Inward and outward allomorph selection: An overview

ABSTRACT

This chapter provides an overview of directionality relations in allomorphy selection. One type is 'inward-conditioning', where the trigger is in a structurally outer position compared to the target of allomorphy (i.e. it is further away from the lexical head of the construction). This type is also referred to as 'outward-sensitivity'. Its counterpart is 'outward-conditioning', where it is the trigger which is in an inner position and the target in an outer position (also known as 'inward-sensitivity'). A number of typologically diverse cases are presented to illustrate directional asymmetries in allomorphy selection. One robust generalization involves 'grammatically-conditioned allomorphy', in which the trigger is a morphosyntactic feature (e.g. [PLURAL]), feature bundle (e.g. [3.SG.FEM]), or feature category (e.g. [TENSE]). In this type of allomorphy, both inward-conditioning and outward-conditioning are widespread, showing a clear directional symmetry. In contrast, other types of allomorphy such as 'lexically-conditioned' (the trigger is a particular lexical root), 'morphologically-conditioned' (a purely morphological feature, e.g. conjugation class), and 'phonologically-conditioned allomorphy' show a clear directional asymmetry. Here, allomorph selection almost always involves outward-conditioning, i.e. the trigger is in an inner position. Cases of inward-conditioning are rare and controversial. Taken all together, these generalizations warrant a typological statement called the 'directional implication in allomorphy selection'. This states that if a trigger of linguistic type x can condition allomorphy of an inner target (i.e. inward-conditioning), this type x can also condition allomorphy of an outer target (outward-conditioning). This chapter ends by situating directionality and allomorphy within the theoretical morphological literature, comparing and contrasting the predictions of various models against these typological generalizations.

Keywords: allomorphy, directionality, suppletion, cyclic exponence, typology, morphological theory

1 Introduction

The focus of this chapter is the intersection of allomorph selection and inward/outward directionality. Let us first establish working definitions, embedded within a realizational morphological model in which morphosyntactic features and feature bundles are mapped to an exponent (i.e. morph or vocabulary item) composed of phonological material, e.g. English [DEFINITE] ↔ the [ðə]. 'Allomorphy' is defined as a single feature or feature bundle [F] mapped to more than one possible exponent φ₁…φₙ, whose distribution depends on some aspect of the context (e.g. a and an for [INDEFINITE] in English). We repeat a schematic representation of allomorphy in (1), from Bonet & Harbour (2012).

\[
\begin{align*}
[F] & \leftrightarrow \phi_1 \quad / \quad \text{Context}_1 \\
& \quad \phi_2 \quad / \quad \text{Content}_2 \\
& \quad \ldots
\end{align*}
\]

In this chapter, it is the relationship between [F]/\phi and Context that is examined.

For our purposes, I only examine cases where the allomorphs φ₁…φₙ constitute separately stored entries in a morphological lexicon, which are in complementary distribution based on the presence or absence of the relevant context. In this way, 'allomorphy' is used synonymous with 'suppletive allomorphy', and no distinction is made between different types of suppletion (e.g. strong vs. weak). This definition rules out cases I interpret as syntactic (e.g. syntactic agreement – Weisser 2019), as well as those cases where the allomorphs can be reduced to a single underlying representation derivable by general and independently needed phonological rules, e.g. English past [d]~[t]~[əd] (Kiparsky 1996,
Paster 2006, 2016). The criteria I adopt to distinguish (suppletive) allomorphy from other morphophonological phenomena are in (2), drawn from many sources.1

(2) Criteria to distinguish (suppletive) allomorphy
a. Phonological distance of forms: two allomorphic forms F₁ and F₂ are suppletive if they exhibit phonological distance past a baseline threshold, measured in phonological structure
b. Uniqueness of alternation: two allomorphic forms F₁ and F₂ are suppletive if the alternation is not found in comparable morphophonological contexts
c. Phonological naturalness of alternation: two allomorphic forms F₁ and F₂ are suppletive if their alternation cannot be derived via a phonologically natural rule (e.g. with respect to phonological locality, typological precedence, etc.)

When these criteria come into question, this is mentioned overtly.

In what follows, the context which co-varies with a particular allomorph will be called the 'trigger', the underlying morphosyntactic features [F] as the 'target', and the insertion of one allomorph over another as selection. The stated purpose of this paper is explicate issues of directionality between the trigger and target of allomorphy. In other words, what kinds of allomorphy are possible when the trigger is located in an outer position and the target an inner one, and vice versa?

To sustain a coherent notion of directionality, I assume hierarchical structure both within words, e.g. meaninglessness is rendered hierarchically as [[[[mean]-ing]-less]-ness] and a big old dog as [a [big [old [dog]]]]. In this chapter, I do not assume ontologically distinct hierarchical structures within versus between words; regardless of assumptions, directionality can be assessed in any hierarchical model. Notions of 'inner' and 'outer' only make sense relative to some reference point. I refer to this reference point as the 'nucleus' and in what follows I assume it to always be the lexical root (~semantic head), e.g. the verb mean and the noun dog above.

Now we can define our primary directionality dichotomy. If the trigger is in an outer position compared to a target, then it is inward-conditioning. This can also be referred to as outward-sensitivity (or outward-looking) from the perspective of the target rather than the trigger (Carstairs-McCarthy 2001:225). These are simply notational variants. In contrast, if the trigger is in an inner position compared to a target, this is called outward-conditioning (or inward-sensitivity). This is schematized in (3) in a toy hierarchical structure, where the trigger of allomorphy is underlined and the target is in bold (this convention for marking triggers vs. targets is followed throughout).

(3) Directionality relations between the target and trigger of allomorphy
a. Inward-conditioning (= outward-sensitivity)

\[
\begin{array}{ccc}
\text{Nucl} & \bullet & \text{Targ} \\
\circ & \circ & \circ \\
\end{array}
\]

b. Outward-conditioning (= inward-sensitivity)

\[
\begin{array}{ccc}
\text{Nucl} & \circ & \text{Targ} \\
\bullet & \circ & \circ \\
\end{array}
\]

In cases where the head root is the target (Nucl=Targ) or the trigger (Nucl=Trig), this automatically qualifies as inward- and outward-conditioning, respectively.

The rest of this paper is organized as follows. Section 2 provides an overview of directionality relations when the trigger of allomorphy is morphosyntactic, e.g. lexical roots, syntactic features and/or structure, and morphological features such as conjugation class membership. Section 3 provides an overview of directionality with phonological triggers, e.g. a segment, segmental feature, tone, stress, prosodic structure, i.e. Section 4 summarizes the typology and situates it within the theoretical literature. Section 5 provides a conclusion.
2 Directionality and morphosyntactic triggers

This section examines morphosyntactic allomorphy. This section is split into four types: lexically-conditioned, grammatically-conditioned, morphologically-conditioned, and syntactically-conditioned.

2.1 Lexically-conditioned

A pervasive type of allomorphy involves a trigger constituting one or more lexical roots, referred to as lexically-conditioned allomorphy. Examples of this type are ubiquitous, with the great majority of languages displaying at least some allomorphy along these lines. Commonly cited examples from English are plural -en in oxen or the plural Ø in sheep, deer, etc., rather than default -s (Bonet & Harbour 2012).

(4) \[
\begin{align*}
\text{[PL]} & \leftrightarrow \text{-en} / \{\sqrt{\text{OX}}, \ldots\} \\
\text{Ø} & \leftrightarrow \{\sqrt{\text{SHEEP}}, \sqrt{\text{DEER}}, \ldots\} \\
\text{-s} &
\end{align*}
\]

In these structures, the trigger and the nucleus are the same (the lexical root), entailing that this is outward-conditioning (i.e. inward-sensitivity).

Is inward-conditioning (outward-sensitivity) possible with lexically-conditioned allomorphy? Logically speaking this would seem not to be possible, as the lexical root is the nucleus by definition. However, one potential type of lexically-conditioned allomorphy with inward-conditioning involves compounds, where a lexical item is not necessarily the head of the construction. An example from Dutch compounds is in (5), from Fenger & Harðarson (2018). Here, the modifying noun N₁ and modified head noun N₂ are 'linked' by an intervening linker morpheme. This has two shapes, -en (a.) or -s (b.-c.).²

(5) Dutch linker allomorphy in compound structure [modifying N₁]-LINK-[head N₂]

a. katt-en-luik cat-LINK-shutter 'cat flap' cf. katt-en cat-PL
b. varken-s-voer pig-LINK-food 'pig food' cf. varken-s pig-PL
c. dorp-s-plein village-LINK-square 'village square' cf. dorp-en village-PL
d. (Note non-existent pair: *N₁-en-N₂ corresponding to N₁-s N₂-PL)

While the lexical identities of both N₁ and N₂ contribute to the selection of the allomorph, the identity of N₁ appears to be the prime determiner, which also affects plural allomorph selection. For example, example (a.) shows that the linker -en is used if N₁'s plural is formed with -en. Example (d.) demonstrates that if N₁'s plural is formed with -s, its linker must be -s as well. Moreover, lexical statistics and experimental work in Krott et al. (2002) show that while both sides of the linker matter, the "strongest analogical factor predicting linkers appears to be the bias of the Left Constituent Family", i.e. N₁.

If we assume that N₂ is the head, and that the linear order of morphemes reflects a hierarchical order [N₁-[LINK-[N₂]]], then the linker (the target) is inward and the N₁ (the trigger) is outward, meeting the definition of inward-conditioning (outward-sensitivity). One should note, however, that Fenger & Harðarson specifically analyse the linker here as a realization of a type of nominal categorizing head n which is sister to the first noun root, i.e. \([\sqrt{n}]_n\ldots\). Under this representation Dutch linker allomorphy constitutes outward-conditioning, as the target (the linker n) is structurally higher than its trigger (\(\sqrt{1}\)). We leave unresolved how Fenger & Harðarson's analysis squares with Krott et al.'s observations that even the head N₂ has a small but significant role in the shape of the linker, and whether this consequently retains this example's status as involving inward-conditioning from a lexical root.
2.2 Grammatically-conditioned

Another salient type of allomorphy is grammatically-conditioned allomorphy, where the trigger is a (non-lexical) morphosyntactic feature, feature set, or category. In this type, the lexical root is often the target of allomorphy, typically referred to as root suppletion. One common example from English is *go/went* conditioned by tense, but virtually all languages consist of some type of root suppletion. In verbs, this is often conditioned by number (singular/plural) or tense/aspect/mood, but also categories such as plurality, polarity/negation, and even honorifics. For nouns, common triggers are number, case, gender, person, and possession. See Brown et al.’s (2003) ‘Surrey Suppletion Database’, among other sources.

In root suppletion, the nucleus itself is targeted and the trigger is some outwardly-located morphosyntactic material, thus constituting inward-conditioning. While some morphological proposals refute root suppletion on theoretical grounds (e.g. Marantz 1997), we contend that it is simply too rich an empirical phenomenon to explain away. As Choi & Harley (2019) demonstrate, idioms are useful for diagnosing and substantiating root suppletion, e.g. compare idiomatic suppletive pairs *go bananas* and *went bananas* which preserve the idiomatic meaning *act crazy*, to non-idiomatic *move bananas*. Choi & Harley use this same logic to argue that honorific suppletion in Korean equally preserves idiomatic meaning, demonstrated with suppletive verbs that have special forms in honorific contexts (technically, in the context of a Hon⁰ morpheme).

(6) \[
\begin{array}{c}
\text{[\text{\checkmark}EAT]} \\
\text{↔} \\
\text{capswusi-} \\
\text{mek-}
\end{array}
\quad / \quad \text{[___ \dots Hon⁰]}
\]

(7) Korean idiomatic readings preserved under suppletion (Choi & Harley 2019:1343)

<table>
<thead>
<tr>
<th>singular</th>
<th>translation</th>
<th>plural</th>
<th>translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>dal</td>
<td>song</td>
<td>dal-ok</td>
<td>song-pl</td>
</tr>
<tr>
<td>dal-om</td>
<td>song-1sg</td>
<td>dal-ai-m</td>
<td>song-pl-1sg</td>
</tr>
<tr>
<td>dal-od</td>
<td>song-2sg</td>
<td>dal-ai-d</td>
<td>song-pl-2sg</td>
</tr>
<tr>
<td>dal-a</td>
<td>song-3sg</td>
<td>dal-ai-o</td>
<td>song-pl-3sg</td>
</tr>
<tr>
<td>dal-unk</td>
<td>song-1pl</td>
<td>dal-ai-nk</td>
<td>song-pl-1pl</td>
</tr>
<tr>
<td>dal-otok</td>
<td>song-2pl</td>
<td>dal-ai-tok</td>
<td>song-pl-2pl</td>
</tr>
<tr>
<td>dal-uk</td>
<td>song-3pl</td>
<td>dal-ai-k</td>
<td>song-pl-3pl</td>
</tr>
</tbody>
</table>

We can safely consider root suppletion (entailing inward-conditioning) as both possible and ubiquitous, and focus the rest of this subsection on directionality with non-lexical exponents.

Our starting point is a useful distinction between categories and features (Carstairs 1987, Matthews 1991, Carstairs-McCarthy 2001). Morphosyntactic categories refer to higher-order taxonomic labels like 'Case' for nouns or 'Tense' for verbs, while morphosyntactic features refer to the paradigmatic contrasts within the category, e.g. nominative/accusative/dative, past/present/future, and so on. Let us examine categories vs. features with respect to directionality, beginning with inward-conditioning (outward-sensitivity). Carstairs-McCarthy (2001) presents an example of category-based conditioning from Hungarian plural allomorphy (Table 1). In row a., the singular form of the noun is bare while the plural is marked by the suffix -ok. The singular column demonstrates the forms with various possessive features, realized as suffixes. Of importance here is the plural column, which shows that a special form of the plural -ai surfaces in the context of possessive suffixes, rather than default -ok.

<table>
<thead>
<tr>
<th>singular</th>
<th>translation</th>
<th>plural</th>
<th>translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>dal</td>
<td>song</td>
<td>dal-ok</td>
<td>song-pl</td>
</tr>
<tr>
<td>dal-om</td>
<td>song-1sg</td>
<td>dal-ai-m</td>
<td>song-pl-1sg</td>
</tr>
<tr>
<td>dal-od</td>
<td>song-2sg</td>
<td>dal-ai-d</td>
<td>song-pl-2sg</td>
</tr>
<tr>
<td>dal-a</td>
<td>song-3sg</td>
<td>dal-ai-o</td>
<td>song-pl-3sg</td>
</tr>
<tr>
<td>dal-unk</td>
<td>song-1pl</td>
<td>dal-ai-nk</td>
<td>song-pl-1pl</td>
</tr>
<tr>
<td>dal-otok</td>
<td>song-2pl</td>
<td>dal-ai-tok</td>
<td>song-pl-2pl</td>
</tr>
<tr>
<td>dal-uk</td>
<td>song-3pl</td>
<td>dal-ai-k</td>
<td>song-pl-3pl</td>
</tr>
</tbody>
</table>

Table 1: Hungarian inward-conditioning by an entire morphosyntactic category (allomorphy in bold)
This allomorphy is triggered by the morphosyntactic possessor category [POSS], as it manifests across all individual possessor features. It constitutes inward-conditioning (outward-sensitivity) because [POSS] (the trigger) is more outward than [PL] (the target) with respect to noun (the nucleus).

(8) \[\text{PL} \leftrightarrow \text{-ai} / \text{___} \text{[POSS]} \]
\[\text{-ok} \]

Although Carstairs-McCarthy's point in discussing Hungarian is to argue that only morphosyntactic categories can be inward-conditioning, several cases have been identified which are conditioned by a morphosyntactic feature, not an entire category. One case is from Georgian, where an (inner) applicative is realized as \(u \)- in the context of (outer) third person, i.e. \([-\text{-PARTICIPANT}]\), but as \(i \)-otherwise (Bonet & Harbour 2012:228-229, citing Hewitt 1995). Here, the allomorphy is specifically conditioned by one value and one value only of the category Person.

(9) Georgian \(i-/u \)-applicative allomorphy conditioned by an outer morphosyntactic feature

\begin{itemize}
 \item a. mo-m-[i]-rbina \quad \text{'}I had run here'}
 \item b. mo-gv-[i]-rbina \quad \text{'}we had run here'}
 \item c. mo-\(\phi \)-i-[i]-rbina(t) \quad \text{'}you(PL) had run here'}
 \item d. mo-\(\phi \)-u-[i]-rbina(t) \quad \text{'}(s)he/they had run here'}
\end{itemize}

(10) \[\text{APPL} \leftrightarrow \text{u-} / \text{[\(\phi \)-PART]} \text{___} \]
\[\text{i-} \]

Several other cases could be mentioned, e.g. in Itelmen [\(\text{[it]} \)] (Bobaljik 2000:9), where an (inner) class morpheme [\([\text{CL}:\text{II}]\)] is realized as one of several shapes \{-k-,\-čin-,\-vši-,\-ik-,\-xk-,\-ki-\} depending on the subject and object agreement features (in an outer location). The trigger of each allomorph is not a category, but rather one or more features of the category.

More contentious is outward-conditioning (inward-sensitivity) with grammatically-conditioned allomorphy, of either the category or feature type. Although there exist certain maximally-restrictive models which prohibit this type – e.g. Bobaljik (2000) and other syntactically-oriented morphology theory – enough cases have been identified that it should be considered empirically attested. One well-known case also discussed in Carstairs-McCarthy (2001) is Latin agreement conditioned by the perfect (11)-(12). The normal exponent for second person singular agreement is \(-s\) (a). When adjacent to the perfect morph \(-v(e)\), a special form \(-\text{istī} \) is used instead (b). As many works have emphasized, this allomorphy requires adjacency: when the perfect morph is separated from agreement, the default allomorph \(-s\) is used once again (c). Regardless, this constitutes outward-conditioning.

(11) Latin allomorphy with outward-conditioning from feature [\(\text{PERF} \)]

\begin{itemize}
 \item a. Present indicative \quad \text{amā-s} \quad \text{'}you love'}
 \item b. Perfect indicative \quad \text{amā-y-\text{istī}} \quad \text{'}you loved'}
 \item c. Pluperfect indicative \quad \text{amā-ve-rā-s} \quad \text{'}you had loved'}
\end{itemize}

(12) \[\text{[\(\phi \)-2SG]} \leftrightarrow \text{-istī} / \text{[\(\text{PERF} \)] ___} \]
\[\text{-i(s)} \]

Additional examples of such outward-conditioning (inward-sensitivity) include the following:
(13) Outward-conditioning by a morphosyntactic feature
a. Bulgarian (Gribanova & Harizanov 2017:80) – inner gender and number features condition form of outer [DEFINITE] suffix
b. Moro [mor] (Jenks & Sande 2017) – inner feature [PROPER] (on names and kinship terms) conditions overt exponence of outer [ACCUSATIVE] case
c. Modern Standard Arabic (Winchester 2017) – an inner gender feature [-FEM] conditions a form of an outer number feature [+AUGMENTED]
d. Bengali (Banerjee 2020) – inner feature [PERFECT] conditions form of outer [NEGATIVE]

The examples in (13) constitute outward-conditioning from a morphosyntactic feature. While it appears to be rarer, one example demonstrating conditioning from a morphosyntactic category comes from Thalanyji [dhu] (Austin 1981), shown in Table 2. Like many related Australian languages, Thalanyji shows extensive case-marking allomorphy. Following Austin, we split this allomorphy into three groups: case marking on nouns (a.), on pronouns (b.), and on demonstratives (c.). Simplifying slightly for our purposes, case marking on nouns (a.) either has only one form, or exhibits allomorphy sensitive to number of syllables in the stem. In contrast, with pronouns (b.) and demonstratives (c.), the case marking is fixed for the entire category regardless of syllable count. Note that in this table, irregular forms are italicized.

<table>
<thead>
<tr>
<th></th>
<th>NOM</th>
<th>ERG</th>
<th>ACC</th>
<th>DAT</th>
<th>LOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Noun</td>
<td>[N]</td>
<td>[σ]N-ṇgu</td>
<td>[N]-ṇha</td>
<td>[N]-gu</td>
<td>[σ]N-ṇga</td>
</tr>
<tr>
<td>b. 1SG</td>
<td>ngatha</td>
<td>-</td>
<td>ngatha-ṇha</td>
<td>jurdi</td>
<td>ngatha-la</td>
</tr>
<tr>
<td>1DU.IN</td>
<td>ngali</td>
<td>ngali-lu</td>
<td>ngali-ṇha</td>
<td>ngali-ma</td>
<td>ngali-la</td>
</tr>
<tr>
<td>1DU.EX</td>
<td>ngaliya</td>
<td>ngaliya-lu</td>
<td>ngaliya-ṇha</td>
<td>ngaliya-ma</td>
<td>ngaliya-la</td>
</tr>
<tr>
<td>1PL.IN</td>
<td>nganharma</td>
<td>nganharma-lu</td>
<td>nganharma-ṇha</td>
<td>nganharma-ma</td>
<td>nganharma-la</td>
</tr>
<tr>
<td>1PL.EX</td>
<td>nganharma</td>
<td>nganharma-lu</td>
<td>nganharma-ṇha</td>
<td>nganharma-ma</td>
<td>nganharma-la</td>
</tr>
<tr>
<td>2SG</td>
<td>nyinda</td>
<td>nyinda-lu</td>
<td>nyinda-ṇha</td>
<td>nyinda-ma</td>
<td>nyinda-la</td>
</tr>
<tr>
<td>2DU</td>
<td>ṇhubalu</td>
<td>ṇhubalu-lu</td>
<td>ṇhubalu-ṇha</td>
<td>ṇhubalu-ma</td>
<td>ṇhubalu-la</td>
</tr>
<tr>
<td>2PL</td>
<td>nhurma</td>
<td>nhurma-lu</td>
<td>nhurma-ṇha</td>
<td>nhurma-ma</td>
<td>nhurma-la</td>
</tr>
<tr>
<td>3SG</td>
<td>bala</td>
<td>bala-lu</td>
<td>bala-ṇha</td>
<td>bala-ma</td>
<td>-</td>
</tr>
<tr>
<td>3DU</td>
<td>bula</td>
<td>bula-lu</td>
<td>bula-ṇha</td>
<td>bula-ma</td>
<td>-</td>
</tr>
<tr>
<td>c. PROX</td>
<td>ṇhaa</td>
<td>yu-lu</td>
<td>yu-ṇha</td>
<td>yu-mu</td>
<td>yu-la</td>
</tr>
<tr>
<td>DIST</td>
<td>ṇghuna</td>
<td>ṇgu-lu</td>
<td>ṇgu-ṇha</td>
<td>ṇgu-mu</td>
<td>ṇgu-la</td>
</tr>
</tbody>
</table>

Table 2: Thalanyji case allomorphy (Deak & the Wangka Maya Pilbara Aboriginal Language Centre 2008:35, after Austin 1981:216)4

Of importance are the forms of the dative case. This case [DAT] is realized as -gu with all nouns, as -ma with all pronouns, and -rnu with the two demonstratives. Because [DAT] (the target) is in an outer position, this constitutes outward-conditioning.

(14) [DAT] ↔ -ma / [PRON] ___
 -rnu / [DEM] ___
 -gu

With the exception of the portmanteau jurdi [1SG.DAT], this is consistent across the relevant category. These data thus fill out the logically possible combinations: grammatically-conditioned allomorphy can show both inward- and outward-conditioning, at both the feature and category level.5
2.3 Morphpologically-conditioned

Next, let us consider **morphologically-conditioned allomorphy**, where the trigger is purely morphological (i.e. does not form a natural class morphosyntactically, semantically, or phonologically).\(^6\) Unlike with grammatically-conditioned allomorphy, the trigger (set) **cannot** be reduced to a morphosyntactic feature like [POSS] or [DEM] as above, but instead typically analysed as being idiosyncratically marked with a morphological diacritic.

Morphological designations such as conjugation or declension cases are often defined based on their morphologically-conditioned allomorphy. In many Pama-Nyungan Australian languages, verb roots are classified based on the form of a tense/aspect/mood (TAM) allomorph they select, often conventionalized based on common phonological characteristics of the conditioned allomorphs. For example, Yindjibarndi \(^{171}\) has four verb root classes (Wordick 1982:79ff): the Ø-class, L-class, R-class, and N-class. These four classes are shown in (15), along with the allomorph of the past tense they select. The numbers at the right refer to the page in Wordick.

\[(15) \text{ Yindjibarndi morphological classes dividing verb roots} \]

\begin{tabular}{llll}
 a. ngarrku- & eat̃ & ngarrku-nha & eat̃-PAST.Ø (44) \\
 b. payha- & throw̃ & payha-rna & throw̃-PAST.L (63) \\
 c. wanpi- & beat̃ & wanpi-rna & beat̃-PAST.R (66) \\
 d. thuwayi- & spear̃ & thuwayi-na & spear̃-PAST.N (171) \\
\end{tabular}

In these examples, L-class and R-class roots selected the same past tense marker -r̃na (IPA: /-n̪a/), though other allomorphy clearly distinguish these classes. Table 3 shows a range of class-conditioned TAM allomorphy. This shows syncretism between the L- and R-class as above (row a.), the L- and N-class (b.), or the L-, R-, and N-class together (c.). The forms in this table are presented in IPA, with their orthographic forms in italics.

<table>
<thead>
<tr>
<th></th>
<th>Ø-class</th>
<th>L-class</th>
<th>R-class</th>
<th>N-class</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. PAST</td>
<td>-ŋa (ëna)</td>
<td>-ŋa (ën̪a)</td>
<td>-ŋa (ën̪a)</td>
<td>-na</td>
</tr>
<tr>
<td>IMPERFECTIVE</td>
<td>-ŋu (ënga)</td>
<td>-ŋu (ën̪a)</td>
<td>-ŋu (ën̪a)</td>
<td>-nu</td>
</tr>
<tr>
<td>b. IMPERATIVE</td>
<td>-ma</td>
<td>-nma</td>
<td>-ŋma (ën̪ma)</td>
<td>-nma</td>
</tr>
<tr>
<td>c. PRESENT</td>
<td>Ø</td>
<td>-ku</td>
<td>-ku</td>
<td>-ku</td>
</tr>
<tr>
<td>OPTATIVE</td>
<td>-jaː (ëyaa)</td>
<td>-caː (ëyaa)</td>
<td>-caː (ëyaa)</td>
<td>-caː (ëyaa)</td>
</tr>
</tbody>
</table>

\[\ldots\]

Table 3: Yindjibarndi TAM allomorphy based on morphological class (Wordick 1982:98)

Although there are gradient correlations between class membership and phonological and transitivity properties of roots (related to the diachronic sources of these classes), class membership overall is not predictable synchronically (p. 81).

In Yindjibarndi the root is the trigger, making this outward-conditioning. Let us further examine the intersection of morphologically-conditioned allomorphy and directionality, following discussion in Inkelas (2017) on the Peruvian language Nanti [cox] (Michael 2008). In Nanti, verb roots are idiosyncratically classified into two classes – an I-class and an A-class – based on the allomorphy they trigger with realis/irrealis suffixes (16).

\[(16) \text{ Nanti allomorphy} \]

a. I-class trigger: -i (N-)...-e

b. A-class trigger: -a (N-)...-eNpa
Example (17) contrasts an I-class root *ha 'go' (a.-c.) with an A-class root *shiNki 'be drunk' (d.-f.). The corresponding page numbers from Michael (2008) are to the right.

(17) Nanti allomorphy (in bold) with their triggers (underlined)
 a. i=ha-i haNta … [i=ha-i] (370)
 3MS=go-t-REAL.I there 'he goes there…'
 b. i=ha-ak-i paNko-tsi-ku [i=ha-ak-i] (303)
 3MS=go-t-PFTV-REAL.I house-NPOSS-LOC 'he went to the house'
 c. ha o=agabeh-i o-ha-e [o=agabeh-i] (436)
 NEG 3NMS=be.able-IRR 3NMS=go-t-IRR.I 'she shouldn’t go'
 d. … o-Nti pi=shiNki-a=ra […]pishinkitara
 3NMS-COP 2s=be.drunkA-REAL.A=DEP '…you were intoxicated' (168)
 e. … i=shiNki-ak-a […]ishinkitaka
 3MS=be.drunkA-PFTV-REAL.A 'He was drunk' (232)
 f. … i=N-shiNki-eNpa=ra […]ishinkitenpara
 3MS=IRREAL-be.drunkA-IRR.A=SUB '…when he is drunk' (429)

The root triggers the special form of the realis/irrealis suffix even if it is non-local due to an intervening suffix, e.g. the perfective suffix –ak PFTV in b. and e. Synchronically, class membership for roots is not predictable.

While most affixes do not affect class membership (they are neutral, like –ak), a small minority of suffixes idiosyncratically change class membership. These are listed in (18). To demonstrate the idiosyncrasy of the triggering suffixes, each is compared to a neutral suffix which is comparable in morphological position, phonological shape, and effect on argument structure (e.g. valency changes).

(18) Nanti class-changing suffixes
 a. A-class triggering suffixes Cf. Neutral
 -be FRUSTRATIVEA -reh REVERSATIVE
 -ant INSTRUMENTALA -ako INDIRECTIVE,APPLICATIVE
 b. I-class triggering suffixes
 -ah REGRESSIVEI -ut RETURNATIVE
 -apah ADLATIVEI -an ABLATIVE

These class-changing suffixes are illustrated in (19). The verb *neh 'see' normally triggers the I-class form (a.), but when the class-changing suffix -be FRUSA (FRUSTRATIVEA) intervenes, it is the suffix which triggers the A-class form (b.). Parallel patterns are seen in (20) with -ah REGI (REGRESSIVEI) which triggers I-class forms, overriding the root class.

(19) Nanti A-class suffix
 a. no=neh-ak-i=ri [nonehakiro]
 1S=see-PFTV-REAL.I=3MO 'I saw him' (355)
 b. no=neh-be-ak-a=ri [nonehabetakari]
 1S=see-PFRUSA-PFTV-REAL.A=3MO 'I saw him (but without the expected result)' (251)

(20) Nanti I-class suffix
 a. no=pig-ak-a [nopigaka]
 1S=returnA-PFTV-REAL.A 'I returned' (257)
 b. no=pig-ah-i [nopigahi]
 1S=returnA-REGI-REAL.I 'I returned' (258)
For these data, Inkelas (2017) refers to the triggering class features as 'L-features', essentially diacritics which are syntactically and semantically arbitrary and therefore purely morphological classification. The morphologically-conditioned allomorphy here show outward-conditioning (inward-sensitivity) with both roots and affixes: an L-feature of an inner affix is the trigger and an outer affix which is the target. Other languages showing outward-conditioning from morphological classes include Nimboran [nir] classes I/II/III (also discussed in Inkelas 2017, citing Anceaux 1965 and Inkelas 1993) and Nez Perce [nez] C-/S-classes (Aoki 1970, Deal & Wolf 2017).

Is the inverse also possible, inward-conditioning with morphologically-conditioned allomorphy? Relevant to this question is the concept of the 'morphome' (Aronoff 1994, 2012, Luís & Bermúdez-Otero 2016), where there is a systematic mapping of an unnatural group of meanings to a set of forms (see O'Neill 2014:31 for several competing definitions). At least some purported morphomic patterns show inward-conditioning. We can illustrate this with an oft-cited morphomic pattern, the Latin so-called 'third stem' (Aronoff 1994). Roots in Latin have distinct shapes depending on the morphological context, e.g. the form of the stem in the infinitive (caed- 'cut' below) systematically differs from that of its third stem form caes- which shows up in certain morphological contexts, e.g. participles in (21).

(21) Latin third stem (Bermúdez-Otero & Luís 2016)
caedere → caes-us 'to cut' cut.III-PART (cf. other stems caedō, cecidiō, etc.)

This qualifies as morphemic because (i) the group of morphological constructions which require the third stem – the supine (caes-um), eventive, instrumental, and agentive nouns (caes-or), desiderative, intensive, and frequentative verbs (caes-itō), adjectives and adverbs (caes-im), a.o. – do not form a semantically or syntactically natural class, and (ii) this class triggers the third stem of all roots across the lexicon systematically (in other words, not just idiosyncratically with the root \^[\text{CUT}]\). One way to state this in a realizational rule is in (22), which states that the root is realized as caes- in the context of morphs (or morphological constructions) which are indexed as triggering the third stem, notated simply as M₁₁₁.

(22) \^[\text{CUT}] \leftrightarrow \text{caes-} / _ _ _ M₁₁₁ \quad \text{(where M₁₁₁=participle, supine, adj, adv,...)}

There are several other ways to conceptualize this, but the directionality relation is clear: if the trigger of the stem form is understood as a diacritic feature on an outer suffix, this meets the definition of inward-conditioning (outward-sensitivity).

Do morphomic patterns show full directional symmetry? Currently, this is very difficult to address due to the morphome being notoriously difficult to define and its very existence being quite contentious (see the state-of-the-art summary in Bermúdez-Otero & Luís 2016). Moreover, for both morphomic patterns (e.g. Latin) and conjugation classes (e.g. Yindjibarndi and Nanti), cases of morphologically-conditioned allomorphy are under-theorized and under-documented, with numerous competing analyses (e.g. for Latin, see Steriade 2016 who identifies phonological and semantic generalizations undercutting the morphomic analysis). This undermines making any firm conclusions regarding directionality asymmetries.

To conclude this subsection, I wish to bring up one hypothetical type of morphologically-conditioned allomorphy which would involve not a class of morphs but rather only a single morph (a class of one). We could call this 'morph-conditioned allomorphy' (as opposed the class-conditioned above). In reality, unfortunately, it is not possible in most cases to differentiate between conditioning due to a single morph or due to a morphosyntactic feature bundle. What could differentiate these cases is a case where a morphosyntactic feature bundle has multiple realizations – i.e. multiple allomorphs – but only one of these acts as a trigger for allomorphy of some other target. This situation is schematized in (23) where abstract feature bundles have either one morph (e.g. \([x] \leftrightarrow /a/\)), or two allomorphs (e.g. \([y] \leftrightarrow \)
Here, an allomorph δ would itself trigger another allomorph ε, in what could be called an 'allomorphy chain'.

(23) Schematic realizational rules involving an 'allomorphy chain'
 a. [x] ↔ α
 b. [y] ↔ β (else) vs. δ / α
 c. [z] ↔ γ (else) vs. ε / δ

To exemplify, imagine modifying the Latin facts above in (11), creating the purely hypothetical Fake Latin example as in (24) below. As in real Latin, in the Fake Latin case the agreement morph is by default realized as –s but it has a special allomorph –istī when adjacent to perfect –v. Now imagine for Fake Latin that some enclitic could follow which indicates a relativized clause. This relativizer enclitic has two allomorphs: =ka by default (a. below), but adjacent to -istī (and -istī alone) it is =kwi (b.). We would have to attribute the allomorphy purely to the allomorph –istī, and not to second person singular agreement generally (the underlying morphosyntactic features), since –s would trigger no special form (a. and c.).

(24) Fake Latin – Illustration of an allomorphy chain (purely hypothetical)
 a. Relativized present indicative amā-s=ka 'that you love'
 b. Relativized perfect indicative amā-v-istī=kwi 'that you loved'
 c. Relativized pluperfect indicative amā-ve-rā-s=ka 'that you had loved'

I am not aware of a clear example of this type in the literature, therefore I will not speculate as to restrictions on directionality of this type.

2.4 Syntactically-conditioned

The fourth type is syntactically-conditioned allomorphy, where the underlying syntactic structure acts as (part of) the trigger for allomorphy. Unlike with grammatically-conditioned allomorphy in §2.2, here it is not sufficient to refer solely to a morphosyntactic feature or feature bundle. Syntactic relations (e.g. sisterhood) must also be appealed to.

I illustrate this type of allomorphy from Danish allomorphy with the definite marker (DEF) (Hankamer & Mikkelsen 2018; see references therein). The allomorphy generally works as follows: when DEF appears with a noun alone, it is realized as a suffix –en, but if there is a modifier intervening between DEF and a noun, DEF is realized as an initial particle den.7

(25) Danish DEF allomorphy (Hankamer & Mikkelsen 2018)
 a. kant-en (cf. *den kant)
 edge-DEF 'the edge'
 b. den skarpe kant (cf. *skarpe kant-en)
 DEF sharp edge 'the sharp edge'

In their account, Hankamer & Mikkelsen propose a 'sisterhood condition' which states that [DEF] is realized as the suffix -en "only if it is a sister to a minimal N" in the syntax (den being the default). A realizational rule is in (26) below, slightly modified form the original.

(26) [DEF] ↔ -en / [__ N⁰]dp

 den
If there is an intervening adjective (b. above), this disrupts the sisterhood condition and default *den* is then inserted.

Importantly, the underlying syntactic structure plays a role in allomorph selection, and not simply proximity to particular morphosyntactic features. A minimal pair from Hankamer & Mikkelsen involving relative clauses illustrates this fact, in (27) below. Example (a.) shows a restrictive relative clause whose underlying (and independent motivated) syntax is \([\text{D}^0 \ [\text{CP}] \]_{\text{DP}}\). In this case, the head N remains within the relative clause and therefore DEF is not sister to it, despite their surface adjacency; *den* remains by default, as expected. In contrast in (b.) with an adjunct-like non-restrictive clause, DEF *is* sister to the noun and therefore the suffix –*en* is selected.

(27) Danish DEF allomorphy sensitive to syntactic structure

a. \([\text{D}^0 \ [\text{CP}] \]_{\text{DP}}\)
 \[\text{[den} [\text{stol} \text{ som jeg sad på}]\]
 DEF chair that I sat on
 'the chair that I sat on' (restrictive)

b. \([[\text{D}^0 \text{ N}^0]_{\text{DP}} \ [\text{CP}] \]_{\text{DP}}\)
 \[\text{[[stol-} \text{en}] [\text{som jeg sad på}]\]
 chair-DEF that I sat on
 'the chair, which I sat on' (non-restrictive)

[Cf. *‘the chair that I sat on’ (restrictive)*]

For the Danish data, the target (DEF) is outer compared to the trigger (N⁰), therefore constituting outward-conditioning (inward-sensitivity). Data from Russian shows that we also find the opposite directionality as well. Russian has two sets of third-person pronouns (Timberlake 2004:117, *i.a.): an *n*-initial pronoun which is inserted after prepositions and one inserted by default, e.g. the forms of the 3SG.F DATIVE pronoun ‘to her’ in (28).

(28) \[\text{[PRON:3SG.F][DAT]} \leftrightarrow \text{nej } / \text{jej} \]

Here, the trigger P⁰ is outer and the target inner, therefore constituting inward-conditioning (outward sensitivity).

One should note, however, that because syntactically-conditioned allomorphy by definition involve a syntactic structural trigger, there are several alternatives that can be posited which would invalidate an allomorphy analysis. For example, if we assume that prepositions assign a [P-CASE] feature (following Philippova 2018:45), then the two exponents *nej* and *jej* actually realize distinct morphosyntactic feature bundles and no longer meet our definition of allomorphy. This issue generally complicates all interpretations of syntactically-conditioned allomorphy and undermines properly assessing directionality relations.

3 Directionality and phonological triggers

Selection of a (suppletive) allomorph can also be conditioned by phonological properties, the focus of this section. Two types are discussed: segmentally-conditioned allomorphy and suprasegmentally-conditioned allomorphy. As we established in §1, I do not include cases where the allomorphs are can be reduced to a single underlying representation derivable by a general phonological rule, e.g. English past [d]~[t]~[əd], reducible to /-d/. I return to this distinction at the end of §4 below.
3.1 Segmentally-conditioned

Segmentally-conditioned allomorphy involves a trigger which is either (i) a segment or natural class of segments (e.g. a vowel), or (ii) a segmental feature or natural class of segmental features (e.g. [LABIAL]). A commonly cited example is 3SG.M allomorphy in Moroccan Arabic [āry], realized as -u after vowels but -h after consonants (Mascaró 2007, citing Harrell 1962).

(29) Moroccan Arabic 3SG.M clitic phonologically-conditioned allomorphy

<table>
<thead>
<tr>
<th>a.</th>
<th>xtالف</th>
<th>'his error'</th>
<th>b.</th>
<th>xhrاب</th>
<th>'his book'</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ʃاف</td>
<td>'they saw him'</td>
<td></td>
<td>ʃاف</td>
<td>'he saw him'</td>
</tr>
<tr>
<td></td>
<td>مها</td>
<td>'with him'</td>
<td></td>
<td>مه</td>
<td>'from him'</td>
</tr>
</tbody>
</table>

The distribution appears non-trivial: both avoid adjacent vowels/consonants, which would constitute more marked patterns (i.e. *[xt'af] and *[xhrab]).

Segmentally-conditioned allomorphy where the conditioning environment is a vowel (V) vs. a consonant (C) is extremely common cross-linguistically. Paster (2006) highlights numerous cases of this type, which include Yidiny [vii] locative/instrumental/allative case (Dixon 1977), the Korean conjunctive suffix (Lee 1989, Lapointe 1999), Russian active participles (Timberlake 2004), Haitian Creole definite markers (Hall 1953, Klein 2003), among many others.

Further, segmentally-conditioned allomorphy may involve a natural class of segments defined by a phonological feature (or feature set). Another well-known case discussed in Paster (2006) is the Tahitian [tah] causative/factitive, which is exponed as the prefix ha’a- when the root begins with a labial sound but fa’a- elsewhere (citing Lazard & Peltzer 2000:224-225; cf. Scheer 2016 for an alternative without stored allomorphy). Here, the segments /m f v/ are grouped together as sharing the feature [LABIAL].

(30) Tahitian phonologically-conditioned allomorphy triggered by feature [LABIAL]

<table>
<thead>
<tr>
<th>a.</th>
<th>mana</th>
<th>'think'</th>
<th>b.</th>
<th>fa’a-</th>
<th>'make eat'</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>fiu</td>
<td>'grow tired'</td>
<td></td>
<td>amu</td>
<td>'eat'</td>
</tr>
<tr>
<td></td>
<td>veve</td>
<td>'be poor'</td>
<td></td>
<td>rve</td>
<td>'do, make'</td>
</tr>
<tr>
<td></td>
<td>tαιo</td>
<td>'read'</td>
<td></td>
<td>tαιo</td>
<td>'make read'</td>
</tr>
</tbody>
</table>

These examples illustrate a robust property of phonologically-conditioned allomorphy: the trigger is inward and the target outward, thus constituting outward-conditioning (inward-sensitivity). This constitutes the clearest directional asymmetry in allomorphy selection: a phonological trigger is virtually always outward-conditioning (Paster 2006), and counter examples are very rare. Several theories have been formed explicitly adopting this as a systematic gap, which we return to in §4.

Only a small number of counter-examples have been put forward, none without controversy. One comes from Nez Perce (Deal & Wolf 2017, introduced above), in which a few morphemes have multiple phonologically-conditioned suppletive allomorphs. One example is the root √GO which is realized as kiy- before a vowel but as kuu- otherwise (this has a reduced variant ku-, based on stress). Deal & Wolf emphasize that there is no general i(y)-u(u) alternation in the language. They summarize the triggering contexts as in Table 4 (slightly modified from the original), which demonstrates that allomorph selection is determined by whether the following suffix if V- or C-initial. The segment which conditions allomorphy is part of a morph in an outer position, therefore constituting inward-conditioning (outward-sensitivity).
with only 1 or 2 roots. Certain pairings are quite common – e.g. 94 roots show pairs ending in k ~ kt – while others are occur with only 1 or 2 roots.

Table 4: Nez Perce inward-conditioning from a phonological trigger

Wolf (2013) presents several other (potential) examples of inward-conditioning from a phonological trigger, e.g. the Icelandic participle suffix is /-ð/ if before a vowel-initial suffix, but otherwise /-in/ (Svenonius 2012).

Like Nez Perce √GO, one place we might expect to find inward-conditioning is with root/stem allomorphs, especially in light of how extremely common they are the targets of allomorphy with morphosyntactic triggers. However, this too is rare and subject to varying interpretations. We can illustrate this with languages in the Kiranti family. Across this family, stems generally have two related shapes (Herce 2020). Herce shows that in the Western branch, this is generally morphologically conditioned, but in the Eastern branch it is conditioned by whether the following suffix begins with a vowel or a consonant.

Consider Limbu [lit] (Van Driem 1987). Verb stems in general have two forms which differ in their final segments, e.g. a root √RETURN is realized as nu ks before a vowel but nu η otherwise (e.g. before a consonant or word-finally). This is illustrated with the paradigm in Table 5 (Van Driem 1987:374-375), where preterit and non-preterit forms are provided with the full range of subject agreement morphology. When the root is before a vowel-initial suffix (the grey cells), it is always realized as nu ks. The set of triggers do not form a morphosyntactically natural class.

Table 5: Limbu inward-conditioning based on whether suffix is V-initial (grey) or C-initial

There are several complicating factors, however, which undermine a straightforward interpretation as phonologically-conditioned allomorphy. One is that virtually all roots have two stems in Limbu, and it is thus not an idiosyncratic property of a few morphemes as we might in a canonical allomorphy exemplar (as in Nez Perce). Van Driem catalogues the stem pairs based on the shape of their rhyme, showing a largely regular system. This is summarized in Table 6, split up based on the elsewhere form of the root compared to its shape before vowels. This table shows that the stems nu η and nu ks above are one of 81 such pairs in the language which have the same η ~ ks alternation (row g. below). Certain pairings are quite common – e.g. 94 roots show pairs ending in k ~ kt – while others are occur with only 1 or 2 roots.
<table>
<thead>
<tr>
<th>Else ~ pre-V</th>
<th>n=</th>
<th>Else ~ pre-V</th>
<th>n=</th>
<th>Else ~ pre-V</th>
<th>n=</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. p ~ pt</td>
<td>48</td>
<td>e. m ~ ps</td>
<td>35</td>
<td>h. V ~ Vy</td>
<td>14</td>
</tr>
<tr>
<td>p ~ b</td>
<td>22</td>
<td>m ~ ms</td>
<td>14</td>
<td>V ~ Vy</td>
<td></td>
</tr>
<tr>
<td>b. t ~ tt</td>
<td>86</td>
<td>m ~ m</td>
<td>12</td>
<td>i. V ~ Vs</td>
<td>65</td>
</tr>
<tr>
<td>t ~ r</td>
<td>15</td>
<td>n ~ md</td>
<td>6</td>
<td>V ~ Vr</td>
<td>20</td>
</tr>
<tr>
<td>t ~ ?r</td>
<td>10</td>
<td>n ~ nd</td>
<td>76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t ~ tch</td>
<td>4</td>
<td>n ~ nch</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t ~ s</td>
<td>1</td>
<td>n ~ r</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. k ~ kt</td>
<td>94</td>
<td>n ~ ?r</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>k ~ g</td>
<td>39</td>
<td>n ~ tch</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>k ~ ?g</td>
<td>1</td>
<td>η ~ ks</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. ? ~ ?r</td>
<td>44</td>
<td>η ~ η</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>? ~ r</td>
<td>2</td>
<td>η ~ ηs</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>? ~ ?r</td>
<td>2</td>
<td>η ~ ηd</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>? ~ ?t</td>
<td>2</td>
<td>η ~ g</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>? ~ ?s</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6: Summary count of Limbu stem alternations (V = any vowel, ′ = long vowel)

While many of these pairings can be explained straightforwardly as neutralization in coda position, many pairs show phonologically odd alternations, such as m ~ ps, or ? ~ r. Moreover, as emphasized by Herce (2020) certain pairs have considerable overlap which complicates a straightforward phonological account, e.g. forms which end in [r] pre-vocally show the following pairings: t ~ r, ? ~ r, n ~ r, V ~ Vr, t ~ ?r, ? ~ ?r, and n ~ ?r.

Regardless of one's interpretation of these facts, one notable fact is that across the Kiranti family's stem alternations (e.g. as typologized in Herce), there are no examples of 'strong suppletion', e.g. a hypothetical root naks before a vowel but luŋ elsewhere. If such an example were found, it should certainly be brought to the attention of the morphology community.

3.2 Suprasegmentally-conditioned

The second type is **suprasegmentally-conditioned allomorphy**, where the trigger involves tone, stress, moraic/syllabic structure, prosodic constituency, etc. A showcase example comes Tzeltal [tzh], where perfective aspect has two suppletive allomorphs: -oh appears with monosyllabic stems and -ɛh appears elsewhere (Paster 2006:171, citing Brown 1996 and Walsh Dickey 1999:328-329).

(31) Tzeltal perfective allomorphy conditioned by syllable count of stem

a. j-ah-oh 'he has told something'
 s-mah-oh 'he has hit something'
 s-kutf-oh 'she has carried it'

b. s-tikun-ɛh 'he has sent something'
 s-mak'lin-ɛh 'he has fed someone'
 s-kutf-laj-ɛh 'she was carrying it repeatedly'

The two mid vowels /o/ and /ɛ/ show no active alternations in Tzeltal, nor would such an alternation be phonologically natural based on syllable count.

Stress frequently conditions allomorphy. Consider the two English verbal suffixes -ize and -ify, with causative semantics (among other uses). Plag (1999:197) analyzes these as phonologically-conditioned suppletive allomorphs in complementary distribution: "-ize is generally preceded by trochaic or dactylic bases, i.e. it needs an unstressed or secondarily stressed syllable to its left", e.g. rândom-ize,
hospital-ize, and neologisms like ghètto-ize, "whereas -ify always needs a main-stressed syllable to its left (stress shift is generally avoided)", e.g. jùst-ify, opàc-ify, and neologisms like yùpp-ify.

Parallel patterns exist involving the tone of the stem conditioning suppletive allomorphy. One case is from the Yucunany dialect of Mixtepec Mixtec [mix] (Paster 2006, citing Paster & Beam de Azcona 2005). The first person singular enclitic is realized as a floating low tone by default, except when the phrase already ends in a low tone, where instead the allomorph yù is used. This is shown in (32).

The suprasegmental cases above and virtually all which are identified in the literature show the same directional asymmetry that we saw with segmentally-conditioned allomorphy: the trigger is inward and the target is outward, thus outward-conditioning. Counter-examples are rare and generally treated cautiously. One example comes from Surmiran Rumantsch [roh] stem suppletion (Anderson 2008, Wolf 2013), which can be taken as the suprasegmental version of the Limbu patterns we saw before in Table 5. In this language, there are a number of vowel alternations which are conditioned by stress. Most stems have two forms: one used when the stem is unstressed and the suffix is stressed, and another when the stem is stressed and suffix unstressed. Two representative examples are shown in Table 7. For typographical clarity, in the Rumantsch data stress is indicated via an acute accent on the vowel rather than a stress mark.

<table>
<thead>
<tr>
<th></th>
<th>'sleep'</th>
<th>'get up'</th>
</tr>
</thead>
<tbody>
<tr>
<td>1S</td>
<td>dōrm</td>
<td>lév</td>
</tr>
<tr>
<td>2S</td>
<td>dōrm-as</td>
<td>lév-as</td>
</tr>
<tr>
<td>3S</td>
<td>dōrm-a</td>
<td>lév-a</td>
</tr>
<tr>
<td>1P</td>
<td>durm-ign</td>
<td>lav-ágn</td>
</tr>
<tr>
<td>2P</td>
<td>durm-iz</td>
<td>lav-éz</td>
</tr>
<tr>
<td>3P</td>
<td>dōrm-an</td>
<td>lév-an</td>
</tr>
<tr>
<td>INF</td>
<td>durm-éir</td>
<td>lav-ár</td>
</tr>
</tbody>
</table>

Table 7: Surmiran Rumantsch stem alternations (Anderson 2008:113)

Anderson states that while these alternations have transparent diachronic origins, in the synchronic system there are too many unpredictable aspects to derive them through phonology alone. Rather, they constitute phonologically-conditioned suppletive allomorphs. Consider Table 8 below. As stressed by Anderson (and Wolf), a core argument that this constitutes suppletion is because "the relationship between the stressed and unstressed vowels is many-to-many", e.g. "both [a] and [o] in the stressed form can alternate with any of /a, i, u/ in the unstressed form" (Wolf 2013:166), shown in rows a. and b. Other more complicated vowel alternations are common as well (c.), as well as a small number of consonantal changes which are not straightforwardly attributable to general phonology (d.).
Finally, point this pattern, it was labelled as 'Insufficient' and should be interpreted as empirically unattested. If there were no incontrovertible examples and no overt arguments for this pattern, it was labelled as 'Sufficient'.

4 Directional (a)symmetry and morphological theory

To wrap up this chapter, I will situate the primary patterns within the larger theoretical literature. I have presented thus far a summary of five main types of allomorphy. These are summarized in Table 9 as rows a.-e. Each is marked with one of three values for the two directions (inward and outward). If the morphology literature contains a large enough number then this is labelled 'Sufficient' and should be interpreted as empirically attested. If there were no incontrovertible examples and no overt arguments for this pattern, it was labelled as 'Insufficient' and should be interpreted as empirically unattested at this point. As it stands, only inward-conditioning from a lexical trigger (row a.) falls under this category. Finally, if (potential) examples exist but they are infrequent and/or contested, it was labelled as 'Limited'.
Based on this table, there are two key generalizations which morphological theory must contend with. The first is that there is symmetry with grammatically-conditioned allomorphy, with both inward- and outward-conditioning amply attested. This is the only clear case of directional symmetry; cases of syntactically-conditioned allomorphy are too contestable at this point to include them. The second generalization is that the other types of allomorphy all show the same directional asymmetry: outward-conditioning is well-attested but inward-conditioning is not. This asymmetry holds whether one views these as true gaps or merely very rare. From these generalizations, we can make a statement called the 'directional implication in allomorphy selection'.

(34) Directional implication in allomorphy selection:
If a trigger of linguistic type \(x \) can condition allomorphy of an inner target (inward-conditioning), this type \(x \) can also condition allomorphy of an outer target (outward-conditioning)

In other words, allomorphy able to be triggered inward must also be able to be triggered outward.

Regarding the first generalization above (directional symmetry with grammatically-conditioned allomorphy), it is interesting to note that several morphological models have been posited which do not predict this symmetry. One proposal is from Carstairs-McCarthy (2001), who argues that outward-conditioning (inward-sensitivity) "should be [from] individual properties" such as morphosyntactic features like [PAST], while inward-conditioning (outward-sensitivity) "should be only [from] whole categories" such as Tense (p. 42). However, as we saw in §2.2 there is directional symmetry between all types of grammatically-conditioned allomorphy which contradicts the predictions of this model. See also Adger, Béjar, & Harbour (2003) for rebuttal arguments based on (generative) syntactic theory.

Furthermore, within early Distributed Morphology (DM) works (and many thereafter), there is a common desideratum to model grammatically-conditioned allomorphy as only going inward (at odds with the directional implication above). This is succinctly summarized in Gouskova & Bobaljik (to appear) discussing previous work on Itelmen (Bobaljik 2000, Bobaljik & Wurmbrand 2001), previously introduced in §2.2. Examining allomorphy within the verb, Gouskova & Bobaljik highlight the fact that grammatically-conditioned allomorphy (from morphosyntactic features such as person, number, and mood) displays inward-conditioning (outward-sensitivity), while allomorphy which is phonologically-conditioned or morphologically-conditioned (from morphophonological features such as root-specific conjugation classes) displays outward-conditioning (inward-sensitivity). This falls out from the concept of 'cyclic exponence' in which the features of the most deeply embedded node are realized first, with exponence proceeding inside-out one-by-one. To quote Gouskova & Bobaljik (to appear):

"This asymmetry in the direction of conditioning can be seen as an effect of the cyclic, bottom-up (root-outwards) application of VI [Vocabulary Insertion], converting a morphosyntactic representation to a morphophonological one: When VI applies to any
Given node, more peripheral nodes are still abstract, consisting only of morphosyntactic information, thus only that information is available outwards. Conversely, since lower nodes have already been converted to a phonological string, only information in the phonological representation, including inflection class diacritics, is visible for inwards-sensitive conditioning. (Gouskova & Bobaljik to appear)

Within this model the underlying morphosyntactic features must be ‘rewritten’ ~ ‘replaced’ when a realization rule applies. Following the authors, this process is illustrated using the basic syntactic tree in Figure 1, followed by the envisioned morphological procedure in (35).

![Syntactic Tree](image)

Figure 1: Itelmen verb-internal hierarchical structure (Gouskova & Bobaljik to appear)

(35) Itelmen cyclic exponence (inside-out and one-by-one)

g. Surface: [təsčəŋi] ‘you are bringing it’

Because exponence is cyclic and morphosyntactic features are replaced in this model, this predicts that allomorphy can only be sensitive to morphosyntactic of outer nodes. For Itelmen this holds up: the realization of class morpheme CL is sensitive to the morphosyntactic features of outwardly located subject and object agreement, while the realization of object agreement is sensitive only to outwardly located subject agreement.

Despite the success for Itelmen, an empirical conclusion of this chapter is that grammatical allomorphy of this type is incontrovertibly bidirectional. This therefore requires a modification: either the morphosyntactic features are not replaced, or the exponent is labelled in such a way that the original morphosyntactic features are recoverable (for the latter approach, see Adger, Béjar, & Harbour 2003).

Models with cyclic exponence achieve more success with respect to morphologically- and phonologically-conditioned allomorphy. Recall from Table 9 that these types show a clear selectional asymmetry: the great majority of cases involve outward-conditioning (inward-sensitivity), equally true of the Itelmen data above. Many theoretical works adopt that the dearth of convincing cases showing inward-conditioning necessitates a maximally restrictive model like cyclic exponence, where such cases are principally ruled out by the architecture of grammar. This holds for virtually all of the DM literature (Embick 2010, 2015) and some additional non-OT based morphology (Paster 2006), as well as some OT-based models like Optimal Construction Morphology (Caballero & Inkelas 2013, Inkelas 2017).

For example, consider the bottom-up construction of words in Optimal Construction Morphology (OCM), using data from Archi [aŋc] (Kibrik 1991). As shown in (36), ergative marking has a special form -čaj when it is next to a plural marker, glossed as ERG.PL.
Under OCM's implementation of cyclic exponence, such data demonstrate that inner morphosyntactic features cannot be replaced, otherwise we would expect the replacement of the inner plural feature by a plural morph (allomorphs -um or -or above) to bleed the insertion of the special ERG.PL form. Instead, the relevant morphosyntactic features are stable and exist as an independent 'S-target' accompanying the derivation. They are not subject to addition, deletion, or replacement.

An abridged version of Caballero & Inkelas' OCM derivation of the Archi data is in Table 10. At the top is the S-target consisting of semantic features [SEM=CUP, NUM=PL, CASE=ERG], which is able to be referred to at any stage of the derivation. The individual steps gradually realize these features (inside-out, starting from the root). Because the number feature PL is always available in the S-target, it can condition the special ergative form. Note that the authors implement the input-output mapping within Optimality Theory using constraint ranking and candidate competition, not shown.

<table>
<thead>
<tr>
<th>S-target: [SEM=CUP, NUM=PL, CASE=ERG]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input:</td>
</tr>
<tr>
<td>Step 1 \emptyset → [gel]$_{\text{root}}$</td>
</tr>
<tr>
<td>Step 2 [gel]${\text{root}}$ → [gel-um]${\text{stem}}$</td>
</tr>
<tr>
<td>Step 3 [gel-um]${\text{stem}}$ → [gel-um-ćaj]${\text{word}}$</td>
</tr>
<tr>
<td>Output:</td>
</tr>
<tr>
<td>SEM=CUP</td>
</tr>
<tr>
<td>NUM=PL</td>
</tr>
<tr>
<td>CASE=ERG</td>
</tr>
</tbody>
</table>

Table 10: Optimal Construction Morphology analysis of Archi

One of the drawbacks of the DM and OCM models employing cyclic exponence is that it is a victim of its own success: how do they account for the small number of cases involving outward-conditioning of a phonological or morphological trigger? Such cases are not derivable given the strictest version of this architecture. One solution is to allow for the cyclic exponence to generally proceed inside-out but allow for certain contexts where a more outwardly located feature is realized before a more inwardly located one (i.e. in [[x]-y]-z, realize z before y). In this way, morphophonological information associated with a particular outer morph will be available even to inner morphs. For strategies how this could be implemented, see distinct proposals in Wolf (2008) and Myler (2017).

An even more radical departure is in Optimality Theoretic Distributed Morphology (OT-DM) (Rolle 2020, Rolle & Bickmore under review), whereby all features are realized simultaneously within a single instance of spell-out, i.e. 'simultaneous exponence'. Such a model predicts there to be both inward and outward-conditioning of all types. Because this is a less restrictive theory of allomorphy, it begs the following question: why do we see such limited and controversial cases of inward-conditioning involving phonological and morphological triggers? One cannot refer strictly to linguistic architecture under simultaneous exponence, and therefore a more sophisticated response is necessary involving diachronic, cognitive, or usage-based supplements. Such a project remains to be seen.

Our discussion thus far has touched upon only some of the theoretical morphology literature. Another prominent groups of morphological theories largely reject the morph/phoneme as the primary unit of morphological contrast (e.g. 'A-morphous' approaches à la Anderson 1992), instead examining morphology as functions (Paradigm Function Morphology – Stump 2001) and/or as paradigms (Word & Paradigm Morphology – Blevins 2016). Under these approaches, the role of allomorph selection generally
is minimized (if not entirely rejected), as is word-internal hierarchical structure and any debates concerning directionality.

While the above models minimize allomorphy selection as a whole, other models go in the opposite direction and consider many alternations as stored allomorphy which most morphophonologists would consider simply to be regular phonology. Consider the 'Emergent Morphology' program (Archangeli & Pulleyblank 2015, 2016, a.o.), which eschews underlying representations. Instead, it posits that all surface allomorphs are underlyingly stored and selected under certain conditions, e.g. English plural marking forms a set \{s, z, ñz, ñ100_foot_t_0_TOOTH_mais_HOUSE_\ldots\}_PLURAL, where surface forms [s, z, ñz] are stored rather than being derived from underlying /lz/.

This expansion of what constitutes allomorphy has a radical effect on the typology of directionality effects, especially with regard to phonologically-conditioned allomorphy. To illustrate, consider an example from Standard Yoruba [yor] (Archangeli & Pulleyblank 2016:262-265). Yoruba has three tone heights: high, mid, and low. A general contouring rule exists whereby a high tone (H) spreads rightward into a following low tone (L) (i.e. H L → H HL), and L spreads rightward into H (i.e. L H → L LH). That this is a general process (i.e. not morphologically-conditioned) is seen in the following example, where every morph but the last spreads its tone rightward.

(37) Yoruba tone contouring (Hyman 2007, citing Laniran & Clements 2003)
 / máyɔmí râ wé / → [máyɔmí râ wé] ‘Mayomi bought books’

The standard analysis of such data is to derive the contour via a phonological rule, and posit an underlyingly representation such as /râ/ ‘buy’ in (37). Under Emergent Morphology, however, morphemes form sets of allomorphs selected under certain conditions. In (38) below, the verb ‘see’ consists of the set \{rì, rí\} where the allomorph /rì/ is selected after a high tone but /rí/ after a low tone (the latter to avoid L.H sequence across syllables). As done throughout, the allomorphs are in bold and the trigger is underlined.

(38) Yoruba tone alternations (Archangeli & Pulleyblank 2016)
 a. ó rì 3SG see ‘he/she/it saw’
 b. kò rí NEG see ‘he/she/it did not see’

Here, the trigger is phonological and part of a morph in an outer position, therefore constituting inward-conditioning (i.e. outward sensitivity). Such an interpretation would make this Yoruba case like the stem allomorphy we saw for Limbu and Surmiran Rumantsch in §3.13.

The inclusion of fully predictable allomorphs would thus drastically effect our conclusions, and any directional asymmetry in phonologically-conditioned allomorphy would likely dissipate. While the Emergent Morphology approach deserves to be judged in its own right, it is not well-suited for the typological perspective of this chapter.14

5 Conclusion

This chapter provided an overview of directionality relations in allomorphy selection. One type was ‘inward-conditioning’, where the trigger was in a structurally outer position compared to the inner target (i.e. it is further away from the lexical head of the construction). Its counterpart was ‘outward-conditioning’, where it was the trigger in an inner position and the target in an outer position (also known as ‘inward-sensitivity’). A number of typologically diverse cases were presented to illustrate directional asymmetries in allomorphy selection. One robust generalization involved grammatically-conditioned allomorphy, in which the trigger was a morphosyntactic feature (e.g. [PLURAL]), feature bundle (e.g. [3.SG.FEM]), or feature category (e.g. [TENSE]). In this type of allomorphy, both inward-conditioning and outward-conditioning were widespread, showing directional symmetry. In contrast, other types such as lexically-conditioned (the trigger is a particular lexical root), morphologically-conditioned (a purely morphological feature, e.g. conjugation class), and phonologically-conditioned allomorphy showed a
clear directional asymmetry. Here, allomorph selection almost always involved outward-conditioning, i.e. the trigger was in an inner position and the target more outwards. In general, cases of inward-conditioning were rare and controversial. Taken all together, these findings were summarized as a typological statement called the ‘directional implication in allomorphy selection’, which stated that if a trigger of linguistic type x can condition allomorphy of an inner target (inward-conditioning), this type x can also condition allomorphy of an outer target (outward-conditioning).

SEE ALSO: [morphcom...]

Brown, Dunstan, Marina Chumakina, Greville G. Corbett, and Andrew Hippisley. 2003. Surrey Suppletion Database. University of Surrey. http://dx.doi.org/10.15126/SMG.12/1

Paster, Mary. 2006. Phonological conditions on affixation. UC Berkeley dissertation.

Rolle, Nicholas, and Lee Bickmore. under review. "Outward-looking phonologically-conditioned allomorphy versus first-last tone harmony in Cilungu".

Steriade, Donca. 2016. The morpheme vs. similarity-based syncretism. In The morpheme debate.

This is a simplification. There is arguably a null realization Ø, too.

For many other references (both recent and established), see Choi & Harley (2019:1342fn25).

The orthography here follows the Deak et al. source. See Austin (1981:213) for other information on surface allomorphy with the ergative and locative.

This makes the prediction that we should find contexts showing both directions simultaneously. Indeed, several allomorphic rules have been posited involving two triggers, one inward and the other outward. One is Hupa [hup] (Embick 2010:61, citing Golla 1970:69), whereby agreement features [1SG] are conditioned by outwardly-located aspect [PERF] as well as the inwardly located eventivity/stativity of the verb. Even in the Bengali example cited in (13) from Banerjee (2020), this rule has an outwardly-located trigger, as well: it only applies in [-IRREALIS] contexts, a [MOOD] feature in an outer position.

It may be possible to collapse morphologically-conditioned allomorphy with the lexically-conditioned allomorphy discussed in §2.1. I do not pursue that here.

For our purposes, we ignore a set of an exceptional group of nouns which take the den form in all contexts.

A percentage of speakers also get the restrictive reading here, as well.

This interpretation seems plausible since the only consonants allowed in coda position are [p b pʰ k t tʰ 7 m n n].

Anderson does not formalize his model in this way, and in fact states that such a characterization in terms of position relative to stress is insufficient to capture the facts when there is no overt segmental suffix. However, it suffices for our purposes.

Wolf (2008:194-195) mentions similar non-predictable stem alternations in Italian, e.g. the root vbrær (ininitiative rompere ‘to break’) is rupp- when stressed but romp- when unstressed, √go.out (ininitiative uscire ‘to go out’) is esc- when stressed but usc- when unstressed, among a few others.

Hossep Dolatian (p.c.) in fact mentions that there are several other potential cases of inward-conditioning involving a phonological trigger in Armenian. For example, the definite article has two forms -ə and -n which has a complex distribution based
on whether the preceding (inwardly-located) and the following environment (outwardly-located) is a vowel or a consonant (as well as sensitivity to affix/clitic/word boundaries, depending on dialect).

13 An Emergent Morphology approach involving fully predictable allomorphs has been particularly attractive in modeling phonologically-unnatural patterns of tone sandhi, going back at least to Tsay & Myers (1996). See discussion and implementation in Archangeli & Pulleyblank (2016) and McPherson (2019).

14 In fact, I have not included psycholinguistic approaches to morphology in general. This is relevant given the debates concerning the storage vs. computation of complex linguistic forms that have taken place there, where the role of predictability in linguistic storage is examined very carefully (e.g. Nooteboom, Weerman, & Wijnen 2002).