What Parasitic Gaps Reveal about Overlapping Paths and Multiple Specifier Formation

Colin Davis / colind@usc.edu

Abstract: This paper investigates sentences in which A’-movement paths overlap. I argue that the behavior of parasitic gaps in such contexts, when examined in terms of predictions from Nissenbaum (2000), reveals evidence for the following generalization: If two A’-moving phrases XP1 and XP2 form specifiers of a phase YP such that XP1 c-commands XP2, then XP1 c-commands XP2 in all subsequent positions these phrases occupy. I argue that this result emerges from a theory in which cross-phasal movement is constrained by cyclic spell-out and linearization preservation, with consequences for topics such as the path containment condition and the nature of multiple specifier formation.

Keywords: phases, cyclic linearization, parasitic gaps, multiple specifiers

1 Introduction

In this paper, I investigate certain properties of sentences in which (A’-)movement paths overlap. I argue that the behavior of parasitic gaps (PGs) such sentences clarifies their derivational history, and in doing so, leads to several consequences for syntactic theory. An overlapping movement configuration minimally involves two moving phrases, for which there are two possible outcomes in principle: either the two phrases’ paths will cross, resulting in no change in their order (1a), or their paths will nest, reversing their order (1b).
(1)

a. **Crossing paths**

\[\alpha \beta \ldots \alpha \beta \]

(Order-preserving)

b. **Nesting paths**

\[\beta \alpha \ldots \alpha \beta \]

(Order-reversing)

While it is conceivable that only one of these scenarios might be attested in natural language, in reality both are, as the following examples illustrate:

(2)

Examples of crossing paths (XP\(_1\) YP\(_2\) ... t\(_1\) t\(_2\))

a. **Bulgarian multiple wh-movement** (Richards 1997 p. 277 ex. 75a)

Kogo\(_1\) kakvo\(_2\) e pital Ivan t\(_1\) t\(_2\)?
who.NOM what.ACC AUX asked Ivan
‘What did Ivan ask who?’

b. **Multiple wh-scrambling in Japanese** (Richards 1997 p. 63 ex. 12b)

Dare-ni\(_1\) nani-o\(_2\) John-ga [Takana-sensee-ga t\(_1\) t\(_2\) yomaseta to]
who-DAT what-ACC John-NOM [Takana-teacher-NOM read-caus that]
itta no?
said Q
‘Who did John say professor Tanaka made read what?’

(3)

Examples of nesting paths (YP\(_2\) XP\(_1\) ... t\(_1\) t\(_2\))

a. **Multiple topicalization in Mandarin** (Chen 2017, ex. 27a)

[Shengfan]\(_2\), lubian xiao gou\(_1\), wo wei guo t\(_1\) t\(_2\).
leftover-rice streetside small dog 1SG feed PERF
‘Leftovers, I have fed them to small dogs on the street side’

b. **Topic/focus movement plus wh-movement in English**

[This book]\(_2\), who\(_1\) should we talk to t\(_1\) about t\(_2\)?
The simplest way to achieve a configuration with overlapping A′-movement paths in English in a surface-evident way is to combine topic/focus fronting with wh-movement, as in (3b) above. Here we see that the landing site of the former movement is above that of the latter. We will see other overlapping movement configurations in English later in this paper, but for the moment, let’s first consider what the derivational history of (3b) might look like.

A central concern of this paper is phase theory (Chomsky 2000, 2001, 2008, and many following). This theory argues that (at least) vP and CP are phases, which phrasal movement from must pass through a specifier position of. As described in the next section, this prediction arises from a particular proposal concerning the nature of spell-out—an operation endemic to phases. Importantly, notice that if vP is a phase, then the two phrases undergoing A′-movement in (3b) above must both pass through specifiers positions of the vP here. This consequence sits comfortably with the widely-held hypothesis that a phrase may have multiple specifiers (Chomsky 1995; Koizumi 1995; Ura 1996; Zwart 1997; Richards 1997, 1999; Doron and Heycock 1999; Chomsky 2000). However, since in (3b) above there are two moving phrases, there are two conceivable structures for the vP level of this derivation, illustrated in the simplified diagrams in (4) below: either the topic/focus phrase could form an outer spec-vP, with the wh-phrase forming an inner one (4a), or the reverse might occur (4b), prior to these phrases further movement to the left periphery. In principle, either derivation is sufficient to accomplish movement from the vP in (3b). However, in this paper I will argue that the behavior of PGs in such sentences reveals that only derivations like (4a) are available, and argue for a theory that predicts this, among other results.
In particular, this paper advances a theory referred to as *Cyclic Linearization* (CL; Fox and Pesetsky 2005a,b; Takahashi 2004; Ko 2007, 2011, 2014; Sabbagh 2007; Podobryaev 2009; Takita 2010; Fanselow and Lenertová 2011; Jenks 2011, 2013a,b; Medeiros 2013; Overfelt 2015; Erlewine 2017; Davis 2019, 2020, a.o.), which attributes a great deal of explanatory power to the way in which phase-by-phase spell-out determines word order, as we’ll see.

1.1 Main results of this paper

The first goal of this paper is to argue for the generalization in (5) below:
(5) **Overlapping Chain Generalization (OCG)**

If two A′-moving phrases XP₁ and XP₂ form specifiers of an intermediate phase YP such that XP₁ c-commands and hence precedes XP₂, then XP₁ c-commands and hence precedes XP₂ in all subsequent positions these phrases occupy.

The derivation in (4a) above which I will argue is accurate for sentences like (3b) fits the OCG, since here the moved phrases *this book* and *who* have the same relative order both in their final landing sites, and in their intermediate landing sites in the vP. By showing that overlapping successive cyclic movement is indeed generally order-preserving in this way, this paper amasses further for the view that CL constrains extraction from phases.

The key evidence for the OCG comes from PGs. PGs have been used in much previous work to diagnose the properties of (A′-)movement (Engdahl 1983; Nissenbaum 1998, 2000; Legate 2003; Overfelt 2015; Branan 2017; Erlewine and Kotek 2018; Fox and Nissenbaum 2018, a.o.), and are central here as well, as a diagnostic for the derivational history of overlapping movement configurations. In particular, this paper will use a prediction from Nissenbaum (2000) about PG licensing in multiple movement scenarios, stated in (6) below:

(6) **Multiple Specifier Single Parasitic Gap Prediction**

In contexts where XP₁ is the highest specifier of vP and XP₂ is a low specifier of vP, only XP₁ can license a single parasitic gap in an adjunct to vP.¹

The framework for PGs from which (6) arises is justified shortly. If the OCG considered alongside this prediction, then we come to expect that when A′-movement chains overlap, only the moved phrase with the highest final landing site should be able to license a PG in an adjunct to a vP crossed by those movements. I argue that this is precisely what we find, as previewed in (7) below, which modifies (3b) to include a sentential adjunct with a PG:

¹This statement of the prediction is adapted from Fox and Nissenbaum (2018), who consider it in the context of certain sentences involving pied-piping which are beyond this paper’s scope.
(7) A PG is licensed only by the higher of two overlapped moved phases

[This book]$_2$, who$_1$ should we talk to t_1 about t_2...

a. ✓ ...before commenting on PG$_2$?

b. * ...before arranging a meeting with PG$_1$?

While this result clarifies the derivation of overlapping movement paths, it raises a question about multiple specifier formation. As described shortly, Richards (1997, 1999) argues that all but the first movement to a given head must “tuck-in” to a lower specifier of that head, yielding crossing paths. However, the derivation I attribute to configurations like (3b) and (7) involves nesting paths to the vP edge, and thus, a violation of Richards’ hypothesis. This tension makes salient the question of how the distribution of crossing versus nesting multiple specifier formation is determined. Here I will propose that crossing paths are not always mandated by multiple movement to one head, but rather are only required for multiple movements to one head that are triggered by the same feature, whereas when a head bears multiple movement-triggering features, the goals respectively attracted by those features may form crossing or nesting paths. I will argue that this modification is necessary to predict the full range of multiple movement configurations.

A phenomenon closely related to the above concerns is the path containment condition (PCC, Pesetsky 1982, a.o.), which describes the fact that in various languages, English among them, overlapping (overt) A’-movement generally requires the formation of nested dependencies. This is evident in English scenarios like the one in (3b) above, in which the original order of moved phrases must be reversed post-movement, as (8) shows:

2The concept that the presence of multiple movement triggering features on one head removes the need to tuck-in has precedent in several works (McGinnis 1998; Rackowski 2002; Doggett 2004; Rackowski and Richards 2005), many of which assume that tucking-in in fact cannot occur in this situation. Here I maintain that tucking-in is possible in this case, but not required.
Forced order reversal for overlapping movement paths

a. [This book]_2, who_1 should we talk to t_1 about t_2?
 [2 1 ... 1 2]

b. * [This student]_1, what_2 should we talk to t_1 about t_2?
 [1 2 ... 1 2]

I argue that such order reversal emerges from the considerations of CL, when combined with the proposal that in languages like English, inner specifiers formed by A'-movement are sometimes covert (Richards 1997; Nissenbaum 2000, a.o.). I argue further that this account accurately predicts the possibility of PCC-violating configurations in the multiple wh-movement languages Bulgarian (as Richards 1997 observed) and Romanian, and fits into a more general theory of crossing versus nesting multiple specifier formation.

1.2 Contents of the paper

Next, section 2 introduces phase theory and CL. Section 3 describes the approach to multiple specifier formation in Richards (1997, 1999), its relationship to the theory of PGs in Nissenbaum (2000), and the prediction in (6) above. Section 4 shows that when (6) is considered in light of the PG asymmetry in contexts like (7), we find evidence for the OCG, which CL predicts. Section 5 argues for a CL-based account of the PCC, and is complemented by a revised account of crossing versus nesting in section 6. Section 7 discusses a correct prediction about overlapping movement and stranding, and section 8 shows that A-movement also obeys the OCG, as predicted. Section 9 concludes.

2 Phase theory and CL

A great deal of work has argued that movement paths are at least sometimes composed of multiple shorter paths connected by intermediate landing sites, in successive-cyclic fashion. See Chomsky (1973, 1977, 1986); Du Plessis (1977); Henry (1995); Cole and Hermon
Under Chomsky’s proposals about phases, such intermediate landing sites are forced by phases: when a moving phrase exits a phase, it must successive-cyclically pass through its edge because only the edge of the phase is exempt from phase-level spell-out. That is, for this theory, spell-out only applies to the complement of phase heads. When this occurs, the content of the complement is transferred to the interfaces of PF and LF, which respectively assign linear ordering to and interpret that content, which is then inaccessible for the rest of the syntactic derivation. For this reason, a phrase moving from a phase’s complement must reach the phase edge before spell-out, to avoid being prematurely rendered immobile by transfer to the interfaces (9):

(9) **Must exit phase complement via the phase edge**

 a. * \[[ZP \alpha Z \ [YP_{-phase}] \ Y \ [XP \ t \]] \]

 b. \[[ZP \alpha Z \ [YP_{-phase}] \ t \ Y \ [XP \ t \]] \]

In contrast, for the CL theory spell-out applies to entire phasal constituents, including their edge, as soon as they are done being built up by successive applications of Merge. This hypothesis requires the concept that spell-out does not make constituents impenetrable, because in this system, all movement from a phase is necessarily of material that has undergone spell-out within that phase. As such, for CL, successive-cyclic movement through phase edges does not occur because edges are exempt from phase-level spell-out. Rather, under this approach successive-cyclic movement through phase edges is motivated by the information-preserving property of spell-out, *Order Preservation*:
If Order Preservation holds, it is not possible to revise established ordering information to save derivations that end up with contradictory linearization instructions. Therefore syntax must be able to form configurations that end up with linearization information that is consistent across all phases within the derivation in question. Otherwise, there will be a crash at PF. As the works on CL cited above argue, exiting a phase by moving out via its linear edge is one way to keep the linearization for a given derivation contradiction-free. By exiting via the linear edge of each phase passed, phase-exiting phrases are determined by PF to precede the content of each phase in question. This is ultimately consistent with a final representation where the moved material precedes all phases that it has exited.

However, if movement from a phase doesn’t pass through the linear edge, hence crossing over some material in the phase on the way out, there is a way to salvage the derivation. Moving that crossed-over material into the next phase to a position preceding what previously crossed it, thus restoring the original order of those elements, keeps linearization coherent. For instance, (11a) below is illicit if it remains as-is due to α non-successive-cyclically crossing over β on the way out of the phase. However, the derivation won’t fail if, as (11b) shows, β later moves to precede α in the next phase as it did in the first:

\[
\text{(11) a. } \text{Illicit phase exit...} \quad \text{b. } \text{...repaired by additional movement}
\]

\[
\ast \left[XP \beta \left[yP_{\text{Phase}} \alpha \beta \right] \right] \quad \checkmark \left[XP \alpha \beta \left[yP_{\text{Phase}} \ominus \beta \right] \right]
\]

In brief, as the works on CL cited in section 1 argue, cross-phasal movement is not constrained by a strict notion of phase impenetrability. Rather, because the linear order established upon the completion of each phase by spell-out (which applies to the entire
phase) must be preserved, movement from the phase in question is constrained by the needs of PF. In this paper, I will argue that the behavior of overlapping movement reveals further evidence for this view of phases, which here manifests as the OCG, and simultaneously leads to consequences for various other topics in the study of syntactic movement.

3 Multiple specifiers, parasitic gaps, and their interaction

Richards (1997, 1999) argues that when two phrases are attracted to one head, the closest phrase is attracted first (12a), while the lower one which is attracted second “tucks-in” to a specifier below the one formed by the preceding movement (12b). The non-initial movement must tuck-in rather than move to a position above the phrase that moved first (12c) because of an economy constraint requiring movement paths to be as short as possible.

(12) **Non-initial instances of movement to one head must tuck-in**

a. \[X_P \alpha \ X \ldots \underbrace{[Y_P \ldots \ t_\alpha \beta \]} \]

b. \[\checkmark \ [X_P \alpha \beta \ X \ldots \underbrace{[Y_P \ldots \ t_\alpha \ t_\beta \]} \]

c. * \[\underbrace{[X_P \beta \alpha \ X \ldots \underbrace{[Y_P \ldots \ t_\alpha \ t_\beta \]}} \]

Richards argues that such a derivation creates sentences like those in (2) above, where multiple phrases move to adjacent positions in order-preserving fashion. For Richards, in these sentences the final order of moved phrases reflects the order in which they were attracted, since the lower of the two moved phrases, which moves second, must land below the one that moved first. Richards’ theory accurately predicts that the sentences in (2) are unacceptable if the moved phrases reverse their order, as he shows to be the case.

Importantly, in this paper we will see evidence that a tucking-in strategy is not always required for multiple movements to one position. Thus, as previewed above, I will argue for an alternative theory of multiple specifier formation. This evidence will come from the
behavior of PGs in a variety of English sentences like (3b) above, repeated in (13) below, in which multiple phrases overtly A′-move to the clause periphery. As discussed above, the PCC applies to such sentences. While the PCC will be addressed later in this paper, for the meantime it will be useful to set aside the fact that the PCC holds and simply consider what the theory of Richards (1997, 1999) predicts about how such a sentence was derived.

(13)
\[\text{Topic/focus movement} \ + \ \text{wh-movement} \]

[This book]₂, who₁ should we talk to t₁ about t₂?

Under Richards’ hypothesis, the derivation of the vP in (13) should proceed as follows. First, the originally higher A′-moved phrase who₁ should form an initial A′-specifier of vP:

(14)
\[\text{Originally higher moved phrase forms higher spec-vP} \]

\[
\begin{array}{c}
\underbrace{\text{who}₁ \ S \ \text{v-V} \ [\text{vP} \ t₁ \ \text{this book}₂]} \\
\end{array}
\]

Second, the initially lower phrase this book₂ should tuck-in to a spec-vP below who₁:

(15)
\[\text{Originally lower moved phrase forms lower spec-vP} \]

\[
\begin{array}{c}
\underbrace{\text{who}₁ \ \text{this book}₂ \ S \ \text{v-V} \ [\text{vP} \ t₁ \ t₂]} \\
\end{array}
\]

From their intermediate positions in the edge of the vP phase, these phrases will later continue on to their respective final landing sites in the clause’s periphery:

(16)
\[\text{Movement to left periphery after tucking-in at vP} \]

\[
\begin{array}{c}
\underbrace{\text{this book}₂ \ \text{who}₁ \ S \ T \ [\text{vP} \ \text{who}₁ \ \text{this book}₂ \ t₁ \ t₂ \ \text{v-V} \ [\text{vP} \ t₁ \ t₂]]} \\
\end{array}
\]

\[Í \] A′-movement of non-subjects as passing through a position in vP above the subject in situ, as in (14-17). This order of constituents has independently been assumed by a variety of works which take tucking-in below thematic specifiers to be banned or dis-preferred (McGinnis 1998; Nissenbaum 2000; Chomsky 2001; Rackowski 2002; Rackowski and Richards 2005), and is also predicted by CL, since a non-subject A′-moving from vP must precede the subject at the spell-out of vP just as it will in its final landing site in CP.
In contrast, this theory excludes a derivation in which the initially lower A'-moving phrase forms a specifier of vP above the phrase that moved first, resulting in these phrases’ paths nesting within vP prior to their later movement onward:

(17) \textit{Multiple A'-movement from vP without tucking-in (=nesting paths in vP)}

Building from the prediction about PGs introduced in (6) above, I will argue that this non-tucking-in derivation is in fact correct. Notice that this derivation fits the OCG, which emerges directly from the order preservation requirement of CL: here \textit{this book} precedes who both in these phrases’ final landing sites, and in their intermediate vP landing sites.

Next, I will overview the components of Nissenbaum (2000) that justify the prediction in (6) and thus allow the evidence for the OCG to become apparent.

3.1 Parasitic gaps, successive-cyclicity, and specifier order

A PG is a gap which depends on A’-movement structurally crossing over the constituent that contains it, among other requirements (Culicover and Postal 2001). That a given gap is a PG is clearest when in an island, since in this case it is clear that the gap was not derived via typical extraction. In (18) below, for instance, we see PGs in sentential adjuncts, which are generally islands, that are licensed by wh-movement external to those adjuncts.\footnote{We can also tell that the PGs in (18) are not actually omitted objects, since mention in (18a) is obligatorily transitive, and the preposition on in (18b), like all English prepositions, is as well:}

(18) PGs in adjunct islands

a. \textit{Who}_1 did you forget about \textit{t}_1 [because I didn’t mention PG\textsubscript{1}]?
b. Tell me what I should reread t_1 [before giving you comments on PG_1].

Following Nissenbaum (2000), PGs in sentential adjuncts will be the focus of this paper, since these are the most straightforward PG-hosting constituents that interact with movement within the clause in the relevant way. PGs in subjects will be briefly addressed as well.

PG-licensing has several requirements. For instance, the PG-containing island must be adjoined to a position structurally crossed by the licensing movement chain (Kayne 1983; Longobardi 1984, a.o.) Additionally, this property must hold of the smallest island containing the PG. Separating the PG-containing island from the licensing movement chain with a second island results in unacceptability (Kayne 1983; Chomsky 1986, a.o.):

(19) \textit{PG licensing across multiple islands fails}

\begin{enumerate}
\item \textit{Relative clause island plus adjunct island}
* Tell me who$_1$ you talked to t_1 [after meeting a person [who likes PG_1]].
\item \textit{Subject island plus adjunct island}
* Durian is a fruit [which$_1$ I ate t_1 for the first time [after [a fan of PG_1] visited me]].
\item \textit{Adjunct island in adjunct island}
* Guess who$_1$ I ironically ran into t_1 [after taking the other hallway [because I wanted to avoid PG_1]].
\end{enumerate}

Nissenbaum (2000) argues that these and further facts are captured by a theory in which PGs are formed by movement of a null operator (OP) to the edge of the containing island (Chomsky 1986, a.o.)* as in (20) below, in combination with the proposal that for semantic reasons, the island adjoins to a landing site of (successive cyclic) A'-movement (20):

*This is in contrast to “shared antecedent” theories of PGs, for which a null operator is not involved. See Nissenbaum (2000) and Nissenbaum and Schwarz (2011) for arguments against this theory.
(20) *PG as trace of null operator*

Who$_1$ did you forget about t_1 [OP after talking to $t_{OP}(=PG)$]?

Nissenbaum argues that a sentence like (20) is formed and interpreted in the following way. Within the sentential adjunct island, operator movement to its edge triggers the semantic rule of Predicate Abstraction (Heim and Kratzer 1998), which changes the island into a predicate of type $<e,t>$, as in (21).6

(21) *Null operator movement inside adjunct forms a derived predicate*

\[
\begin{array}{c}
\ldots \\
\ldots \quad \text{AdjunctP} \\
<e,t> \\
\hline \\
\text{OP$_1$ t_1 after talking to $t_{OP}(=PG)$}
\end{array}
\]

Additionally, PG licensing in (20) requires successive cyclic movement of the licensing phrase *who* through the edge of vP, which the phasehood of vP independently necessitates. This intermediate step of A'-movement triggers an application of Predicate Abstraction there as well, creating an $<e,t>$ node in the vP edge. This is diagrammed in the partial structure in (22) below. Here we see that the resulting $<e,t>$ node is sister to the type e trace left behind in the vP edge by successive cyclic movement of *who* from this domain:

6I adopt from Nissenbaum the simplifying assumption that vPs and vP modifiers (such as the sentential adjuncts under consideration) are type t, modulo A'-movement within them triggering Predicate Abstraction. As Nissenbaum (2000, p. 47) notes, this is a simplification because it ignores the presence of temporal and event arguments, but enriching the semantic type of these constituents does not make any important difference for the account of PGs. In particular, given a more general version of the rule of Predicate Modification that allows constituents of the same semantic type to be combined (which is independently required to handle adjuncts containing multiple PGs, as we’ll see shortly), the account described here functions the same regardless of whether the type of vPs and their adjuncts is t, or something more complex.
Successive-cyclic A′-movement creates an <e,t> node in vP

\[
\lambda_2 \text{ you forgot about } t_{wh_2}
\]

The PG-containing adjunct in (21) above is type <e,t>, and as we’ve seen in (22), there is a node of the same type in the vP edge after successive-cyclic A′-movement from it. Thus this adjunct can be merged to this derived <e,t> position in the vP, yielding a structure that is successfully interpreted via Predicate Modification (Heim and Kratzer 1998), as in (23):

Predicate Modification of vP with PG-containing island

Nissenbaum provides arguments from phenomena including binding, NPI licensing, VP ellipsis, and VP fronting to establish that the PG-containing adjunct in such contexts is indeed adjoined at a clause-medial position, which he takes to be the vP edge, as (23) shows. In this structure, the (boxed) intermediate vP node created by merge of the adjunct to the site of successive-cyclic movement in vP denotes a function of type <e,t>, which is true of individuals that the addressee both talked to and forgot about. The intermediate type e trace of the A′-moved nominal phrase will saturate the individual argument of this function, “filling in” both the variable that corresponds to its trace in VP, and the trace of the null operator in the adjunct, resulting in a PG that is successfully interpreted.
This theory of PGs captures the fact that a PG can only be licensed if the smallest island that contains it is adjoined within the licenser’s movement path. It is semantically necessary for the PG-forming operator to reach the edge of the island that will adjoin within the licenser’s movement path, but if an embedded island intervenes, such movement fails. Furthermore, if the PG-containing constituent is semantically a predicate that must undergo Predicate Modification with a landing site of the licensing phrase, then it is straightforward why it cannot be interpreted in a position outside of the licenser’s movement path.

Next we will see how Nissenbaum relates this theory to contexts with multiple specifiers of vP, and thus makes the prediction that this paper’s results depend on.

3.1.1 Multiple specifiers and PG licensing

Nissenbaum’s examination of PGs in multiple specifier structures focuses on multiple wh-questions. In many Slavic languages like Bulgarian, all wh-phrases in such contexts move to the interrogative CP, with lower wh-phrases landing in a position below the initially highest one, which Richards (1997, 1999) attributes to tucking-in (24a). In English, such questions involve overt movement only of whichever wh-phrase is initially highest (unless D-linking occurs) (24b). Nissenbaum follows Richards in arguing that in both types of languages, all wh-phrases move in multiple wh-questions, the difference being that in a language like English the movement responsible for forming tucked-in specifier(s) is covert:

(24) a. *Bulgarian multiple wh-question* (Richards 1997 p. 277 ex. 75a)

\[\text{Kogo}_1 \ \text{kakvo}_2 \ \text{e} \ \text{pital Ivan} \ t_1 \ t_2? \]

who.nom what.acc aux asked Ivan

b. *English multiple wh-question (with covert tucking-in of lower wh-phrase)*

\[\text{Who}_1 \ \varnothing_2 \ \text{did Ivan ask} \ t_1 \ \text{what}_2? \]

If seemingly in situ wh-phrases truly do move, we might expect them to be capable of PG
licensing. As Engdahl (1983) observed, it appears that they are not:

(25) * Wh-in-situ cannot license a PG (Engdahl 1983, ex. 34)

\[I \text{ forget who filed [which articles]}_1 \text{ [without reading PG}_1].\]

However, Nissenbaum observed that when overt wh-movement in English licenses the first of two PGs in one island, an in situ wh-phrase can license the second PG:

(26) Wh-in-situ licenses second PG in the same island (Nissenbaum 2000, p. 12 ex. 8)

\[\text{[Which senator]}_1 \text{ did you persuade } t_1 \text{ to borrow [which car]}_2 \text{ [after getting an opponent of PG}_1 \text{ to put a bomb in PG}_2]?\]

Thus Nissenbaum argues that English in situ wh-phrases do move. Only the licensing of the second of two PGs allows such movement to become apparent in English, Nissenbaum argues, because of the semantic result of multiple specifiers of A’-movement. Next I summarize Nissenbaum’s theory of the interpretation of multiple specifiers, which will lead us directly to the diagnostic prediction that this paper will make central use of.

Nissenbaum argues that when multiple phrases A’-move to one head, the lowest saturated segment of that head’s projection undergoes one instance of Predicate Abstraction for each moved phrase, as in (27) below. Thus when vP is targeted by two intermediate A’-movements in a multiple wh-question, the vP segment that was the root before movement (labeled β below) is interpreted as a two-place predicate $<e,e,t>$. In this context, the trace in the lower specifier of A’-movement saturates the first argument of this two-place predicate, yielding a one place predicate (labeled α below) which is in turn saturated by the higher specifier’s trace of A’-movement, resulting in a type t for the root node of the vP:7

7Since the trace of movement through the inner spec-vP (t_{wh2}) in (31) is the sister of β, the two semantic argument positions of the function denoted by β must have an order that is the opposite of the two specifiers of vP that saturate it ($t_{wh1} t_{wh2} \ldots t_A$). This ensures that when t_{wh2} combines with β, it correctly binds its corresponding trace in VP, rather than that of the outer specifier. After this occurs the result is α, a one-place predicate whose saturation by the trace of the outer spec-vP (t_{wh1}) binds the corresponding trace in VP as
(27) \(vP\) after two successive-cyclic movements

\[
\begin{array}{c}
vP \\
 \text{t} \\
 \text{e} \quad \langle e,t \rangle \\
 t_{wh1} \\
 \alpha \\
 \text{e} \quad \langle e,t \rangle \\
 \beta \\
 t_{wh2} \\
 \text{e} \quad \langle e,e,t \rangle \\
 \lambda_2 \lambda_1 (S) v-V t_{wh1} t_{wh2}
\end{array}
\]

If an adjunct with one PG is type \(\langle e,t \rangle\) as shown in (21) above, then such an adjunct can only combine via Predicate Modification with the node \(\alpha\) in the multiple specifier structure in (27). Doing so results in the configuration in (28):

(28) Licensing of single PG by (trace of) \(\lambda'-\)movement through higher spec-\(vP\)

\[
\begin{array}{c}
vP \\
 \text{t} \\
 \text{e} \quad \langle e,t \rangle \\
 t_{wh1} \\
 \alpha \\
 \text{e} \quad \langle e,t \rangle \\
 \beta \\
 t_{wh2} \\
 \text{e} \quad \langle e,e,t \rangle \\
 \lambda_2 \lambda_1 (S) v-V t_{wh1} t_{wh2}
\end{array}
\]

The node in (28) produced by merger of the PG-containing adjunct to \(\alpha\) is a predicate that

well, resulting in the correct interpretation.

The same relative ordering of moved phrases and corresponding semantic argument positions must also hold for structures like (36) below, which involves multiple PG-forming operators in one adjunct. If the two operators in such a context must form crossing paths (as Nissenbaum proposes) and apply Predicate Abstraction in reverse order as just described, we predict Nissenbaum’s observation that in a multiple PG adjunct like that in (27), the order of gaps and licensers must match, as we see by comparing (27) with (i):

(i) * [Which car]₁ did you lend t₁ to [which senator]₂ [after getting an opponent of PG₂ to put a bomb in PG₁]? (Nissenbaum 2000, p. 110 ex. 27a)
is saturated by the intermediate trace in the higher specifier of A'-movement (t_{wh_1}). Thus here the A'-moving phrase that formed the outer spec-vP licenses the PG. This derivation appropriately models a sentence where the initial movement in an English multiple wh-question, which is overt, successfully licenses a PG:

(29) *Overt wh-movement in multiple wh-question can license PG*

> **Who**₁ ∅₂ did Bill ask $t₁$ about **what**₂ [in order to have a reason to talk to PG₁]?

In contrast, as we saw in (25) above, an in situ wh-phrase in a multiple wh-question cannot license a lone PG. If the in situ phrase covertly moves to an inner specifier of the vP (and later on the CP), what has been said above accurately predicts this restriction. In order for the inner specifier of A'-movement in (27) above to license the PG, the PG-containing adjunct would have to merge with the node $β$, which is the sister of $t_{wh₂}$. If this were possible, $t_{wh₂}$ would saturate the function output by Predicate Modification of the adjunct with $β$, and thus license the PG. However, in reality such a structure is not interpretable, as we see in (30) below. Since $β$ is a segment of vP that is a two-place predicate due to the occurrence of two A'-movements, the one-place predicate instantiated by an adjunct with one PG cannot combine with $β$ either by Predicate Modification, or by Functional Application. Thus the inner specifier of A'-movement cannot license the PG here:
These concepts lead us to the correct prediction that, when overt *wh*-movement licenses the first of two PGs in one island, a covertly moving *wh*-phrase can license the second PG, as (26) above showed. Assuming that Predicate Modification can apply to any two phrases of the same semantic type (in the spirit of Partee and Rooth 1983, see also Nissenbaum and Schwarz 2011), the (trace of the) inner specifier of A′-movement in (27) will be able to license a PG in a situation where the PG-containing adjunct is a two-place predicate, and thus can be interpreted by merging with β. This is achieved if the adjunct contains two PG-forming operators, which each move to the edge of the adjunct and each trigger an instance of Predicate Abstraction, with the result that the adjunct is type <e,<e,t>> as needed, as in (31). Merge of this two PG adjunct to β in (31) allows both specifiers of A′-movement to license one PG each, as we have seen is possible in reality:
In summary, if covert wh-movement in English is a product of tucking-in to a lower specifier, the account described above predicts the fact that such movement cannot license a lone PG, but can license the second of two PGs contained in one island. Abstracting away from the fact that inner specifier formation happens to be covert in English multiple wh-questions, this understanding predicts that, in any multiple specifier configuration, the lower of two specifiers of A′-movement will be unable to license a lone PG. Consequently in any structure like (32) below in which α and β are both specifiers of successive-cyclic A′-movement from vP, we expect a single PG to be able to be licensed only by the higher specifier (here α), regardless of the phonological status of the movements involved:

(32) Only the outermost A′-specifier of vP can license a lone PG
This is as described by the prediction previewed earlier in (6) above, repeated in (33) below:

(33)

Multiple Specifier Single Parasitic Gap Prediction

In contexts where XP$_1$ is the highest specifier of vP and XP$_2$ is a low specifier of vP, only XP$_1$ can license a (single) parasitic gap in an adjunct to vP.

With this prediction about the relationship between PGs and multiple specifiers now justified, next I show how these concerns reveal that overlapping moved phrases have the same relative order in both their intermediate and final positions, as described by the OCG.

4 PGs reveal that final and intermediate orders match

To begin taking stock of the relevant facts, first consider once more an English configuration where topic/focus fronting and *wh*-movement are combined, such as (34a) below. In such examples the PCC holds (34b) and topic/focus movement must land above *wh*-movement as mentioned earlier, even if the PCC is obeyed (34c), but set these constraints aside for the moment in order to focus on how PG licensing behaves in such configurations.

(34)

Topic/focus movement plus wh-movement in English

a. [This book]$_2$, who$_1$ should we talk to t_1 about t_2?

b. * [This student]$_1$, what$_2$ should we talk to t_1 about t_2?

c. * What$_1$ [this person]$_2$ should we talk to t_2 about t_1?

We have seen in numerous preceding examples that *wh*-movement can license a PG. This is also possible for topic/focus movement, since PG licensing is available for all A’-movements, regardless of sub-type (*Culicover and Postal 2001*):
(35) **Topic/focus movement can license a PG**

a. [This book]₂, we should talk about \(t_2 \) [before buying PG₂ for our class].

b. [These papers]₂, I asked the TA to grade \(t_2 \) [after making copies of PG₂].

Importantly, as previewed in section 1, combining these two A′-movements yields a restriction on PG licensing. This is shown again in (36) below. We see here that only the A′-moved phrase with the higher final landing site can license a single PG, even if the sentence would be semantically and pragmatically well-formed if the inner one were the licenser:

(36) [This book]₂, who₁ should we talk to \(t_1 \) about \(t_2 \)...

a. ✓ ...before commenting on PG₂?

b. *...before arranging a meeting with PG₁?

Given the prediction in (6/33) above, the fact that the outer moved phrase can license the PG here, but the inner one cannot, indicates that the latter formed an inner specifier of the vP when these two phrases underwent successive-cyclic movement from it. This is precisely what CL predicts: for CL, the relative order of these two moving phrases must be the same both in their final landing sites in the left periphery, and in their intermediate positions in the vP edge. The PG licensing asymmetry in (36) indicates that this is so: the inner of the two moved phrases behaves like the inner specifier of the vP.⁸

While combining topic/focus movement and wh-movement within one clause is not the only way to yield overlapping overt A′-chains in English, it is the simplest one. The alternative is to use a multi-clausal derivation, which contains multiple CP edges that can be targeted for overt A′-movement. As Pesetsky (1982) notes, while such sentences have been

⁸Above, we saw evidence from Nissenbaum (2000) that, contra Engdahl (1983), covert wh-movement can license PGs: it simply fails to do so when there is only one PG, because such movement forms an inner specifier. Conversely, in (41-42), we see instances of overt wh-movement which fail to license a lone PG when combined with topic/focus movement, despite overt wh-movement being able to license PGs in isolation. This result indicates that the overt/covert distinction in A′-movement does not have anything to do with PG licensing: what really matters is the structure involved, and the mechanisms available for interpreting it.
taken to be ungrammatical by some works, many speakers do accept them provided that
the PCC (which I address later on) is obeyed. Some such sentences are shown in (37-39)
below, each of which includes a sentential adjunct with one PG. We see here that, as above,
only the outermost of the two overtly A’-moved phrases can license the PG:

(37) a. Tell me [what article]_2 she said [who_1 I should talk to t_1 about t_2 [before
reviewing PG_2]]?

 b. *Tell me [what article]_2 she said [who_1 I should talk to t_1 about t_2 [after
introducing myself to PG_1]]?

(38) a. [Which car]_2 do you know [who_1 to persuade t_1 to buy t_2, [in order to get to
borrow PG_2 for free]]?

 b. *[Which car]_2 do you know [who_1 to persuade t_1 to buy t_2 [after having a few
drinks with PG_1]]?

(39) a. This is the book [which_2 I asked [who_1 you gave t_1 comments on t_2 [after
making yourself a copy of PG_2]]).

 b. *This is the book [which_2 I asked [who_1 you gave t_1 comments on t_2 [after
having a discussion with PG_1]].

This result indicates that the higher moved phrase on the surface in such sentences was also
the higher spec-vP, exactly as CL predicts, and as the OCG describes.

The above examples have shown contexts where the two phrases competing to license the
PG originate in the same clause. The same asymmetry in PG licensing holds even if the
two moved phrases originate in different clauses, however, as shown by (40-41) below:

(40) a. These cookies_2, who_1 did you tell t_1 [that you adore t_2] [while buying a
package of PG_2]?

 b. *These cookies_2, who_1 did you tell t_1 [that you adore t_2] [while having a
conversation with PG$_1$]?

(41)
 a. These are the beans [which$_2$ I know [who$_1$ you told t_1 [that you revile t_2] [after eating an expired can of PG$_2$]]].

 b. *These are the beans [which$_2$ I know [who$_1$ you told t_1 [that you revile t_2] [after running into PG$_1$ in the hallway]]].

(42)
 a. [That book]$_2$, who$_1$ did you tell t_1 [that you hate t_2] [while burning a copy of PG$_2$ in the office yesterday]?

 b. *[That book]$_2$, who$_1$ did you tell t_1 [that you hate t_2] [while discussing chemistry with PG$_1$]?

Given CL, in such examples we predict that the two A'-moving phrases will form an order corresponding to what their final relative order will be, as soon as the initially lower phrase moves into the vP in which the initially higher phrase originates. This is because once the two moving phrases occupy the same phase, they will be linearized with respect to each other, thus at that time and no later it is necessary for them to adopt whatever their final relative order will be. A simplified derivation illustrating this prediction is shown in (43):
The fact that only the higher moved phrase on the surface in such configurations can license a lone PG, as (40-42) showed, indicates that this analysis is correct.

4.1 Confirming that the lower moved phrase forms an inner spec-vP

We saw above that while covert wh-movement in English cannot license a PG which is alone (25), such movement can license the second of two PGs contained in one island (26). As discussed, Nissenbaum argues that this fact emerges from the semantic nature of multiple specifier formation, which only allows an inner specifier of the vP to license the second of two PGs contained in one island. In (36-40) above, I provided an array of configurations with overlapping overt A'-movement, in which the moved phrase with the lower surface position is unable to license a lone PG. If as argued above the final relative order of these moved phrases reflects their relative order within vP, then the inner moved phrase in these examples should be an inner specifier of vP, which will reveal its PG licensing ability when

9I represent the indirect object in this sentence as originating in a specifier of the VP, since this accurately captures the word order of this construction, and because more fine-grained approaches to the structure of ditransitives would not contribute anything relevant to the analysis at hand.
an adjunct with two PGs is merged. This is indeed the case:

(44) Lower of two overtly A′-moved phrases can license a second PG

a. [This book]₂, who₁ should we talk to t₁ about t₂, before giving comments on PG₂ to a student of PG₁?

b. This is the book which₂ I wondered who₁ we should send t₁ comments on t₂, after giving a copy of PG₂ to a friend of PG₁.

c. Guess [which cookies]₂ I discovered who₁ you told t₁ that you are addicted to t₂, [while buying a package of PG₂ for a friend of PG₁]?

This fact confirms that these constructions really involve a multiple specifier configuration at the vP level, as opposed separate movements through distinct projections within the verbal domain. If the later had occurred, there would not be a two-place predicate in vP that would facilitate the interpretation of a two-PG adjunct.

4.2 Supporting evidence from binding

Under CL, we expect the final relative order for overlapping moved phrases to have already been formed in the first phase that those phrases both occupied, even if many phases intervene between their origination points and final landing sites. This prediction is corroborated by (45) below, in which a PG-containing adjunct includes an anaphor bound by the subject of the embedded clause, ensuring that this adjunct is interpreted in the lower vP—the first phase of this multi-clausal derivation. Notice that the PG here can only be licensed by what is ultimately the phrase with the higher surface position, not the lower one. This shows that the relative c-command relation between these moved phrases that we see in their derived positions was indeed already established within the first phase of the derivation:
(45) Ordering established within the first vP as diagnosed by principle A

[What book]_2 did she wonder who_1 you should [v_p t_2 t_1 ask t_1 about t_2 ...

a. [✓ before making yourself a copy of PG_2]]?
b. [*after introducing yourself to PG_1]]?

Example (46) below uses principle B to show the same result. Here merge of the PG-containing adjunct in the matrix clause is excluded by principle B, forcing it to attach in the embedded clause, and yielding the same asymmetry in PG licensing that we saw in (45).

(46) Ordering established within the first vP as diagnosed by principle B

[What book]_2 did you wonder who_1 we should [v_p t_2 t_1 ask t_1 about t_2 ...

a. ✓ [before making you a copy of PG_2]]?
b. * [after introducing you to PG_1]]?

4.3 On PGs in subjects

So far this paper has focused on PGs in sentential adjuncts, which are straightforward for semantic composition. However, the important PG licensing asymmetry also holds for PGs in subjects. This fact was observed by Pesetsky (1982) by way of the following contrast:

(47) This volvo is one car which_2 I know who_1 to persuade [[owners of PG_2] / [friends of *PG_1] to talk to t_1 about t_2]. (Adapted from Pesetsky 1982, ch. 4, ex. 81-82)

This is precisely what we expect, if Nissenbaum (1998, 2000) is correct that the configuration

10 Examples (54-55) rely on binding of a non-subject argument in the adjunct by the subject of the containing clause (presumably mediated by a co-indexed PRO in the adjunct), for which it is independently verifiable that principles A and B apply, in clause-bounded fashion as usual:

(i) a. You_1 went to the park [before taking pictures of yourself_1/*you_1].
b. You_1 said that we should go to the park [before taking pictures of you_1/*yourself_1].
that permits a PG in a subject is the same as that involved with a PG in a sentential adjunct: both involve operator-hosting phrases which merge to vP and take advantage of Predicate Abstraction triggered within it when there is successive-cyclic movement from it.11

Notice that in (47), the PG-containing subject linearly precedes the gap left behind by the movement chain that licenses it. This is the opposite of what we see with PGs in sentential adjuncts, which linearly follow the licensing gap, since such adjuncts are linearized to the right of the clause they attach to. Importantly, it is apparently the case that the PG licensing asymmetry that is vital for this paper applies to both PGs in sentential adjuncts and in subjects, regardless of this difference in how they are ordered with respect to the licensing gap. This is expected if the PG licensing asymmetry stems from structural facts, rather than from something like a linear constraint on the order of gaps and their fillers resulting from limitations of sentence processing. A similar point is made by Pesetsky (1982).12

4.4 Interim summary

So far, this paper has used the prediction in about PGs in (33) above to argue for the correctness of the OCG. This generalization states that overlapping moved phrases will have the same relative order in their final landing sites, and in the edge of any phase they both successive-cyclically move from. This is precisely as CL predicts. However, recall that the English sentences studied above all obey the PCC, and thus involve order-reversal. The PG evidence has shown us that this order-reversal is established in the first vP in which both moving phrases are both present, and while CL leads us to expect this, CL by itself does not provide an obvious reason why order-reversal is necessary in such contexts in the first place. This early order-reversal in vP is even more puzzling given that, as mentioned

11Though the PG-licensing configuration is the same, semantic composition is more complex for PGs in subjects. See Nissenbaum (1998, 2000) and Nissenbaum and Schwarz (2011) for discussion.

12Note that I do not argue that linear order constrains PG licensing. I do argue that facts about linear order correlate with PG licensing possibilities, but only because linearization constrains the set of syntactic derivations that PF can accept, and thus indirectly limits what structures will be available for a PG to inhabit.
above, Richards (1997, 1999) predicts that this is precisely the opposite of what should occur. These considerations make salient the need for a more refine understanding of when overlapping paths are permitted to either cross or nest. I consider this issue next, using the PCC as a starting point for an alternative account of crossing versus nesting.

5 On the PCC

In this section, I provide a CL-based account of the PCC, as a prelude to a more formalized proposal of the distribution of crossing and nesting paths. It will be useful to first discuss a rationale for the PCC, since examining the derivations in which it arises will necessarily bring into focus several important issues about when crossing and nesting occur. The primary goal of this section is to provide a linearization reason for why nesting paths will sometimes be required in English, while the following section will consider in detail the general syntactic mechanisms that allow crossing or nesting to occur in a given context.

The PCC (Pesetsky 1982) describes the fact that in many contexts involving overlapping A'-movement, it is necessary for the paths to nest, resulting in the base position and final position of the moved phrases in question to be reversed, as exemplified once more in (48):

(48) * Forced order reversal as described by PCC

a. [This book]$_2$, who$_1$ should we talk to t_1 about t_2? [2 1 ... 1 2]
b. * [This student]$_1$, what$_2$ should we talk to t_1 about t_2? *[1 2 ... 1 2]

As we’ve seen, in configurations like (48), topic/focus movement must form a final landing site above who-movement, but even when this fact is held constant, as it is in (48), the PCC still holds. Indeed, Pesetsky shows that the PCC applies very generally to contexts with overlapping A'-movement in English, regardless of the sub-types of A'-movement involved.

However, if Richards (1997) and Nissenbaum (2000) are correct about the derivation
of multiple *wh*-questions in English, then these violate the PCC since they involve crossing paths, as shown in (24) above. What distinguishes English multiple *wh*-questions from PCC-obeying contexts is that in the former, only one phrase moves overtly, while in the latter, all moving phrases at least can be overt. Richards (1997) takes advantage of this fact, hypothesizing that the absence of the PCC in multiple *wh*-questions, and the arising of the PCC in situations with multiple overt *A’*-movements, is connected to the impossibility of CP hosting multiple overt specifiers in English and languages like it.\(^{13}\)

For Richards, nothing prevents a second movement to the same head in English if covert, as in multiple *wh*-questions, but since a second overt movement to the same CP is by hypothesis unavailable, the only possibility for a situation with overlapping overt *A’*-movements like (48) above is the following: the first C merged will trigger overt movement of the closer phrase, with the C merged later on then attracting the lower phrase, as in (49). Richards follows Kitahara (1991, 1997) in hypothesizing that this derivation is responsible for the PCC, and posits that the somewhat degraded status of the relevant sentences stems from the fact that they involve locality-violating movement of the lower moving phrase:

\[
\text{(49) PCC configurations under Richards’ analysis (following Kitahara)}
\]

\[
\begin{array}{ccc}
\text{[} & \text{WH}_2 & \text{C}_2 & \ldots & \text{[} & \text{WH}_1 & \text{C}_1 & \ldots & \text{t}_1 & \text{t}_2 & \text{]}.
\end{array}
\]

In contrast, Richards argues that the possibility of overt tucking-in within CP in Bulgarian,

\(^{13}\)An explanation for the PCC that depends on the phonological status of the movements involved, which I will develop later in this section, might lead us to expect that the PCC will not apply when one of the moved phrases involved is covert. This is not the case, however, as we see below:

(i)
\begin{enumerate}
\item a. This is the saxophone \(\varnothing_2 \) I know [precisely which songs]\(_1\) to never play \(t_1 \) on \(t_2 \).
\item b. * This is the saxophone \(\varnothing_2 \) I know [precisely which songs]\(_1\) to never use \(t_2 \) to play \(t_1 \).
\end{enumerate}

For the purposes of this paper, it would suffice to hypothesize that the elements in question were originally overt, and thus visible for linearization, before the application of processes like Free Deletion in Comp (Chomsky and Lasnik 1977). Another possibility is that linearization is evaluated at a level prior to the stage of the PF derivation at which morpo-phonological form is assigned (Embick 2010; Arregi and Nevins 2012; Ostrove 2018, a.o.), and is thus insensitive to whether elements are ultimately overt or not.
as revealed by its multiple *wh*-questions (24a), correctly predicts the absence of the PCC in this language (50). In brief, Richards’ analysis is that since the first C merged can overtly attract both *wh*-phrases in Bulgarian, the lower *wh*-phrase need not remain in situ until the merge of the second C. Rather, the second C will simply target the closest of the two phrases moved to the intermediate clause edge, and a PCC-style derivation never occurs:

(50)

Anti-PCC in Bulgarian (Richards 1997, p. 41, ex. 41)

a. Koj\(_1\) se opitvat da razberat [\(_{CP} t_1 \) kogo\(_2\) t\(_1\) e ubil t\(_2\)]]?
 who self try to find.out whom AUX killed

b. *Kogo\(_2\) se opitvat da razberat [\(_{CP} koj\(_1\) t\(_1\) e ubil t\(_2\)]]?
 whom self try to find.out who AUX killed

This account for the difference between English and Bulgarian is not compatible with contemporary developments in phase theory, which mandate against an account in which the initially lower A′-moving phrase is non-successive-cyclically attracted from its origination position in PCC derivations (49). Thus I argue for an alternative account of the PCC that is compatible with CL, as well as the results argued for earlier in this paper about the derivation of such sentences. I will first provide a general rationale for the PCC, building on Richards’ proposal that the covert/overt distinction for multiple specifiers is the central factor, and then propose a more formalized account of the distribution of crossing and nesting paths.

5.1 A linearization understanding of the PCC

I argue that if English generally regards tucked-in specifiers of A′-movement as covert, as discussed extensively above in reference to multiple *wh*-questions, then we come to a natural understanding of why the PCC must apply in contexts with overlapping overt A′-movement in this language. This analysis will require maintaining a distinction between inner specifiers derived in different ways, however.
I hypothesize that when two phrases move to one head with crossing paths, spell-out of the containing phase linearizes the outer moved phrase at only the head of its chain, while the phrase that forms the inner specifier is linearized in only the tail of its chain, as in (51a). Further, I hypothesize that when two phrases move to one head with nesting paths, spell-out of the containing phase linearizes both phrases at the head of their chains, as in (51b), in which \(\alpha \) moves overtly despite occupying an inner specifier after movement of \(\beta \) above it:

\[(51)\]
Multiple specifier linearization in English
\[\text{a. Crossing paths } \rightarrow \text{ covert inner specifier} \]
\[\text{XP} \]
\[\alpha \]
\[\emptyset \]
\[X \]
\[\ldots \]
\[\ldots \emptyset_1 \beta_2 \]
\[\text{Linearization: } \alpha < X < \beta \]

\[\text{b. Nesting paths } \rightarrow \text{ only overt movements} \]
\[\text{XP} \]
\[\beta \]
\[\alpha \]
\[X \]
\[\ldots \]
\[\ldots \emptyset_1 \emptyset_2 \]
\[\text{Linearization: } \beta < \alpha < X \]

This is in contrast to a theory in which all inner specifiers, regardless of how they are formed, are treated as derived by covert movement. While I have not yet explained what allows tucking-in to be avoided in order to derive a double overt movement configuration like (51b), here I will show that positing the possibility of such a movement pattern yields the correct

\[14\] The diagrams in (51) can be understood as illustrations of the structural descriptions under which each rule of chain linearization applies. The illustration in (65a) is analogous to what is proposed in Pesetsky (2000), who along with Bobaljik (1995); Brody (1995); Groat and O’Neil (1996) and others, I follow in assuming that the overtness or covertness of a given movement step is determined at spell-out. This is in contrast to the (inverted) Y-model (Chomsky and Lasnik 1977) under which covert movement occurs post-spell-out at PF.

\[15\] For CL, such a theory would wrongly predict the impossibility of ever overtly moving more than one phrase from a phase in English, since a phase would only ever allow one phrase to be linearized at its edge.
linearization for PCC-obeying sentences. I will discuss the principles that determine the
distribution of nesting versus crossing / tucking-in explicitly in the next section.

To see how the hypothesis in (51) facilitates an understanding of the PCC in English
and languages like it, first consider the schema for a vP in (52) below, where the phrases α
and β both undergo A′-movement to the vP edge. Here β tucks-in below α. If tucking-in
movement is regarded by English PF as covert (51a), then β will be linearized at the tail of
its movement chain, at the right edge of the vP:

(52) \textit{Covert tucking-in within vP (Linearization: $\alpha < S < V < \beta$)}

\[
[vP \quad \alpha \, \emptyset_{\beta} \, S \, v-V \quad [vP \quad t_{\alpha} \, \beta]]
\]

If later on α moves to an overt landing site external to the vP, as in (53) below, there will be
no issue: since α occupied the left linear edge of the vP in (52), CL allows α to overtly move
on leftward in this way. However, the same does not apply to β. Since β did not overtly
move to the left edge of vP in (52), it cannot overtly exit the vP in this way without causing a
linearization contradiction, as (53) shows. This is because β cannot both follow the content
of vP as (52) established, and also precede it as the later movement in (53) requires:

(53) \textit{Later overt movement from vP (Linearization: $\alpha < \beta < S < V$)}

\[
[\alpha \ldots \beta \ldots [TP \, S \, [vP \ldots v-V \ldots]]]
\]

Illicit if following (52) due to contradicting previous order $S < V < \beta$

This contradiction would not arise if in (52) β had moved above α in vP rather than tucking-in,
as in (54) below. Following the rule in (51b) above, neither movement is treated as
covert in this situation. After (54), further overt movement of β and α is licit, since they
both occupy the linear edge of the vP. Thus only a nesting derivation like (54), rather than
one with crossing paths like (52), allows multiple overt A′-movements from the vP.
Nesting paths in vP yields two overt movements (Linearization: $\beta < \alpha < S < V$)

\[
[v_P \beta \alpha S \nu-V [v_P t_\alpha \beta]]
\]

Importantly, notice that by forming nesting paths in (54), these moving phrases reverse their order within vP. Provided that their subsequent landing sites preserve this reversed ordering, the result is a CL-satisfying derivation fitting what the PCC describes, in which the origination positions and final positions of the moved phrases are reversed. This is precisely the derivation that the PG facts examined earlier in this paper have shown us occurs in reality: overlapping moved phrases take on an order that matches their final relative order within the first vP they occupy, which in the case of a PCC-obeying sentence, involves immediate order-reversal followed by order-preserving movement onward.

5.2 Correct predictions and further puzzles

The above account of the order-reversal described by the PCC has, for convenience, assumed that crossing and nesting multiple specifier formation are both possible in principle, modulo concerns of linearization. This understanding also accurately predicts the possibility of a crossing-paths derivation in English multiple wh-questions (24b): since the non-initial wh-movement in such contexts has a covert landing site, no linearization problem arises from a lower wh-phrase tucking-in within vP before doing the same later on in CP. The same considerations also predict that Bulgarian will be capable of violating the PCC, as in (50) above: since this language allows multiple overt specifiers in one phrase, it can simply allow overlapping overt A’-movements to overtly tuck-in in the vP phase before then moving on. The problem posed by the covertness of tucked-in specifiers in English thus does not arise in Bulgarian, which therefore allows overt nesting path derivations.

However, if crossing and nesting multiple specifier formation are in free variation, then we have no explanation for why in English and Bulgarian multiple wh-questions, crossing
paths are not merely an option, but a requirement, as (55) shows:

(55) * Unacceptable nesting multiple wh-questions (compare with (24) above)

a. * Bulgarian \((\text{Richards 1997, p. 277 ex. 75b}) \)

* \(\text{Kakvo}_2 \text{ kogo}_1 \text{ e pital Ivan t}_1 t_2? \)

what.\text{acc} who.\text{nom} aux asked Ivan

b. * English

* \(\text{What}_2 \varnothing_1 \text{ did Ivan ask who}_1 t_2? \)

The same question is relevant for numerous obligatory crossing path scenarios shown by Richards (1997), such as A-scrambling in Japanese, negative fronting in Bulgarian, multiple object shift in Germanic languages, and multiple clitic clustering in Tagalog and Serbo-Croatian.\(^{16}\) In order to address this concern, it is necessary to develop a more precise account of when crossing and nesting paths are permitted.\(^{17}\) I do this in the next section.

6 Formalizing the distribution of crossing and nesting

Recall that Richards argues that crossing paths occur when multiple movements target the same projection. In section 4, we saw evidence from PGs that in English sentences that obey the PCC, the reversed order that the moved phrases have in their final landing sites is mimicked by the configuration these phrases form upon successive-cyclically moving through the edge of the first vP in which they are both present. This indicates that crossing paths do not always occur in situations where multiple phrases move to the same projection.

In response to finding, I propose that tucking-in is not a requirement of multiple move-

\(^{16}\)See Bruening (2001) for evidence that multiple instances of Quantifier Raising must also cross paths.

\(^{17}\)Similarly, what I have just said accurately rules in the anti-PCC configuration in the Bulgarian (50a) above, but also rules in a PCC-style derivation for this Bulgarian configuration, which as we see in (50b), is unacceptable. I will show later in this paper that the expected freedom of ordering arises in other contexts in Bulgarian (as well as Romanian, another multiple \(wh\)-fronting language).
ments to one head, but rather applies to movements that are triggered by one feature, as diagrammed in (56) below. Here the unvalued feature [uF1] on the head X attracts, with crossing paths, the goals α and β which both bear the feature [F1]:

\[
\text{(56) Proposal #1: One feature attracts multiple goals } \rightarrow \text{ tucking-in}
\]

\[
[XP \alpha_{[F1]} \beta_{[F1]} X_{[uF1]} ... t_{\alpha} t_{\beta}]
\]

Additionally, I propose that when a head bears multiple movement-triggering features, the goals respectively attracted by those features are free to cross or nest. I hypothesize that if the requirement to nest is limited to multiple movements triggered by one feature, then when multiple goals each move due to attraction by separate features, the grammar does not constrain the form of their paths.

This concept is illustrated in (57), where the head X bearing the features [uF1] and [uF2] can attract the goals \(\alpha_{[F1]}\) and \(\beta_{[F2]}\) in a way yielding either crossing (57a) or nesting (57b) paths to its edge. The freedom of ordering in such contexts will be vital to capturing the full range of multiple movement configurations.

\[
\text{(57) Proposal #2: Attraction by separate features on one head } \rightarrow \text{ variability}
\]

a. \[
[XP \alpha_{[F1]} \beta_{[F2]} X_{[uF1,uF2]} ... t_{\alpha} t_{\beta}]
\]

b. \[
[XP \beta_{[F2]} \alpha_{[F1]} X_{[uF1,uF2]} ... t_{\alpha} t_{\beta}]
\]

\[18\] I follow Chomsky (2000) and a great deal of following work in taking unvalued features (prefixed with “u” in (56-57) below) to be those which probe their c-command domain for a goal bearing the relevant feature, as a prerequisite for establishing an agreement or movement dependency.

\[19\] Alternatively, we might hypothesize that the freedom of specifier order in this situation stems from the possibility of the attracting features targeting their goals in either order. Since the attracting features in this case target goals with distinct features, it is plausible that α in (57) will not serve as an intervener for the purposes of the attraction of β by [uF2], if that feature happened to trigger movement before [uF1]. A similar possibility is raised by Doggett (2004). Such a derivation would create nesting paths without violating Richards’ hypothesis about tucking-in, since the lower phrase would be attracted before the higher one. However, such a derivation would instead violate Richards’ hypothesis that multiple specifier formation is constrained by a need to keep movement paths as short as possible, given that it involves attraction of the furthest goal first.
This hypothesis about the distribution of crossing and nesting can only be meaningful when combined with a proposal about how movement-triggering features are distributed. Following a great deal of work in contemporary syntax, I assume that whatever features are responsible for ultimately attracting a given phrase to its final position are also instantiated on the heads of intermediate phases crossed by that phrase’s movement. This is a straightforward consequence of Probe-Goal theories of syntactic dependencies under which movement is feature driven. However, it is worth asking what mechanisms are responsible for enforcing the necessary distribution of features. In this paper, I will argue that the relevant facts about crossing and nesting emerge from the following two principles:

(58) a. Attractor minimization principle
A given head enters the derivation with at most one movement-triggering feature, unless additional features are motivated by the principle in (58b).

b. Intermediate attractor principle
If a given head X bears a movement-triggering feature [uF], and a phase head Y structurally intervenes between X and the corresponding goal phrase bearing [F], then Y may also bear [uF].

The principle in (58a) prevents the addition of superfluous features in a way that we are about to see is necessary for the account of contexts with obligatory tucking-in. The additional

20The principles in (72) are consistent with a view in which feature distribution is constrained by an economy condition motivating using only the minimal amount of features necessary for a convergent derivation in a given context. This concept is similar in character to the following constraint from previous literature:

(i) Economy of Movement Metric (Chomsky 1992; Reinhart 2006; Overfelt 2015)
If a derivation D₁ of a spell-out domain α converges without some movement operation, then D₁ blocks a derivation D₂ of α that includes that movement operation.

In the context of a theory in which movement is feature-driven, a principle of this variety is reducible to an economy constraint not on movement operations themselves, but on the introduction of features responsible for triggering movement. Such a concept will appropriately rule in only derivations with the fewest number of movement-triggering features needed for a convergent result.
principle in (58b) allows a head to bear additional movement-triggering features to the extent that they are necessary to facilitate successive cyclic movement.

6.1 Deriving the distribution of crossing and nesting

Consider a multiple wh-question, which as we’ve seen, involves multiple wh-phrases moving to the same CP with obligatory crossing paths. Given the principle in (58a), C in such a configuration must have a single [uWH] feature capable of attracting both wh-phrases. Given the principle in (58b), the v which intervenes between C and these wh-phrases also has [uWH]. First, [uWH] on v attracts these phrases, which being moved by the same feature form a crossing path configuration in vP, as (56) dictates. Precisely the same thing happens when these phrases are then targeted by the [uWH] feature on C, as in (59):

(59) Pure crossing paths in a multiple wh-question

If in this context it were possible for C to have two distinct [uWH] features (instantiated on v as well) which separately attract the two wh-phrases, we would expect these phrases to be able to form a nesting path configuration within the vP, following the principle in (57). This is illustrated in (60), where these phrases nest within vP and then move on to CP in order-preserving fashion, both of which movements (57) permits in this situation:

(60) Hypothetical nesting multiple wh-question

In reality, such a result is not possible for (non-D-linking) multiple wh-questions, as we saw
in (24b) above. The hypothetical derivation in (60) is appropriately excluded if the principle in (58a) blocks the introduction of a C which superfluously bears two distinct tokens of [uWH], rather than just one, since one feature is all that is needed to attract both of the wh-phrases in this context. I hypothesize that all configurations with multiple movements to the same position that obligatorily form crossing paths involve those movements being driven by a single attracting feature, as in (59). The feature involved in triggering those movements will, of course, vary in accordance with the type of movement occurring.

Next, let’s examine a context in which the PCC applies. First I’ll consider a sentence with topic/focus movement and wh-movement, as discussed extensively above. Since as mentioned the landing sites for these movements are rigidly ordered, I will assume that they target separate projections in the left periphery. Following Rizzi (1997), the respective projections could be termed TopP and FocP, as in (61) below. The respective movement triggering features on the heads of these projections are labeled [uTop] and [uWH]:

\[(61) \quad \text{PCC-obeying topic/focus plus wh-movement} \]
\[
[\text{TopP} \ [\text{These papers}]_2 \ \text{Top}_{[u\text{Top}]} \ [\text{FocP} \ \text{who}_1 \ \text{Foc}_{[u\text{WH}]} \ \text{did you ask } t_1 \ \text{to grade } t_2]]?
\]

In order to trigger movement of these phrases, v must bear attracting features corresponding to both of these landing sites in the left periphery, given the principle in (58b) above:

\[(62) \quad \text{Pre-movement structure of the vP in (61)} \]
\[
[vP \ \text{v}_{[u\text{WH},u\text{Top}]} \ \text{... who [these papers]}]
\]

Since these A’-moving phrases are attracted by distinct features on v, then given the proposal in (57) above, we predict that they can either form crossing or nesting paths within this vP. If they form crossing paths here, the phrase that forms the inner spec-vP will move covertly, for the reasons laid out in section 5.1 above. As we saw in that section, since in such a context the inner moved phrase will move covertly within vP before overtly moving on from
it, such a derivation will result in a linearization contradiction. In section 5.1 we also saw that, in contrast, no linearization issue arises if these phrases move in nesting fashion in vP. In this case both phrases move overtly, while reversing their order. After this initial reversal, these phrases can move on to their final landing sites in order preserving fashion, as in (63). As we saw in section 4, this derivation accurately produces the PCC-obeying order characteristic of these and similar sentences, and matches the PG facts shown in section 4:

(63)
\[
\text{Nesting paths in vP permitted by distinct probes on } v
\]

\[
[TopP \ [These \ papers]_2 \ Top[uTop] \ [FocP \ \text{who}_1 \ Foc[uWH]] \ [vP \ t_2 \ t_1 \ V[uTop,uWH] \ V \ t_1 \ t_2]]
\]

This analysis extends to all other contexts with two phrases undergoing separate instances of overt overlapping A’-movement in English, all of which obey the PCC (Pesetsky 1982). For instance, consider a sentence with relativization and interrogative wh-movement (64):

(64)
\[
\text{Relativization plus interrogative wh-movement: PCC obeyed}
\]

a. This is the book [which \(_2\) I asked [who \(_1\) you gave \(_1\) comments on \(_2\)]].

b. * This is the book [which \(_1\) I asked [who \(_2\) you sent a review of \(_1\) to a student of \(_2\)]].

We saw in (39) above that this configuration, like others of the same variety, displays the PG-licensing asymmetry which indicates that the final order of moved phrases here was established in the initial vP where those phrases originated. As in the previous just examined, the result that these moved phrases reverse order upon their movement within the initial vP is predicted, given (57), if these phrases’ movements are driven by separate features. We could call these features [uREL] and [uWH] in (64), but the way these features are named is not important: however we label them, the features involved here are plausibly of distinct classes. This leads us to expect the possibility of an order-reversing, non-tucking-
in derivation in (64)—a possibility that must be selected here, yielding the PCC, since a tucking-in derivation would pose a linearization problem as discussed in section 5.1.\footnote{The applicability of this account is less obvious for recursive embedded wh-questions. The PCC holds for such sentences, as (i) shows, despite the fact that the movements here are presumably featurally identical:}

6.1.1 A further constraint on overtness/covertness

A problem for the above analysis arises when we consider certain multi-clausal PCC-obeying sentences more carefully, such as (65) below. The analysis of the PCC that I have proposed entails order-reversal of moving phrases within the first vP where they are both present, followed by order-preserving movement of those phrases to their final landing sites. The traces placed in (65) are faithful to this proposal, showing the initial order reversal within vP, followed by preservation of that reversed order in the intermediate CP and matrix vP that these phrases pass through on the way to their final positions in the matrix clause:

(65) \textit{Initial reversal followed by order preservation in all intermediate positions}

\textbf{[This book]$_2$, who$_1$ did you [vP t$_2$ t$_1$ say [CP t$_2$ t$_1$ that we should [vP t$_2$ t$_1$ talk to t$_1$ about t$_2$]]?}

(a) Tell me [CP [what subject]$_1$ you know [CP who$_2$ to talk to t$_2$ about t$_1$]].

(b) * Tell me [CP who$_2$ you know [CP [what subject]$_1$ to talk to t$_2$ about t$_1$]].

If both of the wh-phrases here were attracted by one wh-feature, we would expect such a sentence to have a form like that of a multiple wh-question, with overt movement of the initially highest wh-phrase, and covert tucking-in movement of the lower one. This result is impossible in this context, however, as (ii) shows:

(ii) *Tell me [CP who$_1$ \emptyset$_2$ you know [CP t$_1$ t$_2$ to talk to t$_1$ about [what subject]$_2$]].

The actual result in (ia) above will accurately be predicted by positing that the two CP edges that serve as landing sites for wh-movement in this context bear distinct wh-sensitive features. This could be formalized by counter-indexing those features, for instance as [uWH1] and [uWH2]. If in (ia) the outermost embedded C bears [uWH1] and the inner embedded C bears [uWH2], both of which are also instantiated on the intermediate v that they both c-command, then the two wh-phrases here can be attracted separately within the vP and thus form a nesting configuration before moving onward, creating the PCC-obeying result we see in reality in (ia). As discussed extensively above, nesting rather than crossing (and thus a derivation culminating in order reversal) is required in the initial vP here, given that in English crossing paths within the vP would result in an ordering contradiction due to the covertness of the inner specifier.
For these phrases to preserve the order reversal established in the initial vP, their subsequent movement steps must form crossing paths. This requires the lower moving phrase who\textsubscript{1} to tuck-in below this book\textsubscript{2} in the intermediate CP and matrix vP edges, as the traces in (65) show. However, if in English tucking-in is derived by covert movement as discussed above, it is unclear how movement of the lower phrase who in (65) manages to be ultimately overt here, as opposed to becoming covert after tucking-in in the embedded CP edge.

In order to avoid positing that who\textsubscript{1} in (65) covertly moves through lower specifiers of the intermediate CP and matrix vP before overtly moving to its final landing site (a derivation which would incur a linearization contradiction), I propose the following:

(66) *Chain Consistency Condition*22

The overtness or covertness of the initial step of a movement chain driven by a given feature [uF] must be matched by all following movement steps in that chain driven by [uF], regardless of how they would otherwise have been linearized.

This principle allows tucking-in of who\textsubscript{1} in the edges of the embedded CP and matrix vP in (65) to be overt, contrary to usual circumstances, since those movement steps were preceded by overt non-tucking-in movement of who\textsubscript{1} within the initial vP.23 Thus the moved phrases in (65) can overtly move on from the initial vP in order-preserving fashion as required.

6.2 A return to Bulgarian and extension to Romanian

Above, we saw a fact from Richards (1997) showing that Bulgarian lacks the PCC, repeated below. In this example, an embedded question within a matrix one involves two wh-phrases originating in the same clause that land in separate CP edges, without reversing their order.

22Fox and Nissenbaum (2018) precede me in positing a condition of this sort (“Early Determination”) for covert movement. The formulation I offer here applies to overt movement as well.

23This principle also permits an element to undergo covert movement after landing in the terminal position of a given overt movement chain, though initiating overt movement after completing a covert movement chain will generally be ruled out by linearization for the reasons discussed in section 4.
Order reversal is not only unnecessary here (67a) showed, but impossible (67b). To account for the PCC in English, I proposed that both crossing and nesting multiple specifier formation are permitted in principle, but that in English overt overlapping A′-movements must form nesting paths because a crossing paths derivation would cause a linearization problem, due to the covertness of tucked-in specifiers in this language. However, since Bulgarian allows overt tucking-in, this account wrongly predicts that this language should allow not only anti-PCC configurations like (67a), but also PCC-resembling ones like (67b).

In (57) above, I proposed that crossing paths are forced when a single feature on a given head attracts multiple goals. Given this proposal, the impossibility of order reversal in (67) would be expected if the two wh-phrases here are in fact attracted by the same feature, unlike in a comparable English recursive interrogative configuration. This would be the case if in Bulgarian, unlike English, any feature sensitive to interrogative wh-phrases necessarily interacts with, and thus attracts, all such phrases in its c-command domain.\footnote{This would instantiate what following Deal (2015a,b) we could classify as an insatiable feature.} This would preclude the possibility of a nesting path derivation in (67).\footnote{Another possibility is that an independent factor determines the order of wh-phrases in (67). Indeed, Billings and Rudin (1996) argue that various factors can interfere with the order of Bulgarian wh-phrases.} If this hypothesis is correct, then the predicted freedom of crossing and nesting should arise in Bulgarian when two wh-phrases undergoing overlapping movement are more clearly featurally distinct—in particular, when at most one of them is interrogative. Rudin (1988) reports Bulgarian examples of interrogative wh-movement overlapping with relativization that fit this prediction (68). In (68a) below, we see an example where these two A′-
movements form crossing paths, and in (68b), we see a situation where the same two movements reverse order instead, due to a corresponding reversal of their landing sites:26

(68) *Freedom of ordering for distinct A’-movements in Bulgarian*

a. *Crossing paths* (Adapted from Rudin 1988 ex. 8c)

čoveka [kojto₁ ne znaeš [kakvo₂ kazvat [če e kupil t₁ t₂]]]

man who.rel neg know.2sg what say.3pl that has bought

‘The man who you don’t know what they say that he bought’

b. *Nesting paths* (Adapted from Rudin 1988 ex. 19)

edna kniga [kojato₁ se čudja [koj₂ t₂ znae [koj₃ t₃ prodava t₁]]]

a book which wonder.1sg who knows who sells

‘A book which I wonder who knows who sells (it)’

In sum, if overlapping moved phrases attracted by separate features are free to form crossing or nesting paths provided that one of those options isn’t independently excluded by linearization (which is why crossing paths are banned outside of multiple wh-questions in English), this freedom of ordering in Bulgarian is precisely what we expect to see, at least some of the time: since this language allows overt inner specifiers formed by tucking-in, we predict that it will allow sentences that, in English, would be unacceptable PCC violations.

6.2.1 Correct predictions for Romanian

Like Bulgarian, Romanian displays multiple wh-fronting (69). According to Rudin (1988), in Romanian all interrogative wh-phrases move to specifiers of CP in just as in Bulgarian.

26Example (68b) shows relativization crossing not one but two interrogative wh-phrases. While the crossing of just one such phrase would be enough to make the point here, Rudin chose to include more than one to emphasize the unboundedness of relativization in this particular configuration.
Romanian multiple wh-fronting (Adapted from Rudin 1988, ex. 9a)

\[
\text{Cine}_1 \text{ cui}_2 \text{ ce}_3 \text{ ziceai [cā i-a promis } t_1 \text{ t}_2 \text{ t}_3]?
\]

\[
\text{who who.DAT what said.2SG that him.DAT-has promised}
\]

‘Who did you say promised what to whom?’

If this is so, then Romanian also evidently allows overt tucking-in, and thus we expect
Romanian to behave exactly like Bulgarian as far as the PCC is concerned. Therefore
we expect Romanian to show the same freedom of ordering that we saw in the Bulgarian
examples in (68) above. This prediction is correct. In (70) below, we see that overlapping
relativization and interrogative wh-movement in Romanian may either cross or nest:²⁷

(70) **Freedom of ordering for distinct A'-movements in Romanian**

a. **Nesting paths** (Adapted from Comorovski 1986, ex. 4b)

\[
\begin{align*}
\text{Ion, } &[[\text{pe care}_1] \text{ am } \text{ uitat } [\text{cine}_2 \text{ mi-ai } \text{ spus că } t_2] \\
\text{John, whom } &\text{ have.1SG forgot who me.DAT-have.2SG told that} \\
\text{ți } &\text{ l}_2\text{-a } \text{ prezentat } t_1)]
\end{align*}
\]

\[
\text{YOU.DAT CLITIC-has introduced}
\]

‘John, whom I forgot who you told me introduced to you’

b. **Crossing paths** (REDACTED, p.c.)

\[
\begin{align*}
? \text{ Ion, } &[[\text{care}_1 \text{ am } \text{ uitat } [[\text{pe cine}_2 \text{ mi-ai } \text{ spus că } t_1] \\
\text{John, who } &\text{ have.1SG forgotten whom me.DAT-have.2SG told that}
\end{align*}
\]

²⁷The wh-moved direct objects in these Romanian examples are clitic-doubled. Comorovski (1986) argues
that this clitic is not something like a resumptive pronoun that occurs in the absence of movement, but rather
that wh-movement is applying here as usual, with the doubled clitic being simply irrelevant. Example (88b)
could also involve a base generated wh-subject co-indexed with a null resumptive, since Romanian is a pro-
drop language. This possibility is addressed by Comorovski, who argues that null subject resumption is not
generally capable of ameliorating locality of movement violations in Romanian, meaning that if examples of
this variety are considered wh-island violations, subject resumption is not responsible for their acceptability.
ti l2-a prezentat t2]]

you.DAT CLITIC-has introduced

‘John, who I have forgotten whom you told me introduced to you’

Example (70a) shows nesting paths, which Comorovski (1986) reports numerous other instances of in Romanian, while (70b) shows crossing paths, which we have also seen in the multiple wh-question in (69) above. Thus we have evidence that like Bulgarian, Romanian allows both overt crossing and overt nesting at least some of the time. This is importantly in contrast to English, which only allows overlapping overt movements to nest, as we’ve seen.

7 Stranding in edges with multiple moved phrases

A variety of works have identified patterns involving stranding in an intermediate position formed by successive-cyclic movement (Urban 1999; McCloskey 2000; Barbiers 2002; Wiland 2010; Torrence 2018; Davis 2020, a.o.). CL predicts that if two phrases XP and YP successive cyclically move from a given phase such that XP forms the outer specifier of that phase and YP forms the inner one, then stranding in that phase edge should only be possible by YP. This is because an element stranded by XP would be crossed over by the movement of YP, though material stranded by YP will not be crossed by anything:

(71) Prediction for intermediate stranding with two overlapping moved phrases

a. Stranding by inner of two specifiers possible

\[
\begin{array}{ccccccc}
\text{XP} & \text{YP} & \ldots & [ZP_{\text{Phase}}] & \text{XP} & \text{YP} & \text{Z} & \ldots & \text{XP} & \text{YP} \\
\uparrow & \uparrow & \uparrow & \text{XP} & \uparrow & \uparrow & \uparrow & \text{YP} & \uparrow & \uparrow & \uparrow & \text{Z} & \uparrow & \uparrow & \uparrow & \text{XP} & \uparrow & \uparrow & \uparrow & \text{YP} \\
\end{array}
\]

b. Stranding by outer of two specifiers impossible

\[
\begin{array}{ccccccc}
\text{XP} & \text{YP} & \ldots & [ZP_{\text{Phase}}] & \text{XP} & \text{YP} & \text{Z} & \ldots & \text{XP} & \text{YP} \\
\uparrow & \uparrow & \uparrow & \text{XP} & \uparrow & \uparrow & \uparrow & \text{YP} & \uparrow & \uparrow & \uparrow & \text{Z} & \uparrow & \uparrow & \uparrow & \text{XP} & \uparrow & \uparrow & \uparrow & \text{YP} \\
\end{array}
\]
This is a manifestation of the prediction of CL that movement from a phase must generally exit from its linear edge, as described in section 2 above. In (71a), stranding of α by YP in the edge of the phase ZP causes no problem, since throughout this derivation, the relative ordering $XP < YP < \alpha$ is maintained regardless of whether stranding occurs. In contrast, in (71b) stranding of α by the outermost moving phrase XP results in a linearization problem, since in this case α precedes YP at the spell-out of the phase ZP, but would follow YP if left behind in the edge of ZP after YP moves on.\(^{28}\)

A number of works have argued that certain adjuncts of wh-phrases can be stranded at clause edges in standard English (Urban 1999; Stroik 2009; Zyman To appear), as illustrated in (72) below. Such patterns can be used to test the prediction illustrated above.

(72) Adjunct stranding under wh-movement in English (Davis 2020, ex. 10-11)

a. What\(_1\) (exactly/precisely) did you suppose t_1 (exactly/precisely) (that) they wanted t_1 (exactly/precisely)\?

b. Tell me [how much flour]\(_1\) (to the nearest pound) you said t_1 (to the nearest pound) (that) the bakery wants t_1 (to the nearest pound).

Some relevant test cases are shown in (73). These examples are complex since they require three clauses—two to provide landing sites for each overt A'-movement and one more for those movements to pass through and attempt stranding. There is nevertheless a contrast between an example where material is stranded in the lowest clause by the inner moved element (71a), as opposed to stranding by the outer one (73b), as predicted. As the traces in (73) show, I have assumed that these sentences involve order-reversal in the initial CP, followed by order-preserving movement onward, as this paper predicts. Both sentences in

\(^{28}\)Note that re-arrangement of the relevant constituents within the phase edge prior to stranding cannot occur to ameliorate this problem, given the well-supported ban on edge-internal movement within the same phrase (Ko 2007, 2011, 2014), a concept also predicted by many versions of anti-locality (Ishii 1999; Grohmann 2003; Bošković 2005; Abels 2003, 2012; Erlewine 2016, 2017, a.o.).
(73) have this path structure, but importantly, there is nevertheless a contrast between them.

(73)
\[\text{Intermediate stranding by inner moved phrase} \]
This is the bakery which\textsubscript{2} they reported [how much flour]\textsubscript{1} (to the nearest pound) they thought \([CP t_2 t_1 \text{ (to the nearest pound)}]\) that they sent \(t_1\) to \(t_2\).

b.
\[\text{No intermediate stranding by outer moved phrase} \]
Tell me [how much flour]\textsubscript{2} (to the nearest pound) they said who\textsubscript{1} they thought \([CP t_2 (*\text{to the nearest pound}) t_1]\) that they should ask \(t_1\) to buy \(t_2\).

8 The role of A-movement

This paper’s proposals predict that the PCC should hold in a language like English regardless of whether the movements involved are A’-movement, A-movement, or a combination of the two. This is because any overlapping movements whatsoever should result in a multiple specifier structure, which will be subject to the general concerns of linearization discussed here. While I am not aware of a way to test overlapping A-movements, there is evidence that the PCC holds when A- and A’-movements overlap.

Holmberg et al. (2019) examine the properties of languages with symmetrical ditransitives, in which either the direct or indirect object is available for movement. As they discuss, some dialects of North-West British English are languages of this sort, and unlike standard English, allow passivization of the theme of a ditransitive (74):

(74)
\% [A book]\textsubscript{1} was given/sent/handed him \(t_1\) (by Mary).

(North-West British English, Holmberg et al. 2019, ex. 8b)

Holmberg et al. (2019) show that in many languages of this variety, North-West British English included, passivization of the theme of a ditransitive removes the possibility of A’-moving the indirect object, as in (75a). A’-movement of the theme combined with
passivization of the indirect object is acceptable, however, as in (75b).

(75)

\[\text{a. * Who}_1 \text{ was [the book]}_2 \text{ given/sent/handed } t_1 \ t_2 \text{ (by Mary)?} \]

(North-West British English, Holmberg et al. 2019, ex. 9d)

\[\text{b. [Which book]}_2 \text{ was John}_1 \text{ given/sent/handed } t_1 \ t_2? \]

(North-West British English, Holmberg et al. 2019, ex. 9b)

Holmberg et al. (2019) argue for an approach to phase theory and multiple specifiers that predicts this restriction. However, an examination of the structure of the paths in the above examples reveals a straightforward alternative explanation for the unacceptability of (75a): this example, unlike (75b), violates the PCC. The contrast in (75) thus provides potential evidence that overlapping A- and A′-movements obey the PCC, as predicted.

Furthermore, for at least some speakers example (75b) is also acceptable in mainstream English. Since here the A′-moved phrase has the higher final landing site, then given CL and the OCG, we also expect it to have been the higher of the two phrases at the time when they passed through the vP edge. The fact that the wh-phrase in such a context can license a PG verifies this expectation (76):

(76)

\[\text{[Which book]}_2 \text{ was John}_1 \text{ given } t_1 \ t_2 \text{ for free [despite not being interested in PG}_2]\]

/ [after buying PG_2 online]?

Though A-movement is independently incapable of PG-licensing (Culicover and Postal 2001), importantly, if the A′-moved phrase in (76) had not formed the outer specifier of the vP here, then we would not expect it to license a PG either. The fact that it does reveals that the OCG is not unique to A′-movement, but is applicable to the interaction between A- and A′-movement as well. This is what we expect under CL, since for this theory, the considerations of linearization that yield the OCG should apply to all forms of displacement.
9 Conclusion

In this paper, I examined several aspects of contexts with overlapping movement. Using a prediction about PGs and multiple specifiers from Nissenbaum (2000), I argued that successive cyclic movement in such derivations is constrained in the way described by the OCG, which CL predicts. This result raised a question about the distribution of crossing and nesting multiple specifier formation, which I argued is resolved by understanding crossing paths as required only for multiple movements triggered by the same feature. I argued that this view facilitates an account of the PCC in English when combined with independent concepts about the distribution of covert movement, and the absence of the PCC in the multiple wh-fronting languages Bulgarian and Romanian. I also argued that these considerations make correct predictions about stranding in overlapping movement contexts, as well as about the interaction of overlapping A- and A′-movement.
References

Partee, Barbara, and Mats Rooth. 1983. Generalized conjunction and type ambiguity. In
Meaning, use, and interpretation of language, ed. Rainer Baüerle, Christoph Schwarze,

Podobryaev, Sasha. 2009. Postposition Stranding and related phenomena in Russian. In
*Studies in formal Slavic Phonology, Morphology, Syntax, Semantics and Information
Structure*, ed. G Zybhatow, U Junghanns, D Lenertová, and P Biskup. Frankfurt am Main:
Peter Lang.

of arguments*. Doctoral dissertation, MIT.

MIT.

minimalism*, ed. Samuel D. Epstein and Norbert Hornstein, 127–158. Cambridge, MA:
MIT Press.

Rizzi, Luigi. 1997. The fine structure of the left periphery. In *Elements of grammar: A

Rudin, Catherine. 1988. On Multiple Questions and Multiple WH Fronting. *Natural

