and it c-commands the pronoun.

The two major types of movement, namely, A and A’ (see Chomsky, 1981, among numerous others) differ in how they interact with different binding principles, for example, Conditions A and C of the classical binding theory (see Pesetsky, 2001, and many others).

In English the A vs. A’ distinction can be exemplified by raising and question formation
respectively, see (2a) and (2b). Both sentences in (2) contain an indefinite \((a \text{ child}_1)\) and a pronoun anaphoric to it \((\text{her}_1)\). In both examples the Island Condition is satisfied after the movement, but not before.

\[
(2) \quad \begin{align*}
\text{a. } & \text{ok } [A \text{ toy that } a \text{ child}_1 \text{ liked}]_2 \text{ seemed to } [\text{her}_1 \text{ parents}]_2 \text{ to be too expensive.} \\
\text{b. } & \text{ */[Which toy that } a \text{ child}_1 \text{ liked}]_2 \text{ did } [\text{her}_1 \text{ parents}] \text{ find }_2 \text{ too expensive?}
\end{align*}
\]

Interestingly, English speakers I have consulted report a slight contrast between (2a) and (2b). If there is indeed a contrast here, it shows that the Island Condition interacts with A and A’ movements in different ways. A-movement does not have to construct for the Island Condition (2a), while A’-movement always does (2b). This may be because the Island Condition applies at LF, and at LF only the operator is interpreted in a derived A’-position (e.g. the \(wh\)-element), while the rest of the phrase has to reconstruct.

A and A’-movement interact differently with variable binding. A-movement, but not A’-movement, can create new possibilities for variable binding. This is usually stated as the Weak Crossover condition (Postal, 1971). A quantifier may bind a pronoun from a derived A position, but not from a derived A’-position:

\[
(3) \quad \begin{align*}
\text{a. } & \text{ok } [\text{Every girl}_1] \text{ seems to } [\text{her}_1 \text{ parents}]_1 \text{ to be a genius.} \\
\text{b. } & \text{ */[Which girl}_1] \text{ did } [\text{her}_1 \text{ parents}] \text{ send }_1 \text{ to the Linguistic Olympiad?}
\end{align*}
\]

The contrast in (3) mirrors the one in (2), which leads us to the following tentative generalization:

\[
(4) \quad \text{Movement can only create new binding possibilities for dynamic binding, if it creates new binding possibilities for variable binding.}
\]

Observe that in (5) discourse anaphora is possible.\(^1\)

\[
(5) \quad \text{ok } \text{Mary}_2 \text{ [interviewed [the lawyer who called } \text{one of the witnesses}_1]] \text{ [after } \text{PRO}_2 \text{ hearing } \text{his}_1 \text{ testimony in court].}
\]

\(^1\)The somewhat degraded status of (5) may be due to the interference from ‘the lawyer’ as a potential antecedent for the pronoun.
It is easy to see that (5) violates the Island Condition. The indefinite does not so-
command the pronoun. Furthermore, this configuration does not allow variable binding
either, see (6). This means that a noun phrase in this position cannot take scope over the
pronoun. This is as expected, because the quantifier is embedded inside a complex noun
phrase, which is a scope island.

(6) *Mary₂ [interviewed [the lawyer who called every witness₁]] [after PRO₂ hearing
his₁ testimony in court].

If variable binding is not an option, what explains the possibility of discourse anaphora
in (5)? A potential solution may come from covert movement. It is possible that the whole
complex noun phrase [the lawyer who called one of the witnesses₁] in (5) covertly moves
to a derived specifier position that c-commands the adjunct. After this movement the Island
Condition is satisfied (Holmberg, 1986).

Given the tentative generalization in (4), this analysis presupposes that covert movement
of the object to a position that c-commands an adjunct must create new possibilities for
variable binding as well. That can be shown independently, because a quantified noun
phrase in the object position can bind into an adjunct:

(7) ³ Mary₂ interviewed every witness₁, after PRO₂ hearing his₁ testimony.

If binding in (7) is achieved via the same movement, as in (5), this movement has to be
the type of movement that creates new binding possibilities for both variable and dynamic
binding. This is not surprising if the movement in question is an instance A-movement, for
example, a covert object shift.
Appendix B

“Backwards” donkey anaphora

The Island Condition allows us to account for the possibility of cataphora in a principled way. In particular, we can now explain Chierchia’s (1995) paradigm of “backwards” donkey anaphora with *if*- and *when*-clauses without additional stipulations.

With postposed *if*/*when*-clauses Chierchia (1995) reports the following set of judgments:

(1)
 a. A painter$_1$ is inspired by a village$_2$ [if she$_1$ finds it$_2$ picturesque].
 b. A painter$_1$ will rent it$_2$ [if she$_1$ finds a cottage$_2$ picturesque].
 c. A rich, capricious person$_1$ will buy it$_2$ right away [if a nice car$_2$ impresses him$_1$].

(Chierchia, 1995, 132)

In (1a) two generic indefinites a painter$_1$ and a village$_2$ inside the main clause bind two pronouns in the *if*-clause via variable binding (by taking scope over them).

In (1b) the generic indefinite a painter$_1$ in the subject position binds the pronoun she$_1$ in the *if*-clause via variable binding (by taking scope over it). The indefinite a cottage$_2$ in the *if*-clause so-commands the pronoun it$_2$ in the main clause, which makes dynamic binding possible.

In (1c) the generic indefinite a rich, capricious person$_1$ binds the pronoun him$_1$ in the *if*-clause via variable binding (by taking scope over it). The indefinite a nice car$_2$ so-commands the pronoun it$_2$ in the main clause, which makes dynamic binding possible.
The same three anaphoric configurations are available for the preposed *if*-clause (2), which can be explained if we assume that preposed *if*-clauses can (but does not have to) reconstruct for binding purposes. Namely, in (2) the *if*-clause reconstructs to the same position it occupies in (1), which makes the binding configurations possible.

(2)
a. [If *it*$_1$ enters *his*$_2$ territory], a pirate$_2$ usually attacks a ship$_1$.
 (see 1a)
b. [If *he*$_1$ lies to a student$_2$], a teacher$_1$ loses his$_2$ trust.
 (see 1b)
c. [If a boy$_1$ lies to her$_2$], a girl$_2$ won’t trust him$_1$ anymore.
 (see 1c)

(Chierchia, 1995, 130)

Chierchia’s (1995, 131) Pronominal Subject Constraint, illustrated by the two examples in (3), can be attributed to condition C of the classical binding theory.

(3)
a. * [When *he*$_1$ spots a ship$_2$], it$_2$ is attacked by a pirate$_1$.

b. * [When a cat$_1$ spots it$_2$], it$_1$ is attacked by a mouse$_2$.

(Chierchia, 1995, 130-131)

In (3a) the preposed *when*-clause has to reconstruct to a lower position for the indefinite *a pirate*$_1$ to take scope over and bind the pronoun *he*$_1$. The base position is c-commanded by the subject *it*$_2$, which leads to a condition C violation, since the *when*-clause contains the indefinite *a ship*$_2$.

In (3b) the preposed *when*-clause has to reconstruct to a lower position for the indefinite *a mouse*$_2$ to take scope over and bind the pronoun *it*$_2$. The base position is c-commanded by the subject *it*$_1$, which, again, leads to a condition C violation, since the *when*-clause contains the indefinite *a cat*$_1$.

222
Appendix C

The Island Condition in Russian

The predictions of the Island Condition are not only confirmed in English, but also in Russian. Russian does not have definite or indefinite articles, but it is still possible to distinguish between quantified, indefinite and definite noun phrases, see Paducheva (1974, 1985), among others. Here I will use *odin iz ‘one of’ and *kakoj-to ‘wh-PTCL’ as unambiguous markers of indefinite noun phrases.

In Russian, like in English, an indefinite inside a specifier can create an accessible antecedent for any pronoun inside its sister, but not vice-versa:

(1) a. ok [TP[DP Učitel’] kotoryj pojmal the teacher who catch.PFV.PST kurjašej v tualete], [T’ razgovarival potom s eë roditeljami].

‘The teacher who caught one of the 8-graders smoking in the bathroom was later talking to her parents.’

b. * [TP[DP Učitel’] kotoryj pojmal eë kurjašej v tualete], [T’ razgovarival potom s roditeljami kakoj-to iz vos’ miklassnic].

‘The teacher who caught her smoking in the bathroom was later talking to one of the eight-graders parents.’

This is true also for indefinites that are embedded under an attitude predicate (2), which indicates that this is a syntactic restriction, not a semantic one.
Like in English, in Russian an indefinite inside an adjunct can create an accessible antecedent for a pronoun inside the main clause, while an indefinite inside a complement may not:

(3) a. Maria Ivanovna [vP[<v/skazala čto pro soobšit ego roditeljami]], Maria Ivanovna say.PFV.PST that she inform.PFV.PRS his parents.DAT
 [cP kogda pro zastala kogo-to iz vos'miklassnikov kurjašim v tualete]], when she catch.PFV.PST who-PTCL from eight-graders smoking in bathroom
 ‘M.I. said that she will inform his parents, when she caught a 8-grader smoking in the bathroom.’

b. *Maria Ivanovna [vP[<v/skazala čto pro soobšit ego roditeljami]], Maria Ivanovna say.PFV.PST that she inform.PFV.PRS his parents.DAT
 [cP čto pro zastala kogo-to iz vos'miklassnikov kurjašim v tualete]], that she catch.PFV.PST who-PTCL from eight-graders smoking in bathroom
 ‘M.I. said that she will inform his parents that she caught a 8-grader smoking in the bathroom.’

The same is true in donkey anaphoric configurations:
(4) a. každyj raz Maria Ivanovna [v'govorila, čto pro soobšit
and every time Maria Ivanovna say.IMP.PST that she inform.PFV.PRS
ego1 roditeljam], [CP kogda ona zastavala kogo-to iz vos'miklassnikov1
his parents.DAT when she catch.IMP.PST who-PTCL from eight-graders
kurjašim v tualete]].
smoking in bathroom
‘Every time M.I. said that she will inform his1 parents, when she caught an
8-grader1 smoking in the bathroom.’

b. * každyj raz Maria Ivanovna [v'govorila, čto pro soobšit
and every time Maria Ivanovna say.IMP.PST that she inform.PFV.PRS
ego1 roditeljam], [CP čto ona zastavala kogo-to iz vos'miklassnikov1
his parents.DAT when she catch.IMP.PST who-PTCL from eight-graders
kurjašim v tualete]].
smoking in bathroom
‘Every time M.I. said that she will inform his1 parents that she caught an
8-grader1 smoking in the bathroom.’

Finally, in coordination, discourse anaphora proceeds from the first conjunct to the sec-
ond one and not vice-versa:

(5) a. [ConjP[CP Vošla kakaja-to ženšina1], [Conj'i hozjain predložil ej1 vypit’]].
come.in.PFV.PST some woman and host offered her to.drink
‘Some woman1 came in and the host offered her1 drinks.’

b. * [ConjP[CP Vošla ona1], [Conj'i hozjain predložil kakoj-to ženšine1 vypit’]].
come.in.PFV.PST she and host offered some woman to.drink
‘She1 came in and the host offered some woman1 drinks.’
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 first person</td>
<td>M masculine gender</td>
</tr>
<tr>
<td>2 second person</td>
<td>N neuter gender</td>
</tr>
<tr>
<td>3 third person</td>
<td>NCI negative concord particle</td>
</tr>
<tr>
<td>ABL ablative case</td>
<td>NEG negation</td>
</tr>
<tr>
<td>ACC accusative case</td>
<td>NOM nominative case</td>
</tr>
<tr>
<td>ADD additive particle</td>
<td>NZR nominalization</td>
</tr>
<tr>
<td>AUX past imperfective auxiliary</td>
<td>PFV perfective</td>
</tr>
<tr>
<td>CAR caritive</td>
<td>PL plural</td>
</tr>
<tr>
<td>CAUS causative</td>
<td>POT circumstantial possibility marker</td>
</tr>
<tr>
<td>COND conditionalis</td>
<td>PRS present tense marker</td>
</tr>
<tr>
<td>CONV converb</td>
<td>PST past tense marker</td>
</tr>
<tr>
<td>DAT dative case</td>
<td>PST1 past tense marker</td>
</tr>
<tr>
<td>F feminine gender</td>
<td>PST2 past tense marker</td>
</tr>
<tr>
<td>FUT future tense marker</td>
<td>PTCL topic particle</td>
</tr>
<tr>
<td>GEN genitive case</td>
<td>SBJ subjunctive</td>
</tr>
<tr>
<td>HAB habitualis</td>
<td>SE reflexive marker</td>
</tr>
<tr>
<td>IMP imperfective</td>
<td>SG singular</td>
</tr>
<tr>
<td>LOC locative case</td>
<td></td>
</tr>
</tbody>
</table>
Bibliography

Borik, Olga, 1995. *Синтаксический признак неаккузативности глагола (на материале русского языка) (A Syntactic Diagnostic for Unaccusativity (evidence from Russian)).* Moscow, Russia: MA Thesis, MGU.

Kibrik, Alexander, 1977. О соотношении понятия синтаксического подчинения с понятиями согласования, управления и примыкания (On the relation between the notion of syntactic dependency and the notions of agreement, government and adjunction). In: Проблемы Теоретической и Экспериментальной Лингвистики (*Problems of Theoretical and Applied Linguistics*). Moscow, Russia.

Melchuk, Igor, 1974. Опыт теории лингвистических моделей "Смысл-текст" (The study of the linguistic model "Meaning-text"). Moscow, Russia: Nauka.

Müller, Gereon, 2010. On deriving CED effects from PIC. Linguistic Inquiry vol. 41:1, 35–82.

Oberauer, Klaus, 2013. The focus of attention in working memory - from metaphors to mechanisms. frontiers in human neuroscience vol. 7.

Paducheva, Elena, 1983. Возвратное местоимение с косвенным антecedentом и семантика рефлексивности (Reflexive pronoun with an oblique antecedent and the semantics of reflexivity). Semiotika i Informatika vol. 21, 3–33.

236

Padučeva, Elena, 1992. О семантическом подходе к синтаксису и генитивном субъекте глагола быть (On the semantic approach to syntax and the genitive subject of the verb byt’). *Russian Linguistics* vol. 16:1, 53–63.

Shluinsky, Andrey, 2009. Бивербиальные конструкции в тубаларском диалекте и их лексические ограничения (Bi-verbal constructions in tubalar dialect and their lexical restrictions). In: *Tubalarskije Etjudy (Tubalar Notes)*, edited by Sergei Tatevosov. Moscow, Russia, 6–53.

Tatevosov, Sergei, 2015a. *Акциональность в лексике и грамматике. Глагол структура и события (Actionality in Lexicon and Grammar: Verb and Event Structure)*. Moscow, Russia: Jazyki Slavyanskoj Kultury.

Wu, Danfeng, 2021. Syntax of *either* in *either...or...* sentences. Manuscript.

