Phonology

Marc van Oostendorp

16th March 2020

Contents

1 The subject matter of phonology 1
 1.1 Where in the world is phonology? 1
 1.2 Phonological data and methodology 6
 1.3 Phonological theory . 13
 1.4 Exercises . 15

2 The atoms of language 19
 2.1 Segments . 19
 2.2 Contrast and the feature . 21
 2.3 A universal feature set . 25
 2.4 An alternative: Element Theory . 32
 2.5 Exercises . 37

3 Autosegmental theory 41
 3.1 Tone . 41
 3.2 Autosegmental representations outside of tone 50
 3.3 The skeleton . 53
 3.4 Feature Geometry . 59
 3.5 Exercises . 67

4 Finding patterns 69
 4.1 Underlying representations . 69
 4.2 Discovering alternations . 70
 4.3 The phonetic source of patterns . 70
 4.4 Synchrony and diachrony . 72
 4.5 Exercises . 75
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Syllables</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Evidence for syllable structure</td>
<td>77</td>
</tr>
<tr>
<td>5.2</td>
<td>The internal structure of the syllable</td>
<td>77</td>
</tr>
<tr>
<td>5.3</td>
<td>Sonority</td>
<td>83</td>
</tr>
<tr>
<td>5.4</td>
<td>The syllable structure of English</td>
<td>90</td>
</tr>
<tr>
<td>5.5</td>
<td>Exercises</td>
<td>95</td>
</tr>
<tr>
<td>6</td>
<td>Phonological computation</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Computation and representation</td>
<td>103</td>
</tr>
<tr>
<td>6.2</td>
<td>Optimality Theory</td>
<td>103</td>
</tr>
<tr>
<td>6.3</td>
<td>A case study: Nasal assimilation</td>
<td>106</td>
</tr>
<tr>
<td>6.4</td>
<td>Beyond place harmony</td>
<td>109</td>
</tr>
<tr>
<td>6.5</td>
<td>A theory of constraints</td>
<td>112</td>
</tr>
<tr>
<td>6.6</td>
<td>Implications of the theory of computation</td>
<td>117</td>
</tr>
<tr>
<td>6.7</td>
<td>Exercises</td>
<td>119</td>
</tr>
<tr>
<td>6.8</td>
<td>Sources and further reading</td>
<td>121</td>
</tr>
<tr>
<td>7</td>
<td>Stress</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Languages with stress</td>
<td>125</td>
</tr>
<tr>
<td>7.2</td>
<td>Metrical feet</td>
<td>125</td>
</tr>
<tr>
<td>7.3</td>
<td>Syllable quantity</td>
<td>126</td>
</tr>
<tr>
<td>7.4</td>
<td>Lexical stress: faithfulness to feet</td>
<td>129</td>
</tr>
<tr>
<td>7.5</td>
<td>The moraic theory of syllable structure</td>
<td>131</td>
</tr>
<tr>
<td>7.6</td>
<td>Stress typology</td>
<td>133</td>
</tr>
<tr>
<td>7.7</td>
<td>Exercises</td>
<td>136</td>
</tr>
<tr>
<td>7.8</td>
<td>Sources and further reading</td>
<td>140</td>
</tr>
<tr>
<td>8</td>
<td>Prosodic structure</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>The phonological tree</td>
<td>143</td>
</tr>
<tr>
<td>8.2</td>
<td>The Phonological Word</td>
<td>143</td>
</tr>
<tr>
<td>8.3</td>
<td>The Phonological Phrase</td>
<td>144</td>
</tr>
<tr>
<td>8.4</td>
<td>The Intonational Phrase</td>
<td>149</td>
</tr>
<tr>
<td>8.5</td>
<td>Morphological evidence for the prosodic hierarchy</td>
<td>151</td>
</tr>
<tr>
<td>8.6</td>
<td>Exercises</td>
<td>155</td>
</tr>
<tr>
<td>8.7</td>
<td>Sources and further reading</td>
<td>163</td>
</tr>
<tr>
<td>9</td>
<td>Phonology and morphosyntax</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>The difference between word phonology and phrasal phonology</td>
<td>167</td>
</tr>
<tr>
<td>9.2</td>
<td>Two layers of phonology</td>
<td>167</td>
</tr>
<tr>
<td>9.3</td>
<td>Lexical Levels</td>
<td>168</td>
</tr>
<tr>
<td>9.4</td>
<td>The life cycle of phonological processes</td>
<td>173</td>
</tr>
<tr>
<td>9.5</td>
<td>Cyclicity</td>
<td>173</td>
</tr>
<tr>
<td>10</td>
<td>Applying phonology</td>
<td></td>
</tr>
<tr>
<td>10.1</td>
<td>Phonology and spelling</td>
<td>175</td>
</tr>
<tr>
<td>10.2</td>
<td>Phonology and speech recognition</td>
<td>175</td>
</tr>
<tr>
<td>10.3</td>
<td>Sign Language Phonology</td>
<td>175</td>
</tr>
<tr>
<td>10.4</td>
<td>Exercises</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>177</td>
</tr>
</tbody>
</table>
Chapter 1

The subject matter of phonology

1.1 Where in the world is phonology?

When a character in a comic story gets very angry, he starts shouting something which appears in a little cloud above his head and reads as ‘Ὂ𝑬𝑩𝑨§ý’! Those symbols satisfy their communicative needs rather well: every reader understands immediately what kind of intention they are supposed to reveal. We also can easily imagine some sound — a deep grunt or growl — which would satisfy the same goal.

It would be possible to devise a communication system which consists entirely of sounds every human being can make, but which are difficult to notate precisely in an alphabet writing system. Human beings have a sufficiently large repertoire of sounds: we can whistle, hiss, snort, clap our hands, and probably do thousands of different things. Each of those sounds we could call a morpheme, and then combine these morphemes into words and sentences in the way in which we know modern human language does it.

Such a language would be rather convenient for a number of purposes. The sounds of all the word would be easily distinguishable: the chances that two words would sound as similar as *pin* and *pen* in English would be very small. At the same time, the words would not be too difficult to make.

Yet, as far as we know, no human language works in this way. Rather, the words in every language seem to have much more internal structures. For instance, all languages seem to have a finite list of vowels and consonants, and all words consist of combinations of those — the smallest number of such different sounds is about 11, the largest about 150.

Obviously, when phonologists talk about vowels and consonants, they talk about sounds, not about letters, which are seen as mere graphical representations of those sounds. Phonologically speaking, English does not have a consonant *c*. The letter of that shape (**c**) is sometimes pronounced as [k] and sometimes as [s].

Notice that I put orthographic letters in angled brackets; phonetic symbols are put in square brackets. This is common practice. Since we cannot (yet) incorporate real sounds in a book such as this one, we need to do with symbols representing them. For this I use the so-called IPA system, which is explained in section[1.2] IPA is presently used by virtually every linguist in the world. (It is very important to remember that phonology is about sounds and not about...
1.1. Where in the world is phonology?

The subject matter of phonology

The discipline which studies this internal structure of language is called phonology, in which we can recognize the Greek words φόνη, which means 'sound', and λόγος, which means 'study'. The study of the phonology of a given language usually starts with making an inventory of all the basic elements. These are for instance the consonants and vowels of the language, but there can also be other elements, which may not always be transcribed in the orthographic system of the language in question. For instance, the following two sentences sound different in English:

(1) a. You have eaten already.
 b. You have eaten already?

The statement in (1a) sounds different from the question in (1b) because the two sentences are pronounced at a different pitch (questions typically end in a higher pitch). Also these tonal differences count as part of the set of primitive elements of the language. (As we will see in chapter 3, in many languages not just sentences but even individual words can be distinguished by the pitch at which they are pronounced.)

If we would restrict ourselves to just making inventories, phonology would not be a very interesting discipline — it would be a very low level bookkeeping activity. Making such inventories however is just a very first and basic step. Fortunately, there are more challenging and interesting questions which immediately rear their heads. In the first place, it turns out that the inventories of sounds are not just lists of consonants, vowels, tones, and possibly some other things. They have much more internal structure, and furthermore such structures are often very similar from one language to the next. Once we observe this, we have two research questions: what is this common structure of sound inventories in languages of the world? And what would explain that those commonalities exist? A lot of phonological debate is about these issues, and we will see a lot of it here.

Another type of question arises because sounds are not stable. A word or a part of a word might have a slightly different shape in one context than in another. Take for instance, the English plural suffix. This has three different phonological shapes:

(2) a. -[oz]: *fishes, passes*
 b. -[s]: *cats, parks, lamps*
 c. -[z]: *lambs, pans, beds*

These shapes are dependent on the phonological make-up of the stem. It ends in a [s], [z] or [ʃ], it has the shape [oz] (2a). If it ends in a so-called voiceless
consonant like p, t, k, the suffix is the equally voiceless s \((2b) \). Otherwise, it has the structure \([z] \) \((2c) \). (More about this will be said in section ??).

Again, these kinds of alternations show many similarities between languages of the world, so that again two questions arise. First, which kinds of alternations are available in languages of the world? And secondly, what explains the fact that these alternations exist and that they seem to come from a rather small repertoire of possibilities? These questions again have caused a lot of discussion within phonology and we will discuss these here as well.

Phonology and phonetics

Now there are many more things to be heard in a word or sentence. For instance, (1a) would sound different if it is pronounced lovingly than when it is pronounced in anger. Yet such differences are not studied in phonology. So which sound differences are important and which are not? Phonology is about sounds as part of language, and that is where we typically find the answer: we only count those sound differences which are linguistically relevant, for instance because they correspond to a difference in linguistic meaning. The difference between questions and statements is linguistic, the difference between love and hate is not.

Phonology is distinguished from several neighbouring disciplines — which partly overlaps, so that most phonologists will usually have a working knowledge of at least some of the other disciplines.

One of these is phonetics. The differences between phonology and phonetics are rather subtle and complex — some people even suggest that there is no distinction between them at all. But usually it is assumed that phoneticians study the physical and physiological aspects of speech sounds: they use technology to study such sounds as part of the natural world. Phonology on the other hand studies sounds as part of the language as a system, and the cognitive or possibly social structures which underly this system. In terms of a classical philosophical dichotomy, phonetics is about the body and phonology is about the mind.

The issue is obviously very complicated, if only because it is not easy to disentangle mind and body. If I say the word *pen*, at some point my mind has to translate this word into a set of instructions to my lips and tongue and other muscles — what is the moment in which we make a transition from my intention to the physiology, from the mind to the body? Fortunately, in the everyday business of linguistic analysis the question we can take a pragmatic attitude towards this: everybody uses the tools they have to study what they can.

There are also differences between typical phonetic and typical phonological data. Since phonetics deals with the messiness of the physical world, a lot of its data are gradient (they involve values which can be written as real numbers, like 1.34253... or 65.696969...: no matter how precise we are, we can always imagine a little bit more precision), whereas phonology, which deals with clean systems is categorical. A consonant in language is a p or an b, but not 13.4% a p. When phonology deals with numbers at all, they are therefore usually (discrete) natural numbers: 0, 1, 2, ...
phonologists would not consider. The difference between loving and angry speech mentioned above is a case in point. Generally, the speech signal contains much more pieces of information than purely linguistic ones. From the way somebody speaks, we can draw many conclusions about their age, emotional state and gender. We can hear how tired or agitated the speaker is, and according to some engineers one can even hear whether somebody speaks the truth or not. (Those engineers are involved in building polygraphs.) Such topics will be studied by phoneticians, and not by phonologists.

Morphology and syntax

On the other hand, phonetics is obviously further removed from core linguistic disciplines, such as morphology and syntax. Morphology is the study of the way in which words are built out of other words — how books, bookish and bookcase are all formed on the basis of book. Syntax is the study of how words are combined into sentences.

It is said that one key property of human language is that it has double articulation (also sometimes called duality of patterning): every language consists of an inventory of small elements without meaning, such as consonants and vowels. These can be combined together to form words and affixes, which are associated to a meaning. That is the first articulation or patterning. These smallest meaningful units can then be combined into larger units, like more complex words or sentences. That is the second articulation.

This description suggests that the first articulation is hierarchically below the second one (it stops below the level of the morpheme), but that is not correct. It seems better to view the two patterns in parallel. The sounds of language are also sensitive to the higher levels of organization. In the phonological alternations we mentioned above — of which the different shapes of the English plural suffix were examples — this already became apparent: phonology should be able to somehow ‘see’ the structure that is built by the morphology. In other languages, it can also see the syntactic structure in the same way. However, the interaction between phonology and morphology is in many languages much clearer than that with syntax.

Every linguistic utterance thus has the two patterns at the same time: on the one hand, it consists of meaningless sound symbols, but at the same time — as it were in a different dimension, it organizes the meaningful unit in a parallel way.

Just like with phonetics, the boundaries between phonology and morphology are not always clear. One issue is allomorphy: morphemes can have a different shape depending on their context. Here is an example from Kalkatungu (an extinct Pama-Nyungan language from Australia). The genitive in this language is expressed by -ku if the stem ends in a consonant, and by ja if it ends in a vowel:

\[
\begin{align*}
(3) & \quad a. \ t\text{uat-ku} \text{ ‘snake’}, \ u\text{pun-ku} \text{ ‘frog’}, \ t\text{untal-ku} \text{ ‘moon’} \\
& \quad b. \ m\text{acumpa-ja} \text{ ‘moon’}, \ n\text{tia-ja} \text{ ‘snake’}, \ k\text{upu-ja} \text{ ‘spider’}
\end{align*}
\]

We have seen another example of allomorphy in (2). There, we presented the different shapes of the English plural suffix as evidence for phonology: the [z] sound of the suffix changed its shape based on the phonological environment.
1.1. Where in the world is phonology?

There does not seem to be a reason to do the same for the Kalkatungu case: the shapes \textit{ku} and \textit{ja} are too different from each other to be related in a sensible way, and there also is no clear phonological reason why one would be chosen after a consonant and the other after a vowel.

For this reason, most linguists think that the Kalkatungu alternation is not part of phonology, but of morphology (and/or the lexicon). But quite obviously, the boundaries are not necessarily always clear: two allomorphs might look \textit{somewhat} similar and there might be a reason why they have this shape, but it looks a little bit far-fetched. (Notice that the Kalkatungu alternation still refers to a phonological property of the stem, viz. whether it ends in a vowel or a consonant.) Further, some people argue that if we already need to set up some technology in the morphology for dealing with Kalkatungu, we do not want to use a separate mechanism to deal with the English case.

Again, most phonologists take a pragmatic approach to these questions. We deal with those phenomena we can account for in our theories and leave other data to related fields which might be better equipped to deal with them.

Where in the world is phonology

If phonologists study the structure of sound systems in human language, they must obviously assume that there is such a system to be found. The question then arises what is the reason that languages have structured sound systems to begin with.

We can only answer this question if we have an idea about the ontology of language: where in the world do we locate this phenomenon? There are approximately three possible answers.

The first is that language is an abstract, entity, which we can study independently of its speakers, much like the way many people see mathematics. We can call this the \textit{Platonic view}, after the Greek philosopher Plato. Many linguists have taken this view — it is for instance the basis of well-known metaphors of language as a living organism or of Portuguese being a daughter language of Latin. Under this view, the fact that language is logically structured is inherent in the fact that it exists: for a Platonist abstract objects will always have a structure that is worth studying.

The second point of view sees language as a cognitive object, as something that is ultimately represented in the brain of an individual. We can call this the \textit{psychological} or \textit{cognitive view} of language. It implies that we ultimately believe that the structure of language is (causally) related to the structure of human cognition. The way a phonological inventory is organized can under such a view be understood in light of memory.

This second view has been the dominant one in phonology (as well as in theoretical syntax and morphology) for quite a long time. It was championed by the famous generative linguist and philosopher Noam Chomsky (1928), but also many linguists who take very different views on the structure of language, on linguistic methodology, etc., implicitly or explicitly see language as an essentially cognitive object. Since this is the dominant view, it also plays an important role in this book.

The third view sees language primarily as a social object, as a thing that does not belong to one individual, but always to a group of people. We can call this the \textit{sociological view} of language. It implies that the structure of lan-
guage is caused by the way in which human interaction works. Although this way of thinking has not been as dominant as the cognitive view, it has always been there, and is rather important too. A lot of sociolinguistic work obviously takes this point of view, but in recent years there has also been interest in building computer models in which it is shown that models with a small number of computer ‘agents’ communicating with random sounds in the course of time start converging on sound systems which look like human language.

I will not decide here which of these points of view is the correct one. Probably they each are correct, since they are not mutually exclusive. Language is somehow encoded in the human brain and it is used in human interaction. Apart from this it may also be an abstract object with mathematical properties. In that case we will have to figure out which aspects of phonology are best explained from which basic principles. It is however very important to recognize that there are these different points of view and that what an individual analyst sees as a convincing argument may depend on his or her point of view.

There is yet another way to see the place of phonology in the world. This is by considering the distinction between \textit{synchronic} and \textit{diachronic} phonology — a distinction which is due to the Swiss linguist Ferdinand de Saussure (1857-1913). We can see language as a static object, which exists at a given point in time (15th Century English, Swahili as it is nowadays spoken in Kenya): in that case we are doing synchronic linguistics. We can also study the dynamics of language as it is (continuously) changing; that is the subject matter of diachronic linguistics.

Again, it does not make sense to say that either of these views of language is the correct one. It is an undeniable fact that languages (at least if seen from a sociological view) are subject to change. But the same is of course also true for objects in the physical world, which are constantly moving around, decaying, etc., which does not mean that we cannot study the structure of the human hand as if it is stable — as a matter of fact something which is really constantly moving cannot be studied at all.

Most of phonological theory nowadays is synchronic: explanations for patterns are sought in structures which are treated as stable, not in change. This is definitely true for the style of theorizing which is presented here. However, there are also many phonologists who believe that many patterns can, and even should get a diachronic explanation. Again, it does not make sense to stipulate that one point of view is correct and the other one is wrong, but arguments and data will be seen in a different light from different points of view. Images of the brain when somebody pronounces a word are not necessarily interesting for somebody interested in diachrony.

1.2 Phonological data and methodology

Since it is concerned with finding patterns, the study of phonology requires a level of abstraction. This emphatically does not mean that the phonologist does not deal with empirical data. Quite to the contrary, there are many sources of information that a modern phonologist can use to discover the ab-
1.2. Phonological data and methodology

It is therefore important to understand these different types of data, and to be able to use different scientific methodologies to discover them.

In this section, we discuss the five most important types of data, and data collection methods, that are used in phonology. It is important to realize that each of them is important and shows a piece of the puzzle; but that they also all can have problems.

Introspection and fieldwork

Classically, phonologists have derived their data about a language from asking native speakers. Sometimes they would be their own informant, when they were working on their own language. But in many cases, they also worked with an informant who was not necessarily a linguist to discover the phonology of their language. If one works with one’s own judgements, this is called introspection; if one works with other people’s judgements, this can be called fieldwork. The advantage of fieldwork is that the judgements are not influenced by the speaker’s knowledge of what the theory predicts; the advantage of introspection is that of course nobody is as patient and as willing to ponder new examples as long as the researcher.

One simple thing one can obviously do, is try to record as many words of the language as one can get. One problem then is how to write out the sounds of the language. First, we need some kind of writing system. The orthographies of existing languages, say, English, do not suffice, because they do not faithfully record every sound distinction of the language itself, let alone of more foreign languages.

For this reason, linguists use the so-called International Phonetic Alphabet (IPA), a convention for writing all the sounds of all (known) languages in the world. The IPA therefore consists of a large number of symbols and diacritics which together allow the researcher to go into as much detail as is useful for linguistic analysis. It is very important for phonologists as well as for phoneticians to be able to read and write transcriptions in IPA. Here is an example of a sentence transcribed in IPA:

\[(4) \ \text{ðis iz ən igzæmpl ân a sentâns trænskraibd m aipi} \]

See the Further Reading section at the end of this chapter for more information. Alternatively, one can of course decide not to write out any of the sounds at all, but make audio recordings. This may definitely be preferable while doing the fieldwork, if only because of course you will always miss something while transcribing. However, it is common practice to present IPA transcriptions in analyses and publications, rather than sound files.

Transcribing random words is obviously not the most ideal way of doing research if we are trying to find patterns. Various methods have been developed to find the patterns we are looking for most systematically. Many of these will be studied in the next chapters.

Data we study is of course not always from our own fieldwork or introspection. A lot of data have been collected in this way by other researchers over the course of the past decades, and these play an important role in the literature since then. This does not mean that you should take such data without criticism, because it is always possible that mistakes have been made.
It should be noted that fieldwork is often done with representative adults, but phonologists have also worked with specific groups, for instance children who are acquiring their language, aphasic patients who have lost part of their language, second language learners, etc.

Corpora and databases

Another means of discovering patterns is by studying large datasets, for instance in the form of *corpora* — large, typically electronic, collections of natural language data. These can be for instance transcriptions of conversations or of monologues, what is usually called *spontaneous speech*, but also of more structured interviews based on a questionnaire.

Such corpora potentially give insight in different dimensions of natural language. For instance, they can tell us something about how frequently words, or syntactic constructions, or individual sounds are really used in everyday language. Also, the way in which people really speak might be different from the way in which they *think* they speak — the latter is the kind of data we obtain with the methodology described in the previous section. Finally, corpora are also more easily verifiable than judgements — a scholar can put the data he has used online, so that other people can verify them, or even use them for other purposes.

A special type of corpus worth mentioning is the sociolinguistically annotated corpus, which provides information about the background of the speakers; typically their age and gender but also other information about their position in society (where they were born, their occupation, the way they identify themselves, their lifestyle). These are important in particular if we take a sociological point of view of language, as described above and consider a language to be a property of a human social group.

We know that any human social group of some size consists of many subgroups: men speak slightly differently than women, etc. Given this fact, many sociolinguists propose that the language use of an individual speaker can only be understood as a function of the language system of the various subgroups she belongs to. Under such assumptions, studying a corpus without the relevant corpus information does not make a lot of sense.

On the other hand, working with corpora also has several drawbacks. One of them is that it is very difficult to build a corpus that is really balanced and, above all, representative. When we record people, they will almost always be influenced by that fact and speak differently than when they speak in their ordinary voice.

A more important problem of using corpora is that certain patterns might just not occur even though they are possible — they are so exceedingly rare. But it might just be these very rare patterns which show an important piece of the puzzle. As a matter of fact, it is sometimes argued that exactly these very rare patterns give a good indication for what is ‘really’ going on. If people can distinguish between ‘good’ and ‘bad’ patterns which are equally rare, they cannot have made this judgement based purely on the data they have encountered. There must be some other factor at work — for instance, innate knowledge in the sense of Chomsky [1968, 1986, 1995]. But also other ‘external’ sources of language patterns, for instance generalization capacities might be justified by such evidence.
A final problem with many linguistic corpora which is not inherent to the technology is that linguistic databases often consist of transcriptions only, and those often even in an orthographic form. It is obviously sometimes difficult to deduce from these how the data sound, let alone what they tell us about the phonological organization of the language in question. There are, however, also corpora which include phonological or phonetic transcriptions; and some of them even have sound files. (We will discuss examples in later chapters.)

Another type of electronic datasource are databases; their difference with corpora is that they have more structure. A corpus consists of (transcriptions) of texts. Extra information about individual text items such as words might be added, as well as information about the text as a whole. Databases consist of more structured information, for instance about whole languages.

A well-known example of a phonological (or phonetic) database is the UCLA Phonological Segment Inventory Database, which contains tables of all the vowels and consonants in 451 languages — it is usually estimated that at present there are about 6,000 languages spoken in the world. Using this database, we can investigate claims such as ‘all languages have a consonant [t].’

An advantage with databases is that they are relatively easy to search for such claims. Furthermore, if we have a lot of data, we can apply statistical techniques which can filter out individual errors. Because the problematic aspect of databases is that they will often be eventually based on the fieldwork methodology described in the previous subsection. This means that there may be many errors, differences in interpretation of the data, etc.

Artificial evidence

Sometimes the kind of data we find in the world of everyday speech is not enough. In such cases, linguists may also use artificial data, which has been consciously created for some reason.

There are many types of such artificial data. Some of these have been created by non-linguists. One example of this is poetry; poets traditionally play with the sound structure of language by using rhyme, alliteration and other means. Especially in the case of historical data such sound patterns are often the only indication about the phonology we have. For instance, from the fact that two words are put in rhyming position, we may conclude that they ended in the same or similar sounds, even though they were written differently. Similarly, what we know about the difference between short and long vowels in Latin is primarily derived from the fact that poets used regular alternations of long and short syllables. The difference between a short and a long [i] was not itself written down.

A next step on the scale of artificiality is that the researcher invents her own data, in order to test her theories. These can be nonsense words, i.e. word-like sequences of consonants and/or vowels which do not occur in the lexicon. We can then test the differences between such sequences.

One of the best known examples of this methodology is due to Morris Halle (1923), one of the most influential phonologists ever. He observed that there is a three-way difference between brick, blick and bnick. The first of these obviously is a regular English word, but the other two are not. Yet English speakers feel a difference: blick could be an English word which you just hap-
pen to not know, whereas *bnick* cannot. Halle therefore called *blick* a possible word, and *bnick* an impossible word. Phonology is then not about the actual words (whether or not a sound sequence gets assigned a meaning is seen as a random fact) but about the set of possible words.

One can go one step further and not just invent words but whole patterns. For instance you could wonder whether the pattern in (2) could be reversed in some language — whether it would be possible to have a dialect of English with plurals like the following:

(5) a. -*[z]*: *fishz*, *passz*
 b. -*[əz]*: *cates*, *parkes*, *lampes*
 c. -*[s]*: *lams*, *pans*, *beds*

We can test this by trying to teach people this dialect. If we have found a (synchronic) explanation for the ‘real’ pattern, it might predict that the pattern in (5) is unlearnable, or will not survive in a community which tries to adopt it. (The latter is of course a little bit more difficult to test experimentally.)

Experimental evidence

Another step we can take is go beyond the impressionistic recording of the data, is to go to a laboratory and get experimental results. The advantage of this is obviously that we can make very precise recordings, test our hypotheses under highly controlled conditions, which might also be ‘unnatural’ but important to see how language behaves under such circumstances.

There are many different things one can do in the laboratory. I will divide these into two types of experimentation: phonetic and psycholinguistic. The boundaries between these two are not always clear, except that scholars tend to identify themselves as ‘psycholinguists’ or ‘phoneticians’.

Interest in laboratory methods for phonology has grown considerably over the past twenty years. There are special conferences and a journal on ‘Laboratory Phonology’, but also in other conferences and in other journals there is a rising interest in seeing phonological theories be supported or falsified by well-designed experiments.

Phonetic measurement

Over the course of the past 100 years, phoneticians have developed a large toolbox of instruments and techniques to study the way in which the human body produces and perceives speech sounds as well as the way in which such sounds are transmitted from one person to the next. Over the past few decades, several (free) software packages have been developed which can be installed on any (laptop) computer so that it is very easy to install a private phonetic laboratory.

There are several advantages to phonetic data. One is that our instruments can measure fine-grained distinctions which are not always perceivable for the human ear. Or perhaps we should say: which we cannot make conscious. (If people really cannot hear a difference at all, one can wonder how the distinction can play a role in human communication.) If such patterns are system-
1.2. Phonological data and methodology

atic, they might be at least as important as those which we can obtain by other means.

Another potential advantage is that phonetic measurements are performed with computers and therefore less dependent on human interpretation. If you study somebody’s speech by just listening to it, you might be tempted, even subconsciously, to hear things which are not really there, just because your theory makes you expect them to be there. Related to this is the fact that phonetic measurements are typically more easily replicated by other researchers: if you carefully describe the way you have performed your experiments, another researcher will be able to do it in the same way, and arrive at the same results.

It should be noted that these advantages do not mean that all results which are obtained by other methods are therefore worthless or unscientific. Many patterns in human language are quite clear and obvious to any native speaker. The fact that the plural suffix is -z in beds but -s in cats can be easily observed without any technological means by any native speaker of English, nor will there be a lot of disagreement about this. For the latter reason, such data are intersubjective: the subjective intuitions about them agree to a large extent. To many phonologists it would seem a waste of time and other means to try to establish such truths also ‘objectively’, using computers.

This is then one disadvantage of phonetic measurements: they are time-consuming, you need to put informants into sometimes uncomfortable circumstances, and you need special equipment (even if this is only a recorder and a laptop), and it is not always clear that these costs are worth the result. Furthermore, it is not always even possible to acquire phonetic data, e.g. when we want to study the phonology of an extinct language.

Another disadvantage is that phonetic measurements are necessarily ‘superficial’: they can only measure things which are present outside the human mind or human society: acoustic signals, movements of the body. Even if we also consider brain scanning techniques — which are currently too expensive for most linguistic researchers, but will probably be used more and more in the not too distant future — we can see pictures of which areas of the brain are active at some point, but not necessarily about what this means for the human mind. If we want to know such things we have to apply techniques from psychology, as I will discuss in the next section.

Psycholinguistic experimenting

Psycholinguistics is the field at the intersection of psychology and linguistics: it studies the way in which humans process, produce and acquire natural language. The results of this type of research is of course particularly relevant if one takes the psychological point of view and sees language as primarily something which belongs to the human mind.

A typical psycholinguistic experiment has a number of speakers of a certain language perform a relatively easy language-related task. For instance, they have to listen to a number of words and press a button when they recognize that word as belonging to their language. Their performance is then measured in various ways, e.g.: how long does it take for them to press the button? How many mistakes do they make? And how are these factors influenced by others, e.g. the fact that they have just heard a word which sounds
very similar in some way (starts with the same sound, has the same number of syllables).

In this way, the psycholinguist hopes to find out how language is represented in the brain. In our example, which dimensions of sound similarity count as relevant for finding a word in the lexicon we as speakers all have in our head. In turn, such knowledge about the internal structure of the lexicon might teach the phonologist something about how sounds are organized in language and, inversely, phonologists’ insights should ideally guide the psycholinguists’ research.

A special place has always been occupied also by the study of (first) language acquisition. The language learning child to some extent has to face the same task as the linguist: she has to figure out what the system of her language is. There is one important difference, which is that the child apparently somehow knows how to go about this task and accomplishes it within a few years, while linguists continue to puzzle over the details. By following children closely, we can try to learn from the way in which they apparently acquire all these data.

But there are several other reasons why acquisition is important. One of these is that the fact that every generation has to learn the language of their parents is probably an important factor in language change. Small things can and do go ‘wrong’ in that children sometimes construct a slightly different language based on the input of their parents. If we are thus interested in the details of diachronic phonology, it is crucial to understand how such acquisition works. (Since language change may also be caused by adults having to learn a foreign language, studying second language acquisition can be relevant for the same reason.)

Formal evidence

A final type of evidence for a specific theory comes from properties of the theory itself. Scientific theories are generally supposed to be more succesful if they are elegant and restrictive. Since these are properties of scientific theories in general, and not specific to phonology, we will not discuss them in detail here.

Restrictiveness of a theory refers to the number of things which are impossible according to the theory. The optimal theory is one which is applicable to every real object in the world, but not to anything else. The best theory of phonology would for instance describe and explain exactly all the sound systems of languages in the world, but not arbitrary collections of sounds which can never be part of a real language. It should not just explain why the English plural system in (2) exists, but also why the fake system in (5) does not.

The arguments for formal types of evidence tend to be philosophical. An important argument why theories should be restrictive is that in this way they are more falsifiable. A theory which can account for everything, cannot account for anything at all.

A second kind of formal criterion is elegance. If we have two theories of one and the same phenomenon, we prefer the one which is more elegant. The problem with this obviously is that this is an aesthetic criterion which thus may be subject to personal preferences. However, there are several well-
known and widely accepted principles of elegance. The most famous among these no doubt is Occam’s razor, named after the fourteenth Century English scholar William of Ockham. The principle says that a theory should not contain any unnecessary assumptions (such assumptions should be thrown out).

That in turn implies one should always go for the simplest theory, the one with the smallest number of assumptions. It is usually very difficult to really compare theories, because it is difficult to count assumptions, but everybody would agree that a theory which would require a description of 5,000 lines is less simple than one which can be described in 5 lines.

This is true in particular if the descriptions are written in the same language, which preferably should be highly formalized, like a mathematical notation, or a computer language. It has become more and more popular over the past decades to build computer models which mimic the way language works according to a certain theory. The goal of such computer implementations is not only to show that a theory is indeed really elegant, but also that it works in the first place. If you have written a computer program which does things exactly as you say it does and of which the outcomes are furthermore as they are in the real world, you know that the program contains the whole theory (there are no hidden assumptions) and furthermore that it works as required.

So which type of evidence is the best?

We have now given an overview of many types of data that are available to the phonologist. The overview may not be comprehensive, but most data that a phonologist deals with will be of one of the types described here.

There is an understandable human tendency to reduce such an embarrassment of riches to something more tractable and declare that only some of these datatypes make sense, that the others are not acquired by the right methodology and that the rest can or even should be ignored.

This is not the approach we take in this textbook. Even if you believe that certain types of data are inherently more useful than others, all of them are used in phonological argumentation, so a student of phonology should be able to deal with them and evaluate them. Furthermore, I believe that evidence for the kinds of patterns we study in phonology can be found in all of these data, although we should always be careful: each of these types of data has their problems and might be ‘polluted’ by other factors.

1.3 Phonological theory

We have thus seen in the preceding section that phonologists deal with a large variety of data, trying to find patterns in them. These patterns are then described in a theory. It is the ultimate goal of linguistics to describe what is a possible human language and what is not. Phonology shares this goal as far as the organization of sound patterns goes. There is a second goal, which is to fully describe the sound patterns which we find in the existing individual languages of the world; some phonologists work for instance exclusively on the phonology of French.

These two activities mutually feed each other. One cannot pretend to study what languages have in common, or what makes them different, without hav-
ing a detailed knowledge of individual languages. On the other hand, in studying the phonology of such a language, it is important to know which aspects of the language are familiar also from other languages and which are unique for the language in question.

An important aspect of any serious scholarly discipline is that it is cumulative: we always try to build on the work of other scholars. There are many questions, there are many mysteries. Other people will have (had) something to say which sheds light on these issues. It is very inefficient to start all over again every time we study a subject matter. This is also how it is with phonology.

A very brief historical sketch

The discipline started somewhere at the beginning of the twentieth century. A reasonable starting point is the Course on General Linguistics by the Swiss linguist Ferdinand de Saussure (1857-1913). In this book, Saussure introduced many concepts which turned out to be foundational for modern linguistics. The distinction between synchronic and diachronic language study, for instance, is due to him. But one of his key ideas was that languages can be studied as coherent systems: that for instance the sounds of a language exist in patterns. For the study of sounds, this implied the introduction of a distinction between phonetics and phonology, where the latter was uniquely occupied with the (linguistically relevant) patterns.

In terms of the discussion above, Saussure had a sociological view on these patterns: he believed that ‘language’ only exists as a property of a community. The speech of each individual only gives an imperfect reflection of the more perfect abstract object which everybody shares. This was also the view of structuralism, the most influential linguistic paradigm both in the United States and in Europe until the 1950s. Although there was also some interest in syntax and morphology, the most successful branch of structuralist linguistics was phonology. Important scholars like Leonard Bloomfield (1887-1949), Nikolay Trubetzkoy (1890-1936) and Roman Jakobson (1896-1982) produced very influential work laying the theoretical foundations of the field. In particular, Bloomfield’s book Language and Trubetzkoy’s Foundations of Phonology are still important references for any (advanced) student who wants to understand what phonology is about.

The advent of generative linguistics (of which the main phonological event was the appearance of The Sound Pattern of English in 1968 by Morris Halle and Noam Chomsky) brought about several changes. The most important one was a change in orientation: generative phonology puts the reality of phonological patterns unequivocally in the human mind. At the same time, Halle and Chomsky brought several technical innovations and improvements to the theory, although there is also a lot of continuity (and cumulativity) in technical aspects of the theory.

In the decades following the publication of the Sound Pattern, the theory has developed in many ways, basically to the point of having become unrecognizable. If you have studied this book, for instance, you will find it much easier to follow contemporary literature than the work of the 1970s. A striking aspect of the present phonological community is that it is very pluriform: in a given phonological conference you will find many different approaches.
Although most phonologists probably still take a psychological view of phonology, the sociological view has also gained ground. Yet although there are a lot of debates about many aspects, as is the case in any healthy discipline, there is also a large common ground — a vocabulary in which scholars can communicate about their ideas. My aim in this book is to bring you up to date with that vocabulary.

Structure of this book

In this book, we will start with the smallest constituting elements of language. As we will see in Chapter 2, these are not consonants and vowels, but even smaller units which can be combined in certain ways to form units that are similar to such sound units.

From there, we will start looking at larger and larger units organizing sound in human language. Chapter 3 discusses autosegmental theory, which explains how these ‘atoms of language’ can be combined into larger wholes, and Chapter 4 looks into the way in which the primitives and their organization are reflected in the phonetics.

Chapter 5 then explains the evidence for assuming that consonants and vowels (together called *segments*) do not only have an internal structure, but are in turn also organized into larger units, viz. *syllables*, in presumably all languages of the world. If we know the segments of a word, we also know

Chapter 7 goes one step further and discusses how syllables are grouped into metrical feet, which are used among other things for word stress. Chapter 8 then shows that there are even higher levels of phonological organization, leading all the way up to constituents that roughly correspond to the sentence and even the whole utterance.

The last two chapters discuss the way in which phonology relates to other domains. Chapter 9 deals with the relation with morphology, and Chapter 10 discusses several applications: in orthography, in speech recognition and in our understanding of Sign Language.

Every Chapter contains a section with 20 exercises. (Only this first chapter, which is very general, has only 10.) It is very important to try to solve those exercises; there is only one way of learning to do phonology: by doing it. Some of the exercises can be answered by just using the material which is presented in the book, but for others you will need to collect data, online or in other ways. I will always explain where you can find such data. More information can be found in the website which accompanies this book [UNAVAILABLE]. You can also find the answers to the exercises there, as well as a more extended (and updated) version of the reference sections which are at the end of every Chapter, and which you can use if you want to know more about a certain topic.

1.4 Exercises

1. Would the study of the following topics belong to the field of phonology? Discuss. If you think a certain topic is not studied by phonologists, which other field does it belong to?
a) The Hawaiian language has eight consonants: /p, k, ?, h, m, n, l, v/.

b) In French, some adjectives end in a consonant in the feminine, but not in the masculine. (‘Small’ is [ptit] in the feminine, and [pti] in the masculine; ‘good’ is [bon] feminine and [bɔ] masculine).

c) In some cultures, homosexual men speak differently than heterosexual men. It can be shown in experiments that people are sensitive to these differences and can tell above chance level what the sexual orientation of the speaker is.

d) The English [b] sound is much more acoustically similar to the French [p] than to the French [b].

e) There is no language in which every prime numbered syllable starts with a p; furthermore, people cannot learn such a ‘language’.

f) Leaving out a final d or t, as happens in some dialects of English (I kep) is considered incorrect.

g) In some dialects of English, the /r/-sound is not pronounced after some vowels (like in car, mother, more) except if the following word starts with a consonant.

2. For each of the topics mentioned in the previous exercise, explain which kinds of methodology could be applied to shed light on the issues involved.

3. For each of the following strings, decide whether they are existing words of English, possible words, or impossible words: blobber, branjal, rooytkd, trapeal, blistras, topiq. To what extent is your answer determined by whether you take a cognitive or a sociological view of language?

4. Explain the difference between synchrony and diachrony in language. Why does holding a Platonic or a cognitive view of language usually imply more interest in synchronic data?

5. There seems to be an intimate relation between having a Platonic view of language and being interested in formal types of evidence. Explain.

6. Duality of patterning is supposed to be a defining property of human language. Explain why the following systems lack this property:

 a) Programming languages like Java, Python, C++.
 b) Animal communication systems, such as primate calls.
 c) Western classical music.

7. Suppose we want to study the phonology of Sanskrit, an Indo-European language that has been extinct for a long time, but of which we have a lot of written record, like poems and prose. What kinds of methods could we use to study this topic?

8. For each of the major types of evidence in section 1.2 give an example of how they could be applied also to morphology or syntax.

9. ‘All phonological research should be based on data that are acquired through phonetic experimentation.’ Comment.

10. What are the advantages of building a computer model of a theory? Can you also think of disadvantages?
Sources and further reading

Section 1.1 There are currently several other textbooks on phonology in the market; implicitly, they all take a cognitive view on the location of phonology. The most well-known are Gussenhoven and Jacobs (2005), Odden (2005), Hayes (2009). They each have their merits, and in case you somehow struggle with a topic, it can always help to see how somebody else explains it. For more extensive information you can also refer to recent handbooks such as van Oostendorp et al. (2011), Goldsmith (2012), de Lacy (2007).

A general textbook about linguistics is Freidin (2012). Some good syntactic textbooks are Radford et al. (2009), Adger (2003), and a good book on morphology is Lieber (2009). A nice linguistic introduction into phonetics, finally, is Knight (2012).

The Kalkatungu data in this section are from Blake (1969).

Section 1.2 There are unfortunately no general introductions into phonological methodology, describing all the different types of data and data collection, but in the chapters that follow we will see individual cases. A recent book on fieldwork are Sakel and Everett (2012).

The International Phonetic Alphabet (IPA) is maintained by the International Phonetic Association which (among other things) has a chart of all the IPA symbols on its website. The IPA symbols are part of the standard Unicode character set, which implies they can be used on any reasonably modern computer system; how to do that is explained on the website of SIL International.

A phonetic package that is often used is Praat, developed at the University of Amsterdam in The Netherlands by Paul Boersma and David Weenink. Praat is free of charge and available for all major platforms; it is also regularly updated. Next to a popular module for making acoustic measurements, it also contains modules for applying statistic calculations, modelling language acquisition and many other tasks which a computer might want to perform for a phonetician and/or a phonologist.

Section 1.3 Anderson (1985a) gives an authoritative overview of the history of phonology until approximately 1980. Full references to the books mentioned in the main text are Trubetzkoy (1939) and Chomsky and Halle (1968).
Chapter 2

The atoms of language

2.1 Segments

An important activity of linguists is the pursuit of linguistic universals — properties which all languages have in common. The reason for this is quite obvious: if we know what all languages share, we can say that we have clearly discovered something essential about human language. Furthermore, every claim about linguistic universals can be falsified, and we have seen in the previous section that this is a desirable property for any scientific theory.

One universal is that it is possible in all languages to divide the sound stream into a finite set of vowels and consonants, together called segments. The size of this set ranges somewhere between 15 and 150. These are actually two different, but related universals:

(6) a. The sound structure of all languages can be divided into a finite set of segments, \mathcal{S}.

b. In all languages, \mathcal{S} can be subdivided into (complementary) subsets of vowels and consonants.

If you have been trained from an early age in a culture which uses an alphabetic system to write its language, this may sound trivial. This is because people tend to think, even if subconsciously, of written language as primary, and it is obvious that every language can be written using a finite set of letter symbols, and furthermore some are called vowels and others consonants. We might however be misled by this cultural invention to think that there is something real about these distinctions. For this reason, it is always good to be critical and see what evidence we have for the reality of \mathcal{S}.

Evidence from writing systems

On the other hand, the fact that the alphabet can work in this way, and that also languages which use a different system can be transcribed at least in the extended segment set of the International Phonetic Alphabet, is not a triviality, and is itself a piece of evidence.

It would be possible to construct a language in which every morpheme corresponds to its own unique sound: *man* is designated by a sneeze, *woman*
by clapping your hands once, and love by flapping your lips. In such a language a man loves a woman would thus sound as sneeze-flap-clap. Such a language would not necessarily be difficult to produce or to perceive. The fact that no human language has such a lexicon is thus meaningful.

This entails that alphabetic writing is a technology that builds on a structure which seems to be inherent in human language. We have to keep in mind, though, that the relation between sound and letter can be very complex. One and the same sound can be represented with many different letters and letter combinations in a language like English, as truly, do, shoe, soon, true, lawsuit, routine, two, screwed, jewel, manoeuvre, rendezvous, throughout en coups (all have an [u] sound) show. The reason for this often is that spelling does not just represent the current sound structure, but also the history of the language. In other languages (for instance, in Italian) the relation is more one on one.

The difference between consonants and vowels becomes apparent in spelling. There are many examples showing that a sentence without vowels can still be read, whereas a sentence without consonants usually cannot:

(7) a. Mst ppl wll ndrstnd ths sntnc. (Most people will understand this sentence.)

b. U iuay ooy a uea i. (But virtually nobody can understand this.)

Related to this is the finding that when speakers hear the nonsense word [kebra], they are more likely to think of a cobra than of a zebra: the former is one vowel ‘away’ from the word they have just heard, whereas the other is one consonant away. Changing a vowel thus seems to matter less than changing a consonant. (This experiment was done with speakers of Spanish and of Dutch.) Computer-mediated communication, such as texting and Twittering also sometimes uses this technique of leaving out vowels to shorten a message (txtng).

One reason for this asymmetry may be that there are more consonants than vowels (for instance: Italian has 24 consonants and 7 vowels, Arabic has 29 consonants and 3 vowels, Malay has 20 consonants and 5 vowels). Semitic languages such as Hebrew and Arabic use this property: vowels are not usually written in their script, except sometimes in special versions for people learning the language or the script. There are no languages in the world which do the opposite, i.e. which write only the vowels of words but not consonants.

This example thus not only shows that there is a distinction between consonants and vowels, but also that this distinction involves an asymmetry between the two sets.

Semitic templates

Semitic languages also provide another well-known type of evidence for the existence of consonants and vowels. You can see this in the following examples from Modern Hebrew (Semitic, Israel):

(8) gadal ‘to grow’ higdil ‘to enlarge’ gdila ‘growing’
jatak ‘to keep quiet’ hi’tik ‘to quieten’ j’tika ‘silence’
sagar ‘to close’ hisgir ‘to extradite’ sgira ‘closing’
If you study these examples closely, you will observe that the three words in every line have several things in common. This is true both for the meaning and the form. As to the meaning, the first three words are about size, the second set of three about silence, and the third set about being closed. As to the shape, the first three words all contain the consonants g, d, l in that order, the second triple have f, t, k, and the third triple s, g, r.

In Semitic philology, it is usually assumed that these general meanings are indeed attached to the consonants (called *consonantal roots*). If you look further, you will discover that the vowels also have something to add to the meaning. The columns in the table also share certain things (the first column contains simple verbs, the second column contains so-called *causatives* describing how something is made larger, quieter or closer, and the third column has gerunds. It is no accident that the vowels are also the same in each column. We thus get the appropriate meaning of a word by combining the meaning of the consonantal roots with those of the vocalic patterns.

Templates of these type are found in all Semitic languages, but also in unrelated languages such as Yowlumne (Yakuts, North America) and possibly Rotuman (Oceanic).

Psycholinguistic evidence

There is also quite some evidence that consonants and vowels are represented in different parts of the brain. For instance, it has been shown that patients suffering from aphasia (which is a language disorder, usually caused by head injury or a stroke) can sometimes be affected only in the vowels — making more errors producing them or keeping them apart — while other patients have more problems with the consonants.

It has also been suggested that listeners tend to pay much closer attention to variation in the production of vowels than that of consonants. The reason for this might be that variation in vowels is more informative, for instance telling us whether the word is emphasized, what kind of intonation it carries, or even what the emotional state of the speaker is.

Finally, also brain scanning has shown differences between consonants and vowels. In one experiment, changing vowels relative to consonants while a subject in a brain scanner was reading aloud words, increased activation in a right middle temporal area, whereas changing consonants relative to vowels increased activation in a right middle frontal area. There thus is evidence that consonants and vowels might even be physiologically distinct in the human brain.

2.2 Contrast and the feature

Even though we have quite some evidence for their existence, segments are not the ultimate primitives of phonological theory. It is usually assumed that there are smaller building blocks — called *features* — which together somehow form the segment.

We can see these features as instructions for the articulatory organs. Take the French consonant [l]. In order to pronounce this sound, we have among other things to close our lips and to vibrate our vocal folds. These are two
2.2. Contrast and the feature instructions, one to the lips, and one to the vocal folds. These instructions correspond to features, [labial] (labia is Latin for lips) and [voice].

[b] shares these features with [v], but is different from the latter sound because it is pronounced with an explosion. This explosion also corresponds to a feature, [stop]. The consonant [b] therefore is supposed to have roughly the following internal structure:

(9) \[[b] = \{ \text{[stop]}, \text{[labial]}, \text{[voice]}, \ldots \} \]

I put the dots in this representation, because possibly there are other features. However, not every possible movement we make with our lips, or anything else we can observe about the sound counts as a feature. For instance, when pronouncing the [b], a speaker might put her tongue in a certain position — typically somewhere low in the mouth. However, [low] (for a low tongue position) is not assumed to be a feature of [b], even though it is a feature of a vowel such as [a]. The reason for this is that there are other vowels which do not have such a low tongue position, such as [e] or [u].

How do we know which properties get a formal status in the theory as features? We usually assume that only those traits that are linguistically relevant are features. The primary type of linguistic relevance for features is distinctiveness. The feature [voice] is distinctive on French [b], because there is another sound in the language which has exactly the same features, except that it is not voiced. The [p] is labial and plosive, but the vocal folds do not vibrate. On the other hand, [b] is not distinguished from any other sound only by the position of the tongue; French does not have a consonant with closed lips and a tongue in a high position.

The traditional test to decide that two sounds are different is the so called minimal pair test: we construct two words with different meanings which are only different in the sound in question. A relevant minimal pair in French would be:

(10) pont 'bridge' [pɔ̃] : bon 'good' [bɔ̃]

Since the two words have different meanings, the difference between [b] and [p] must have a relevance in French. Since they are only distinguished by voicing, this means that French has a feature [voice]. The ultimate building blocks of French will thus be a small set of these features. (Notice by the way that there are more differences in the orthography, as the word for 'bridge' ends in a t; this is however considered irrelevant for phonology.)

In the remainder of this section, I will briefly discuss some important types of evidence that have been adduced for the existence of the phonological feature.

Phonological activity

One important type of evidence comes from phonological alternations. Consider the following examples from Turkish (Turkic, Turkey), paying particular attention to the final consonant of the stem:
2.2. Contrast and the feature

You can see that the final consonant is different when it appears at the end of
the word (such as in the Nominative) than when it appears before a vowel (as
in the Dative). In the former context we find \{p, t, tS\}; in the latter \{b, d, dZ\}. The difference between these sets is that the latter all have a feature [voice], which the former lack:

(I introduce the features [coronal] and [palatal] here. The former denotes
sounds made with the tip of the tongue at the front of the mouth, the latter
sounds which are made slightly more to the back. We will return to these fea-
tures in the next section.) We can thus draw a generalization over the data in
See Section 2.3

(11) kalip ‘mold’-NOM kalib-a ‘mold’-DAT
kap ‘container’-NOM kab-a ‘container’-DAT
kanat ‘wing’-NOM kanad-a ‘wing’-DAT
tat ‘taste’-NOM tad-a ‘taste’-DAT
güve[s] ‘clay pot’-NOM güve[d3]-e ‘clay pot’-DAT

tou can see that the final consonant is different when it appears at the end of
the word (such as in the Nominative) than when it appears before a vowel (as
in the Dative). In the former context we find \{p, t, tS\}; in the latter \{b, d, dZ\}. The difference between these sets is that the latter all have a feature [voice], which the former lack:

(12) [p] [labial], [stop] [b] [labial], [stop], [voice]
 [t] [coronal], [stop] [d] [coronal], [stop], [voice]
 [tS] [palatal], [stop] [dS] [palatal], [stop], [voice]

(13) When the Dative has features F ____, F ____, . . . , F ____, as the last segment of the
stem, the Nominative has features F ____, F ____, . . . , F ____, except for [voice].

This is not only more elegant than simply stating for every word what the two
forms are, but also than stating that words which have [b] in the Dative, get
[p] in the Nominative, while those with a [d] get a [t].

Interestingly, consonants such as \{m, n, r, . . .\} (called sonorants) do not par-
ticipate in this kind of alternation:

(14) adam ‘man’-NOM adama-a ‘man’-DAT
 tavan ‘ceiling’-NOM tavan-a ‘ceiling’-DAT
 zar ‘die’-NOM zar-a ‘die’-DAT

From a phonetic point of view these sonorant sounds are voiced in Turkish,
just as they are in English and many other languages of the world. There are
no counterparts which are not voiced, and in particular there their voicing
they are not voiced. Given the logic just explains, this means that in the phon-
ology these sounds would not have a feature [voice]. This explains why they
do not participate in this asymmetry: F ____F ____ is the same in the Nominative
as in the Dative.

Symmetry of inventories

Another argument in favour of seeing features as the building blocks, is that
we predict that inventories of segments tend to be symmetric, and this is in-
deed what we find.

Suppose that the consonant inventory of a language consists of the features
[labial], [stop] and [nasal]. You can check that these features can be combined
in 6 different ways, if we also allow a consonant without any features, but assume that the combination of [stop] and [nasal] is not allowed. This describes almost exactly the consonant inventory of Hawaiian:

(15) Hawaiian (Polynesian, Hawai‘i)

<table>
<thead>
<tr>
<th></th>
<th>labial</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>k</td>
<td>[stop]</td>
</tr>
<tr>
<td>m</td>
<td>n</td>
<td>[nasal]</td>
</tr>
<tr>
<td>w</td>
<td>l</td>
<td></td>
</tr>
</tbody>
</table>

We thus have a very regular pattern: two stops, two nasals, and two non-stop, non-nasal consonants. And within each of these pairs, one is labial whereas the other is not. This regularity is very nicely described with features. What is more, it is extremely common for languages to have their consonant inventory described in such a regular way.

Hawaiian has two further consonants ([p̃] and [h]) which do not fit into this pattern. That is also a very common property of languages: there is a tendency towards symmetry, but this is rarely absolute. There will be some gaps in the table or some sounds which do not really seem to fit.

Any theory will have to be able to take into account both of these factors: that there is a universal tendency towards having a symmetric inventory of sounds, and that very few languages have an inventory that is absolutely symmetric. One way to do it is to assume that the ‘sound grammar’ of languages consist of a set of features plus rules about how these features can be combined — one rule which is necessary for Hawaiian is that [stop] and [nasal] cannot occur together in a segment, as we have seen.

Language acquisition

Features may also play a role in language acquisition: there is evidence that children acquire features rather than segments. Young children (roughly in their first year) acquire the individual sounds of their language. This process is very complicated, and I cannot go into it in full detail here. But roughly, after a first stage in which they produce all kinds of sounds and learn to say a few words like *mummy*, which do not yet seem to be analysed in segments, let alone in features, they start building up the system. And they seem to use features to do so.

Typically, a French-speaking child, for instance may at some point have acquired the consonants *p*, *t* and *k*. These are all three voiceless stops, and they only differ from each other because the first is [labial], the second [coronal] and the third [velar] (pronounced with the back of the tongue). These will then be the only features which the child has acquired.

A next step might be that she acquires the feature [voice]. Our prediction is then that she will be able to combine this new feature with the ones she already has. In other words, that she will acquire *b*, *d* and *g* at more or less the same time. Similarly, at some point she will learn *m*, *n* and *ŋ* at the same time, since these require combining a new feature [nasal] with the features that are already in place.

Just like with the preceding evidence, feature theory alone does not make a perfect prediction. Children each follow their individual path and are in-
fluenced by all kinds of other factors, such as how often they hear a sound (a child called Robin might be quicker in learning the [r] sound). But features do play an important organizing role in the acquisitional path.

Speech errors

Speech errors also provide a possible source of evidence. While we are speaking, we constantly make small mistakes. We usually do not really notice them, even when we quickly correct them — and the latter does not seem to happen very often either. By studying them carefully, however, we may learn many things about phonological structure.

Phonologists have observed, for instance, that errors often involve exchanging two consonants or vowels in a word or word group:

(16) a. *fish grotto* → *frish gotto*
b. *fresh clear water* → *flesh queer water*
c. *brake fluid* → *blake fruid*
d. *add hoc* → *odd hack*
e. *fish and tackle* → *fash and tickle*

In the examples in (16a)-(16c), two consonants have changed position; the same has happened to vowels in (16d)-(16e). Interestingly, it appears very difficult, if at all possible, to find examples where a vowel has changed positions with a consonant. This is a new indication that vowels and consonants somehow exist in different dimensions, at least in their representation in the human brain.

These data also give evidence that segments can indeed sometimes be isolated: in (16a) it isn’t the whole consonantal group *gr* that is pronounced in the wrong position — although such errors do also exist — but just the [r]. In order to make such a mistake, the speaker must thus be able to somehow separate this sound from the others.

Also individual features can sometimes move around within a word. I have a colleague whose child insisted that she wanted to eat *skabetti*. If you analyse this and compare it to the intended *spaghetti*, you will observe that the place in the mouth in which the first two plosives are pronounced have been interchanged. However, the first obstruent is still voiceless ([k], not [g]) and the second one voiced ([b], not [p]).

This type of child language behaviour may strictly speaking not count as a speech error, but we find similar mistakes also in ‘real’ speech errors of adults:

(17) a. *Cedars of Lebanon* → *Cedars of Lemadon*
b. *pity the new teacher* → *mity the due teacher*

2.3 A universal feature set

We have thus seen that there is quite some evidence that segments are not the smallest possible units of linguistic analysis, but that they can be further decomposed in terms of features. We have also mentioned some of these features’ [stop], [nasal], [labial] and a few others.
One could ask many questions about the status of these phonological features. Do all languages employ the same set — or at least a selection out of this same universal set? Or do they each make up their own features? And what properties of sounds do they refer to? For instance, the feature label [labial], which we have used so far, refers to a certain articulatory gesture which speakers make when producing the sound: they move their lips. This is the view which we will entertain here and in most of this book.

There are logically speaking at least two alternative possibilities. The first is that features do not refer to articulatory properties, but rather to acoustic or perceptual ones, e.g. the effect which the sound has on the speech signal. This view is entertained also by many phonologists. We will briefly discuss one phonological theory in which this point of view is entertained in section 2.4 below.

The third possibility is that phonological features have no relation to the phonetic shape of sounds at all. This would probably mean that they are purely abstract; they would have the shape [α], [β], etc. Although this position is also preferred by phonologists, even those people who accept prefer abstract labels in their actual analysis usually use phonetically motivated ones. The reason for this is that they usually do the job rather well, and furthermore are easier to keep apart in an analysis which uses many different features.

I thus here will present a version of articulatory-based feature theory. Even here there is a lot of variation in terminology. I have chosen the labels which I believe are most common, but it is unavoidable that you will sometimes encounter in papers labels which are slightly different from the ones here. Using a dictionary or a phonetic lexicon will then usually help out.

The feature set is divided into a number of subsets which each describe the properties of sounds. We will discuss these sets in turn on the following pages.

Manner features

The first set of features describes the general way in which sounds are formed. These are called manner features or also major class features. We have seen one of those above, [stop], which denotes sounds that are produced with a temporary obstruction at some point in the vocal tract, and a subsequent burst when the outgoing airstream is released. Examples of stops (also called plosives) in English are [t, k, p, d, g] and [b].

Fricatives are sounds which are pronounced with slightly less obstruction. The result of this is that the outgoing airstream whirls and makes a fricated noise. Fricatives and plosives together are called obstruents. Fricatives are different from plosives in that the former carry the feature [continuant].

All consonants which are not obstruents are called sonorants (and their feature is [sonorant]). In sonorants, the lips and tongue make even less obstruction, so that the air can stream out of the lungs in a way that is more or less unimpeded.

The first class of sonorants are nasals such as m and n. In these, there still is some obstruction in the oral tract, but the airstream can escape through the nose. (You can check this by putting a little mirror under your nose while speaking; if you say a p, b or f, nothing happens. But when you pronounce an
there will be some condensation on the mirror. This is the air that came out of your nose. Nasals unsurprisingly have the feature \textit{[nasal]}.

The next class of sonorant consonants are the \textit{liquids}, typically \textit{r} and \textit{l} (and in some languages also some other variants). In liquids, the stream goes really out of the mouth, but is deformed by the position of the tongue or, sometimes, the lips or the uvula. \textit{R}-like sounds are distinguished from \textit{l}-like sounds in that the former carry the feature \textit{[rhotic]} and the latter \textit{[lateral]}.

The final class of sonorants are the \textit{glides}, such as English \textit{[j}, \textit{w}]. These are the consonants that are closest to the vowels. As a matter of fact, \textit{[j]} is pronounced as a \textit{[i]}, and \textit{[w]} as an \textit{[u]}. The main difference is that the former are substantially shorter than the latter. It is often assumed that glides and vowels therefore have the same feature specification: they share the feature \textit{[vocalic]} (in contrast to all the other sounds we mentioned, which are assumed to carry \textit{[consonantal]}).

There are several other manners of articulation of sounds, which English does not employ. For instance, some languages use \textit{ingressive sounds}, which are produced while the air streams into the lungs rather than outside. Another different type of producing sounds is instantiated by \textit{clicks}, which we found in languages of Southern Africa (and which become known because of Miriam Makeba’s \textit{[click song]}). These sounds are made not by air streaming in or out of the lungs but by sucking the tongue or lips and releasing them with a little explosion.

As we will see in chapter \textit{[manner features are very useful in describing how vowels and consonants can be arranged in a word. For instance, an English word cannot start with a liquid followed by a plosive (*\textit{rtee}, *\textit{lpate}), although these clusters are allowed in reversed order (\textit{tree}, \textit{plate}). Many languages — although not all — have restrictions of these type, which often refer to the manner of articulation.

Consonantal place features

The next set of features denote the place of articulation: the place in the vocal tract where there is a constriction of the airstream in the case of obstruents, or where the airstream is deformed, in the case of sonorants.

The left-right dimension in the mouth does not play a role in any phonology: it does not matter whether you put your tongue to the left or to the right for instance, most likely because that difference is not audible. All relevant differences are placed in a line from the front of the mouth to the back of the throat, usually represented in a picture like this:
Ten different places of articulation in the world have been distinguished in this picture. In particular within a very fine-grained phonetic analysis one might be able to distinguish between more, but these are definitely the most important ones. We will briefly discuss each of them in turn.

The first of these are the **labial** sounds, which are pronounced with (or at) the lips (labia is the Latin word for lips). Examples of these in English are *p, b, m* and *f*. The first three of these are **bilabial**: they are made by closing both lips (bi- means ‘two’); the fricative however is **labiodental**: it is pronounced with the upper teeth on the lower lip.

The second broad class of sounds are called **coronal**: the corona is the small ridges just behind the teeth, and these sounds are pronounced around that area. Sounds which are made on the ridge are called **alveolar**; examples are [*z, s, n*] in English, but the language also has sounds which are pronounced with the tip of the tongue at the teeth, such as *[θ, ð]* (the initial sounds of *these* and *thing* respectively.

Putting the tongue a little bit further down the palate (but still on the hard palate), one produces **palatal** sounds. English *[ʃ]* (as in *she*) can be seen as an example.

One step further down the vocal tract, we find a class of sounds which are pronounced with the back of the tongue (the **dorsum**) at the soft palate (the **velum**). These sounds (such as *k, g*) are therefore called **velar** or alternatively **dorsal**.

At the far back of the mouth we find the uvula; some languages have sounds which are made here, and which are logically called **uvular** sounds. The French pronunciation of *r* ([ʁ]) is one of them. Within the throat we then find various sounds which are more exotic to the native speaker of English. Many language in Northern Africa have **pharyngeal** consonants, like the *[ʕ]* in Somali (Cushitic, Somalia). **Epiglottic** sounds like the plosive *[ʔ]* are found in Dahalo (Cushitic, Kenya). (It is unclear whether in the phonology we ever need to really distinguish between these two classes of sounds.)

Lowest down in the throat (at least as the production of sounds is concerned) is the glottis. We obviously use the vocal folds for every sound that is voiced, but the only consonant we call glottal is the **glottal stop** *[ʔ]*, which
2.3. A universal feature set

you can hear, for instance, Cockney English (the traditional dialect of London City) when it replaces other stops ([stɔʔ] instead of [stɔp]). Also h is sometimes seen as a glottal sound.

In a theory of features, each of these places can be seen as a phonological feature, so that we have [labial], [coronal], [velar], [pharyngeal], etc.

Laryngeal features

Every consonant by necessity needs to have a manner and a place. You can therefore safely assume that every consonant has at least two features. Next to this, a consonant can optionally have some other features.

An important class among these are the laryngeal features. We already mentioned above that there is a difference between for instance a voiced b and a voiceless p can be expressed by assuming that the former has a feature [voice] which is missing in the latter.

Many languages have these kinds of pairs (b-p, d-t, g-k, v-f, z-s, D-T, G-x, etc.) Some languages also have triples. Korean (isolate, Korea) is probably the most well-known example of this. Here are some minimal triples:

(19) bang ‘bread’ pang ‘room’ phang ‘bang’
dal ‘daughter’ tal ‘moon’ thi ‘mask’
gæta ‘to break’ kæta ‘to fold up’ khæta ‘to dig’
[voice] [spread glottis]

The consonants in the righthand column are aspirated, and they therefore receive a feature [spread glottis]. (Notice that the initial plosives in English words such as poet, taste and castle are also aspirated; but there are no minimal pairs between aspirated and non-aspirated plosives in English.)

Vocalic features

We can now turn to vowels. Just like we can distinguish between two major groups of consonantal features — manner and place of articulation —, we can also also distinguish two types of vocalic features: those of aperture and those of place.

Aperture

Aperture features describe the degree of opening of the jaw. Although there have been claims of languages showing four or even more degrees of opening, it is commonly assumed that most languages have three such degrees, and these are usually formalised with two features, [high] and [low]. We then get the following tripartition (the following might describe the five vowel system of Spanish or Greek):

(20) a. High vowels like [i] and [u] have the feature [high]
b. Mid vowels like [ɛ] and [ɔ] do not have an aperture feature
c. Low vowels like [a] have the feature [low]
The idea is that no vowel can have the features [high] and [low] at the same time, since these give opposite instructions to the tongue. In this way, we can thus derive a three-way distinction with two features.

Another feature which is sometimes also considered ‘aperture’ is [ATR], for Advanced Tongue Root, describing a movement for the back of the tongue. This feature is very often used to describe the difference between e.g. [e] and [ɛ] or between [o] and [ɔ] in Bantu languages (the first of these pairs have [ATR], but the second does not). The similar vowels in English are also sometimes described in this way, although it is more difficult to detect actual movement of the tongue root on these vowels.

Vocalic place

Like for consonants, the most important articulators for vowels are the lips and the front and the back of the tongue. I adopt a tradition in which the places of articulation is expressed by the same features (with the same names) as those of consonants. There are many other names for these features, and I will mention some of them here as well; however, in the other chapters of this book, I will only use the feature names mentioned first here.

The three main places of articulation for vowels, then are [labial], [coronal] and [velar]. I will discuss these in turn.

Labial vowels are also called round (in which the feature might also be [round]). One difference with consonants is that it is not unusual for vowels to carry more than one feature. In particular, lip rounding can go together with some movement of the tongue. For acoustic reasons, this usually is the back of the tongue: raising that back has a similar effect on the sound of the vowel as rounding the lips. Examples of [labial, velar] vowels are [u] and [o] of which in particular the first ([labial, velar, high]) is extremely common in languages of the world.

The combination [labial, coronal] is much rarer. French [y] (the vowel in tu ‘you’) is an example, but English does not does have this vowel — although some modern varieties of British English come rather close to it in their pronunciation of [u] (as in you [jy]). The reason why this type of sound is presumably rarer is that raising the front part of the tongue has an acoustic effect which is very different from that of rounding the lips. While tongue and lips thus reinforce each other when pronouncing [u], they give partially conflicting signals when pronouncing [y]. Under these circumstances, the former vowel has a better chance of survival than the latter.

A vowel which has only [coronal] are the so-called front vowels ([front]). Examples of these are [i] ([high, coronal]), [ɛ] ([coronal] without aperture specification) and [æ] ([coronal, low]). When they are not also labial, these sounds tend to be produced with spread lips.

Back vowels, on the other hand, have the feature [velar], which tends to cooccur with [labial] for the acoustic reasons just explained. Most English back vowels are also labial (we already mentioned [u, o]). Only the low vowel [a] is not round — which may have something to do with the fact that low vowels are pronounced with a rather wide opening of the jaw, which makes it difficult to round the lips at the same time. [a] can thus be specified as [vocalic, low, velar].
Vowels can also be placeless, i.e. missing all three of [labial], [coronal], [velar]. The most well-known of these placeless vowels is schwa, the vowel in the second syllable of better. Its IPA symbol is [ə]. There is also (at least) one high placeless vowel, [i], and a low placeless vowel, [a].

Vowels are sometimes also differentiated according to the pitch with which they are pronounced. For instance, Yoruba (Niger-Congo, Nigeria/Benin/Togo) has a minimal pair such as the following:

(21) ọ́wọ́ ‘honour’ - ọ̀wọ̀ ‘group’

The grave accent (à) denotes a relatively low tone, while the acute accent denotes a high tone. The word for honour and group are thus differentiated only by these tones, which can be modeled by the features [high] and [low].

The final vocalic feature I want to mention is again shared with consonants: [nasal]. For vowels, it surfaces in languages like Saraiki (Indo-European; Pakistan, India, Afghanistan), which contrast nasal from oral vowels, as the following (near-)minimal pair shows:

(22) a. [aːvi] ‘forge for preparing bricks’
 b. [aːɾiː] ‘you should come/do come’

Nasalisation is indicated by a tilde on top of the vowel. In (22b), also the approximant consonant [v] is nasalised. Languages which have nasal vowels also always have nasal consonants. Furthermore, the nasality of vowels is often shared with adjacent consonants.

Monovalence and markedness

Finally, here is a word of warning. There are two interpretations of phonological features. Here I have presented an interpretation of features as privative: high vowels have the feature [high], but non-high vowels do not. When you go on to study phonology articles, you will discover that some authors have a different interpretation. For them, all segments have all features, but with different values, usually denoted by + and − signs. Under such an interpretation, high vowels have a feature [+high] and non-high vowels have a feature [−high]. This interpretation of features is called binary for obvious reasons.

To a large extent, these two different notations are obviously equivalent. But there are some differences as well. One reason why I prefer the privative notation is that it expresses more clearly that the two ‘values’ of a feature are not symmetric. A non-nasal vowel is in several ways simpler than a nasal one. All languages have oral vowels, but not many have no oral ones. Furthermore, even if a language does allow for nasal vowels, their occurrence is much more heavily restricted than that of oral vowels. For instance, they can only occur next to nasal consonants, as in the Saraiki example in (22b). Such properties together are summarised by phonologists in saying that nasal vowels are more marked than oral vowels.

Such asymmetries are better expressed in a theory in which nasal vowels have an extra feature which is absent in oral vowels. The former are literally more complex in our representations, which correspond to their being treated as more ‘difficult’ in human language. In a theory with binary features, there
is no formal difference: a nasal vowel is [+nasal] and an oral vowel is [−nasal], which means that they are equally complex.

2.4 An alternative: Element Theory

The aim of this book is to introduce you to the most important ideas in the mainstream of present-day theoretical phonology. As in any field of research, there is however no absolute uniformity on every point; to the contrary, many points of the theory are still very much debated, and every assumption is questioned from time to time — as it should be.

It is therefore useful to consider an alternative approach to some of the assumptions underlying the work of previous weeks. This is so-called Element Theory, a theory which assumes primitive elements that are similar to, but not exactly the same as the features we have seen. They are also not called ‘phonological features’, but phonological elements instead.

An important difference between elements and features is that the latter cannot be pronounced. A feature such as [labial] does not correspond to any single acoustic or articulatory event in isolation; we always need to build a segment with many other features in order to produce it. Elements on the other hand, can be independently pronounced.

Most vowels in the world’s languages, for instance, will consist of the elements |A|, |I| and |U| in some constellation. (We will concentrate in this section on the phonology of vowels, because this is what a large amount of work within this framework has been devoted to; this is not to say that the theory has not been applied to consonants as well, however.) Elements are usually spelled with a capital letter, and they are placed between || brackets in order to distinguish them from features and phonological or phonetic strings of segments. Each of these elements can be pronounced in isolation:

| 23 | a. | |A| is pronounced as [a]
 b. | |I| is pronounced as [i]
 c. | |U| is pronounced as [u] |

Other vowels can be analysed as a combination of one or more of these basic, most primitive elements — it is of course not a coincidence that these correspond to the three angles of the vowel triangle:

| 24 | y
 e
 a |

The vowel triangle is a graphic representation of a vowel set in languages of the world. The triangle can be seen as an abstract graphic representation of the mouth, with the lips on the right-hand side and the back of the mouth on the left-hand side. (The vowel triangle also represents acoustic properties of these vowels; see the section on Further Reading on page .
Vowel systems tend to have this triangular shape. If a language has only three vowels (such as Classical Arabic), these will be typically [i, u, a]. If it has five, the set will be [i, u, a, e, o], and in this way the vowel triangle gets more densely filled the more vowels we have.

This property is represented rather nicely in an element system. The three quasi-universal vowels are the angles of the triangle, and other vowels consist of combinations of these ‘cardinal vowels’. For instance, in a typical five vowel system we will have the following combinations.

(25) a. The combination |A| • |I| (or |I| • |A|) is pronounced as [e]

b. The combination |A| • |U| (or |U| • |A|) is pronounced as [o]

The order in which we present the combinations of features is of course irrelevant: it does not matter whether we write |X| • |Y| or |Y| • |X|, since both refer to the same phonological representation.

The combination |U| • |I| will be typically pronounced as [y], and the mid front rounded vowel [ø] would consist of the combination |U| • |I| • |A|.

The system is built on the typological observation that three vowel systems usually occupy the three corners of the vowel triangle. All other vowels are typologically more ‘marked’: they exist in fewer languages.

This observation cannot be expressed directly in a theory which uses features. It is not part of the formal system of ordinary feature theory that [high, front] vowels ([i]) are much more frequent than [front, low] vowels ([æ]). This is something which just needs to be stipulated, or derived from the phonetic difficulty to pronounce the latter type of vowels. Within Element Theory, the issue becomes clear from just looking at the different representations of the two types of vowels, and the theory therefore seems more restrictive.

Notice, on the other hand, that Element Theory does not provide us with an answer to the question why [e] and [o] are typologically much more frequent than [y], and why the latter often behaves as a more marked vowel in languages which have it.

A popular metaphor of elements in the phonological literature is that of colours. We only need the three primary colours red, yellow, and blue (or red, green and blue) to produce all other colours by mixing them in the appropriate quantities. In the same way, we can derive (almost) all vowels from the three elements.

The vowel system of Dutch

At first sight, Element Theory might seem obviously too restrictive. Given three elements, we can only derive six vowels — the ones we have just mentioned. But many languages have many more vowels. For instance, Dutch has 13 vowels (not counting three diphthongs and some vowels which only occur in loanwords):

(26) i, y, u, e, ø, o, a, i, e, œ, ə, a, ø

We cannot go into all the complications of the Dutch vowel system, but we can illustrate some of the strategies within Element Theory. In the first place, in
our colour analogy, we mentioned that we can mix colours in the appropriate quantities.

For phonological elements, we can express this by introducing the notion headedness. When we combine two linguistic elements — two words in a syntactic phrase, two morphemes in a word, two syllables in a stressed unit, etc. — we can always give a special status to one of them: this one is the head.

We can now extend this idea to phonological elements: if we combine them, we can assign the head status to one of the two. This doubles our representational possibilities. If we have a combination of two elements \(X \bullet Y\), we can distinguish between \(X \bullet Y\) and \(X \bullet Y\), where the underlining denotes the headedness. Thus we get the following distinctions within the realm of mid vowels:

\[
\begin{align*}
\text{(27) a.} & \quad \text{The combination } |A| \bullet |I| \text{ is pronounced as } [e] \\
\text{b.} & \quad \text{The combination } |A| \bullet |I| \text{ is pronounced as } [e] \\
\text{c.} & \quad \text{The combination } |A| \bullet |U| \text{ is pronounced as } [o] \\
\text{d.} & \quad \text{The combination } |A| \bullet |U| \text{ is pronounced as } [o]
\end{align*}
\]

The phonetic interpretation of headedness might appear obvious: \([e]\) and \([o]\) are lower than their counterparts, therefore they are more \(|A|\)-like, and they have this element as their head. The head of a segment thus is the one which has the strongest influence on the phonetic result.

The result obtained so far works very nicely for the many languages which have a seven-vowel system: they usually have the four vowels in (27), next to the three primary vowels of course. We are then still assuming a system in which \(|I|\) and \(|U|\) cannot be easily combined; notice, by the way that Swedish is a language which distinguishes between two front rounded vowels, and thus features a headedness distinction in \(|I| \bullet |U|\) combinations.

However, this is certainly not sufficient for Dutch, since this language still has almost twice as many as seven vowels. A solution here comes from the study of one of these, the schwa ([o]). This vowel is hard to describe in terms of the elements we have seen so far: it is the central vowel, right in the center of the vowel triangle and from an articulatory point of view it is 'targetless': it does not seem to involve the active use of any specific supralaryngeal articulatory organ.

Although we should be very careful in introducing new phonological elements — because that would run against the spirit of the program, which requires us to be as restrictive as possible — the special behaviour of schwa seems to warrant the introduction of a new element, \(|\@|\) (the @ sign is sometimes used as an alternative to ‘@’ in cases where the latter is not available, e.g. when using a computer that does not yet have the option of representing phonetic letters).

\(|\@|\) is special because it is targetless, and therefore it does not have any effect on the realisation of the vowel.

\[
\begin{align*}
\text{(28) a.} & \quad |A| \bullet |\@| = |A| \\
\text{b.} & \quad |I| \bullet |\@| = |I| \\
\text{c.} & \quad |I| \bullet |A| \bullet |\@| = |I| \bullet |A|
\end{align*}
\]
d. ...

In this sense, it then behaves like 1 in multiplication or 0 in addition (the technical term in mathematics is identity element):

\[
\begin{array}{c|c}
1 \times 1 & 1 + 0 = 1 \\
2 \times 1 & 2 + 0 = 2 \\
\vdots & \vdots \\
n \times 1 & n + 0 = n
\end{array}
\]

Addition of the schwa in this way at first sight does not make our system much more powerful, but there is one escape hatch: it may be possible to extend the notion of headedness also to structures with a schwa. If schwa is the head of a combination, it does have influence on the interpretation: it centralizes it, it draws it into the inside of the vowel triangle. This seems to give a proper description of the difference between e.g. [i] and [i] or [a] and [a].

We can now give the following matrix of possibilities:

\[
\begin{array}{cccccccc}
|A| & [a] & |I| & [i] & |U| & [u] \\
|A| & [a] & |I| & [i] & |U| & [u] & \times \\
|A| & [a] & |I| & [i] & |U| & [u] & \times \\
|A| & [a] & |I| & [i] & |U| & [u] & \times \\
|A| & [a] & |I| & [i] & |U| & [u] & \times \\
|A| & [a] & |I| & [i] & |U| & [u] & \times \\
|A| & [a] & |I| & [i] & |U| & [u] & \times \\
|A| & [a] & |I| & [i] & |U| & [u] & \times \\
|A| & [a] & |I| & [i] & |U| & [u] & \times \\
|A| & [a] & |I| & [i] & |U| & [u] & \times \\
|A| & [a] & |I| & [i] & |U| & [u] & \times \\
|A| & [a] & |I| & [i] & |U| & [u] & \times \\
|A| & [a] & |I| & [i] & |U| & [u] & \times \\
|A| & [a] & |I| & [i] & |U| & [u] & \times \\
|A| & [a] & |I| & [i] & |U| & [u] & \times \\
|A| & [a] & |I| & [i] & |U| & [u] & \times \\
|A| & [a] & |I| & [i] & |U| & [u] & \times \\
|A| & [a] & |I| & [i] & |U| & [u] & \times \\
|A| & [a] & |I| & [i] & |U| & [u] & \times \\
|A| & [a] & |I| & [i] & |U| & [u] & \times \\
|A| & [a] & |I| & [i] & |U| & [u] & \times \\
|A| & [a] & |I| & [i] & |U| & [u] & \times \\
|A| & [a] & |I| & [i] & |U| & [u] & \times \\
\end{array}
\]

The crosses \(\times \) in this table denote segments which could be produced given the combinatory rules but for which we do not have evidence for in the Dutch system (note that we have rather arbitrarily assigned the head status in some combinations of elements). We could try to find some reason for why certain combinations are lacking — maybe there is some reason why \(|U| \) always needs to be a head when it combines with \(|I| \), or why \(|@| \) does not seem to be the head in complex expressions (except, strikingly, the most complex one of all: \(|I| \times |U| \times |A| \times |@| \)).

Be this as it may, we still predict 20 possibilities by the formal system alone, while we find only 13. However, if we compare this to a standard feature theory of the same inventory, this fares relatively well. Within such an analysis, we would need at least the following five features for Dutch: [back], [round], [ATR], [high], [low]. Since all these features are binary, we have \(2^5 = 32 \) logical possibilities. The element model thus gives a tighter fit to the data.

Vowel reduction

In many languages of the world, there is an interesting difference between stressed and unstressed positions of the word: in stressed positions we usually find a larger number of phonological contrast, which is reduced in unstressed position. In Belorussian (Indo-European, Belorussia), we find [i, u, e, o, a] in stressed syllables, but only [i, u, a] in unstressed position. This distributional preference is also responsible for alternations: if an /o/ or /e/ ends up in an unstressed position, it will be reduced to [a]:

\[
\text{Vowel reduction}
\]
This type of reduction can be called ‘centrifugal’: the vowels move to the corners of the vowel triangle when they do not carry stress. It can be opposed to centripetal vowel reduction, in which all the vowels seem to move to the center of the vowel triangle in exactly the same types of positions. An example is (informal) Dutch, in which any kind of unstressed vowel can be reduced to schwa — the difference with Belorussian is that the process is optional in Dutch, but that is immaterial to our present discussion.

The distinction between ‘centrifugal’ and ‘centripetal’ is not very strong in natural language. Some languages show both processes. For instance, Catalan /e, u/ reduce centripetally to [a], whereas /i, o/ reduce centrifugally to [u] (and /i, u/ do not reduce at all):

How can we understand these processes, and the fact that together they seem to give a fairly complete catalogue of vowel reduction phenomena in languages of the world? Within Element Theory it is very easy to see what is going on. All reduction processes are an instance of the following:

An unstressed vowel is not allowed to carry more than one element; delete elements if necessary.
2.5 Exercises

Centrifugal reduction now leads to one of the primary elements \(I, U, A \); centripetal reduction leads to \(@ \). Notice that we still need to build an asymmetry into our system: \(/i, a, u/ \) may reduce in some languages to \([a] \), but \(/a/ \) will never reduce to any other vowel, not even a simple one. This should of course have some relation to the fact that \([a] \) is the ‘identity element’. The fact that \(|F| = |F| \cdot @ \) means that in some sense \(@ \) is part of all vowels, but inversely, none of the primary vowel elements are part of \([a] \). Also in this sense, then, \(@ \) behaves like the mathematical zero. The fact that schwa is the targetless vowel makes it the one which carries the smallest amount of information — hardly any at all.

Feature theory has many other virtues, and is therefore an important topic for any student of phonology. We will continue to use this theory, rather than Element Theory, as the background for the following classes. It is important, however, to realize, that fruitful alternatives exist to many of our key assumptions.

2.5 Exercises

1. To make phonological exercises in this and following chapters, it is important to install a (Unicode) keyboard on your computer. On the page of SIL you can find an explanation how to do this for the computer system you are using. Go to this page and install a phonetic font. Then type the following: \([\text{DIz Iz @n EgzAmp@l}] \).

2. In the 19th Century, the French music teacher François Sudre divised a language which had only seven distinct sounds: \(\text{do, re, mi, fa, sol, la, si} \). Such a language has obviously many advantages, for instance because you can also play words on a musical instrument. Mention some disadvantages to organizing sounds in this way.

3. The vowel \([i] \) may have a slightly different set of vowels in a language which only has the three vowels \{i, a, u \} than in a language which has the five vowels \{i, e, a, o, u \}. Explain.

4. Consider the vowels of Turkish: \{i, o, ø, u, y, e, ı \}. Display these vowels in a table which shows how you can the set in terms of features.

5. Now do the same exercise in terms of elements.

6. Consider once more the speech errors in (17). Describe exactly which features have been moved from one consonant to the other.

7. For each of the following segments, give a full feature specification: \[f, h, j, ð, p, v, y, a, e \]. (Look the sounds up in an IPA table if you do not know them.)

8. For each of the following feature combinations, give a corresponding IPA symbol.
 a) [consonant, sonorant, labial, nasal]
 b) [consonant, sonorant, coronal, lateral]
 c) [consonant, fricative, coronal, dental, voice]
 d) [consonant, stop, coronal, dental, voice]
 e) [vowel, coronal, high]
 f) [vowel]

9. For each of the following sets of sounds, describe what feature(s) they have in common:
2.5. Exercises

a) [b, d, v, β, z, ɡ]
b) [m, n, ã, ŋ, ɹ]
c) [o, u, y, ɹ, ɹ]
d) [b, m, f, p, n]
e) [m, r, l, r, ɹ, ʃ]
f) [i, a, u, y, e]

10. The prefix in- in English has several different forms. Before a plosive it takes the following shapes:
 a) [n]active
 b) [n]decisive
 c) [n]secure
 d) [n]popular
 e) [n]balance
 f) [n]coherent

 Describe what happens in terms of features.

11. An interesting way of studying the articulation of speech sounds is the ultrasound technique, which is relatively non-intrusive and allows us to see the movements of the tongue. Speech scientists at the University of Glasgow set up a [YouTube Channel] which represents many different sounds. You might be able to find more clips elsewhere. Study a clip for a dental, alveolar, palatal, velar and uvular fricative. Make a still — a non-moving picture — at the moment in which each of these is pronounced, and show how you can indeed see the different places of articulation as described in this chapter.

12. Take the consonant inventory of a random language of your choice that has not been described in this chapter (for instance, your native language, or some other language you might be working on). Describe this inventory in terms of the features we have seen so far. Do you find any segments which need features that we have not yet introduced?

13. Japanese speakers who learn French sometimes replace the [y] sound of the language, by the sequence [ju]. Explain why this might be the case.

14. In the text (p. 2.4) it is suggested that the Dutch vowel system would be more difficult to describe with binary features. Work out such an analysis, and show how it is more complicated than the one in terms of elements.

15. Give an analysis of Belorussian vowel reduction in terms of binary features rather than elements.

16. Data in some typological databases, such as UPSID, suggest that (almost) all languages have voiceless plosives, whereas a much smaller number have voiced plosives. Discuss how this gives evidence for privative features.

17. What is the simplest vowel according to feature theory? What about Element Theory? What kinds of evidence would you explore to see whether such hypotheses are justified?

18. Lakhota (Siouan, North America) has five oral vowels ([i, e, a, o, u]) and three nasal vowels ([ĩ, ã, ų]). Explain why we would not expect a language which would have a distribution the other way around (five nasal vowels and three oral vowels) given markedness theory.
19. The online edition of the **WALS** (World Atlas of Language Structures) has, among other things, a chapter on front rounded vowels written by Ian Maddieson. On the map in this chapter, you can see that front rounded vowels are very rare in languages of the world. Further, Maddieson distinguishes between two types of front rounded vowels, mid and low. Element Theory and Feature Theory make slightly different predictions about which of these two should be more frequent. Do these data provide any evidence for either of these theories?

20. The **UPSID** database (UCLA Phonological Segment Inventory Database) contains overviews of the segments of several hundreds of languages. Find in this database, languages which have:
 a) [p]
 b) [y]
 c) [d]
 d) [u]
 e) [I]

Sources and further reading

Section 2.1 Many examples about the relevance of orthography to phonology are taken from Coulmas (2003). More discussion about the difference between consonants and vowels from a psycholinguistic point of view can be found in Bonatti et al. (2005). The brain scanning data about the same topic is found in Carreiras and Price (2008). Several scholars have been important for introducing the relevance of Semitic (and other) templates into phonological theory. Very important was McCarthy (1979)'s dissertation; Bat-El (2011) gives a good overview of the literature on several Semitic languages, such as Arabic and Hebrew.

Section 2.2 The role of features in acquisition has been argued for by Levelt and van Oostendorp (2007). The examples of speech errors are from a famous classical article by Fromkin (1973). Lahiri and Reetz (2010) give an excellent overview of psycholinguistic evidence for phonological features. An interesting overview and development of the concept of contrast can be found in Dresher (2009).

Section 2.3 The Saraiki data are from Abbas (2009). Several phonologists have expressed doubts in recent years as to the universality of the feature set; prominent among those is Mielke (2004). (Most of these scholars would agree that the features presented here give a good approximation for most phenomena in most languages.)

Section 2.4

Element Theory has been worked out in particular in the framework of Government Phonology (Kaye et al. 1985, 1990; Harris 1994; Harris and Lindsey 1995); related views were also found in the framework of Dependency Phonology (Anderson and Ewen 1987). An excellent introduction into this subject matter is provided by Backley (2011). The Belorussian data are from Crosswhite (2001) and Harris (2005). The latter author is also responsible for the suggestion that vowel reduction is information loss.
Chapter 3

Autosegmental theory

3.1 Tone

In the preceding chapter, I have discussed the evidence that smaller the smallest elements of phonological structure are features. The next question then is how these features are organized into words. As an approximation of this, we have suggested in the previous chapter that segments are bundles (or sets) of features. This suggests that we can still divide the sound stream into discrete time events: one segment comes after the other, although they have internal structure.

When we have a closer look at the data, these suggest otherwise. The features behave sometimes as independent from their segments: it sometimes looks as if one feature is attached to more than one segment, for instance, or even that features do not belong to any individual segment at all but are still part of a morpheme.

It is an important question, what this organisation looks like. A very influential view of this is autosegmental phonology. According to this theory, we can see the organisation of speech sounds in the human mind more or less like a musical score: every feature has its own part, which is to some extent independent of all other parts. Their only relation is that they are all attached to one central line, the skeleton, which keeps track of the time. The elements of the skeleton — which resemble the notion of a segment in certain ways — are usually depicted as x’s (we will return to this in much more detail in a few weeks from now).

An important indication for the correctness of this view is assimilation, a process by which two sounds become more similar to each other when they are put in adjacent positions.

The autosegmental behaviour of features — the fact that features behave as if they are segments in their own right — was first discovered on the basis of tone. In many languages of the world, syllables can differ from each other just by being pronounced at a different pitch.

Tones are pronounced on vowels, and for this reason I have treated them as vocalic features in the preceding chapter. Yet tones are demonstrably also independent of their vocalic hosts in a straightforward way.

The following facts from Kikuyu (Bantu, Kenya) show this. The way in which tones are distributed in the word looks rather messy at first, but they
actually come in a very simple and clear pattern.

In order to analyse the phenomenon at all, we first have to briefly consider the morphological structure of the Kikuyu verb, which can be described by the following template:

\[(35) \quad \text{SUBJECT} \quad \text{(OBJECT)} \quad \text{ROOT} \quad \text{TENSE}\]

<table>
<thead>
<tr>
<th></th>
<th>to ‘we’</th>
<th>mo ‘him’</th>
<th>ro ‘look at’</th>
</tr>
</thead>
<tbody>
<tr>
<td>ma ‘they’</td>
<td>ma ‘them’</td>
<td>tom ‘send’</td>
<td>tme PAST</td>
</tr>
</tbody>
</table>

A verbal root such as [ro] is preceded by prefixes which express properties of the subject of the sentence, as well as the object when the verb is transitive. It can also be followed by several suffixes; one of these is Tense (in this case, expressing that an event took place in the past).

Now if we combine these morphemes and we study the resulting patterns, it looks at first as if (almost) any morpheme can occur both with a low tone (marked à) and with a high tone (marked á):

\[(36) \quad \text{Subject ‘to’} \quad \text{Subject ‘ma’} \]

<table>
<thead>
<tr>
<th></th>
<th>to ro iré</th>
<th>má ro iré</th>
</tr>
</thead>
<tbody>
<tr>
<td>tó mò ro iré</td>
<td>má mò ro iré</td>
<td></td>
</tr>
<tr>
<td>tó má ro iré</td>
<td>má má ro iré</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>tó tóm iré</th>
<th>má tóm iré</th>
</tr>
</thead>
<tbody>
<tr>
<td>tó mò tóm iré</td>
<td>má mò tóm iré</td>
<td></td>
</tr>
<tr>
<td>tó má tóm iré</td>
<td>má má tóm iré</td>
<td></td>
</tr>
</tbody>
</table>

You can see for instance that the stem vowel sometimes has a high tone, and sometimes a low tone. Which of the two is underlying, and how do we derive the surface tones from this underlying tone?

On closer inspection, it is not precisely true that any vowel shows any tone: the vowel of the subject marker ‘to’ always comes with a Low tone, while the vowel of the subject marker ‘ma’ always comes with a High tone. Furthermore, the morpheme immediately following the subject marker always bears exactly the same tone as the subject marker itself. In some sense, the subject thus determines the tone of the following morpheme.

Similarly, we may observe that the final tone of the tense suffix is always high, but that the first vowel has a varying tone: if the stem is ro, we find a low tone, if it is tom, it is a high tone. Thus it seems to be the stem which determines the first tone of the suffix.

We can best understand the Kikuyu tone system if we generalise these observations: the tone of every morpheme shows up on the following morpheme. Every morpheme in Kikuyu thus consists of two separate parts: segmental material on the one hand, and completely independent of that, a tone, which is realised on the following vowel.

The underlying representations thus look as follows:

\[(37) \quad \text{to} \mid \text{ma} \mid \text{mo} \mid \text{ma} \mid \text{ro} \mid \text{tom} \mid \text{tme} \]

| | L | H | L | H | L | H | H |

On the surface, every tone needs to be linked to some vowel, and none may be left ‘floating around’, due to the so-called Association Convention of autosegmental phonology:
3.1. Tone

(38) **Association Convention**: No ‘floating’ tones are allowed on the surface, every tone needs to be linked to a vowel.

The Association Convention for tones is part of a more general set of requirements on phonological structure, requiring every element in a phonological representation to be linked to the other parts of the phonological structure, as we will see in section ??

In many languages, the tones would be linked to the vowel in their own morpheme, which would obviously also be the most logical option, but in Kikuyu there apparently is a different requirement which is more important than keeping every tone realized in its own morpheme, **alignment** of the tone to the end of the word:

(39) **ALIGN-Tone**: All tones want to be as close to the right edge of the word as possible, given other conditions of the language.

In many tone languages of the world, we see the effect of **ALIGN-Tone**: tones tend to move to the right (‘spread’). There might be a phonetic reason for this: the realization of tones tends to be a little bit delayed. In any case, it is a tendency we see in many tone languages.

When **ALIGN-Tone** would decide things on its own, regulating the realisation of Kikuyu words as it sees fit, it would choose to have the following representation as the best one for *ma mo tom ir*:

(40) H L H H

All tones are linked to the final vowel, and thus maximally aligned to the end of the word. The pleasure of this comes at the enormous cost, however, of creating a very complex tonal configuration on this final vowel, and apparently, this is not a price which Kikuyu is willing to pay. In particular, the relation between tones and vowels in this language is very transparently one-to-one. In other words, the Association Convention above can be refined to the following:

(41) **Wellformedness Condition** (WFC): Every tone in the output representation should be linked to exactly one vowel, and vice versa.

Given strong force of the WFC in Kikuyu — it is not absolute in all languages, as we will see later — the best we can do to maximally satisfy **ALIGN-Tone** is the following:

(42) H L H H

Every tone is now linked as much to the right as possible, without creating illicit ‘contour’ tones. Notice, however, that there is still one problem: the very
first vowel (the one of the subject marker) does not bear a tone at all. There is no way we can solve this problem, paying due respect to all the requirements imposed on the Kikuyu word, and some related Bantu languages would leave it like this in similar situations, creating a toneless syllable.

However, notice that the WFC expresses several requirements at the same time, e.g. ‘no tone should be linked to more than one vowel’, and ‘no vowel should be toneless’. Apparently, the former counts as a stronger violation in Kikuyu than the latter and therefore the following repair is made:

\[
\begin{array}{c}
\text{ma} \\
\text{mo} \\
\text{tom} \\
\text{iré}
\end{array}
\]

\[
\begin{array}{c|c|c|c}
\text{H} & \text{L} & \text{H} & \text{H}
\end{array}
\]

Contour tones

As we have seen, Kikuyu is very strict in its requirement that vowels can be linked to at most one tone. The idea that tones exist in their own dimension of representation — called a tier in autosegmental theory — and that their alignment to tones can be regulated by a set of requirements — called constraints — is central to (modern versions of) autosegmental theory.

Another application of the idea of this theory which has proved very useful, is the analysis of so-called contour tones. For instance, Margi (Chadic, Nigeria) has not two but three tones on vowels: a low tone, a high tone, and a rising tone.

Obviously, this situation cannot be described by just two features, [High] and [Low]. In principle, there are two ways of dealing with a situation such as this. We can either introduce a three way featural distinction (e.g. a feature Tone which has as values High, Low and Rising); or we can describe the rising tone as a combination of Low followed by High. Autosegmental analysis advises us to take the latter route, so that we can minimize the number of primitives in our theory (there are only high and low tones, and autosegmental association):

\[
\begin{array}{c|c|c|c}
\text{a} & \text{a} & \text{a} \\
\text{H} & \text{L} & \text{L} & \text{H}
\end{array}
\]

For Margi, the advice that autosegmental phonology gives us turns out to point us in the right direction. In the first place, this representation helps us to understand what is going on with tones when morphemes combine into complex words. Consider the following facts concerning the definite suffix -ári. The left-hand column represents the underlying shape of the stems to which this suffix is added (‘a represents the rising tone):

\[
\begin{array}{c|c|c|c|c}
\text{a} & \text{a} & \text{a} & \text{a} & \text{a} \\
\text{H} & \text{L} & \text{L} & \text{L} & \text{H}
\end{array}
\]

(45) a. sál sál-ári ‘man’
 kùm kùm-ári ‘meat’

b. ?ímí ?ímí-ári ‘water’
 kú kw-ári ‘goat’
c. ti ty-åri ‘morning’
 hù hw-åri ‘grave’

(45a) shows that nothing happens if the suffix is attached to a consonant-final stem. Unlike in Kikuyu, every morpheme keeps its own home base; apparently the tone of the suffix is high.

(45b) shows that if the stem ends in a high vowel with a high tone, this turns into a glide. Since glides, like all consonants, cannot carry their own tone, it looks as if the high tone disappears.

(45c) shows that something does happen if the stem ends in a high vowel with a low tone. Again, the vowel turns into a glide, but now the tone of the suffix changes to a rising tone. Under autosegmental assumptions, it is very easy to understand this process: the rising tone is a combination of the original low tone of the stem and the high tone of the suffix:

```
(46)  a. Input: L H H
       t i a r i

       b. Output: L H H
       t y a r i
```

The reason why this happens can be seen as an interaction of the impossibility of the glide to carry the tone, and the wish of the tone to be linked to some vowel. Notice, by the way that this is always the vowel which is closest to the tone in some intuitive sense. In particular, we will not find the following structure (the representation for tyåri):

```
(47)   L H H
       t y a r i
```

The reason why we do not find this, is because there is a very hard constraint on autosegmental representations:

```
(48)  NoLineCrossing: Association lines may not cross
```

Different from all other constraints we have seen so far, NoLineCrossing is hard-wired into every known grammar: languages cannot fiddle with it. The reason for this presumably has to do with the interpretation of autosegmental representations. We are dealing in this case with two lines (traditionally called tiers in the theory): one line on which we have the tones, and another line on which we have the relevant vowels.

Each of those tiers represents a timeline: if element A stands before element B on a tier, this means that the pronunciation of A precedes the pronunciation of B. Thus, in (47), the realisation of the low tone will always precede that of the high tones.
If we think about our representations in this way, it stands to reason that association of an element X to an element Y means that the realisation of X overlaps with that of Y in time. Thus the pronunciation of the low tone in (46a) will happen during the pronunciation of the /i/. But given all of this, (47) defies ordinary logic: the low tone precedes the first high tone, but it is also realised during the pronunciation of an [i] which follows the [a] with which the low tone is associated. In other words, the pronunciation of the low tone will also follow the pronunciation of the high tone. This is logically impossible: a cannot at the same time precede and follow b (except if they overlap, but that is not the case here).

We can thus conclude that grammars can entertain all kinds of representations, including those which are not completely well-formed (because they display contour tones, or floating tones, or toneless vowels); but they will never entertain possibilities which do not make any sense at all.

Another remark to be made with respect to (46), is that this raises the question what is exactly the output representation for e.g. kwári. We may assume that the high tone of the stem is deleted, but it is also logically possible to assume the following:

\[
\begin{array}{c}
\text{k u a r i} \\
\end{array}
\]

(49) a. Input: H H H

\[
\begin{array}{c}
k w a r i \\
\end{array}
\]

b. Output: H H H

This would make the high vowel and low vowel stems exactly parallel. Whether or not we accept this, seems to be a matter of taste. Scholars who like the parallelism will readily accept this; others will point out that there is no empirical difference between a segment linked to two tones and one linked to one tone, and that we should therefore go for the simplest representation. The matter is hard to decide.

We quickly look at yet another argument in favour of the representation of rising tone as a sequence LH. We get this if we look at the underlying structure of stems in Margi. Bisyllabic stems in Margi come in three flavours: some of them have two low tones, some of them have two high tones, some of them have a low tone followed by a high tone. Monosyllabic stems similarly exist in three variants: some have a high tone, some a low tone, and some a rising tone. Under the autosegmental assumption, we can unify these by assuming that there are only three tonal templates in Margi: H, L, and LH:

\[
\begin{array}{c|c|c|c}
\text{H} & \text{L} & \text{LH} \\
\text{ndábyá ‘touch’} & \text{garhí ‘fear’} & \text{ngúrsú ‘convince’} \\
\text{tládi ‘fall down’} & \text{dzáltú ‘cover’} & \text{ngúrsú ‘convince’} \\
\text{tdá ‘beat’} & \text{dú ‘fall’} & \text{hí ‘grow up’} \\
\text{tsá ‘beat’} & \text{dhá ‘fall’} & \text{hí ‘grow up’} \\
\text{sd ‘go astray’} & \text{ghá ‘reach’} & \text{svol ‘fly’} \\
\end{array}
\]

Notice that this means that, even though Margi allows (rising) contour tones, it still only does this as a last resort: only because otherwise a tone would be
lost (as in the gliding cases just discussed) or because it is the only way to express a tonal template. A bisyllabic word *gərhũ is still not allowed, since it contains an ‘unnecessary’ rising tone. We thus cannot say that the wellformedness condition does not play a role at all; it just seems to be less stringent in Margi.

Multiple tones vs. multiply linked tones

We thus observed that Margi has three types of disyllabic words:

1. The first syllable has a low tone, the second syllable has a high tone.
2. Both syllables have a low tone.
3. Both syllables have a high tone.

The representation of the first of these is straightforward in autosegmental terms, but for the other two, we logically speaking have two options, which I will illustrate on the low tone example:

\[(51) \quad \begin{array}{c|c}
\text{L} & \text{L} \\
\end{array} \]

There is one reason for assuming that the representation in (i) is the ‘real’ one: this allows a more uniform description of disyllabic and monosyllabic forms; recall that the latter had three tones: low, high and rising; there is no reason to assume that low toned monosyllabic stems have two (low) tones.

This reason is not very strong, but fortunately there are other arguments; and they point in the same direction. First, remember what happened to monosyllabic stems when their vowel would get lost:

\[(52) \quad \text{Input: } \begin{array}{c|c|c}
\text{L} & \text{H} & \text{H} \\
\end{array} \]

\[(53) \quad \begin{array}{c|c|c}
\text{L} & \text{H} & \text{H} \\
\end{array} \]

And now consider the fate of bisyllabic low toned stems in the same circumstances:

\[(53) \quad \begin{array}{c|c|c}
\text{L} & \text{H} & \text{H} \\
\end{array} \]

No rising tones are created in this case. This is much easier to understand if we assume the representation in (51a) for stems of this type than under the assumption of (51b). Under the latter representation, we would not expect any difference with monosyllabic stems: if the final vowel turns into a glide, the second low tone will go and try to find a new host on the suffix vowel,
creating a contour tone in the process. But under (51b) there will be only one low tone on the stem, and this low tone does not run the risk of becoming floating, since it can still be linked to the first vowel.

We could now wonder whether there are languages which have both (51a) and (51b) in their inventory of phonological structures. It has been a claim of autosegmental phonology that this is not possible; phonological structures would be subject to the so-called Obligatory Contour Principle:

\[
\text{Obligatory Contour Principle (OCP)}
\]

Adjacent identical tones are disallowed.

The OCP allows tonal tiers like ‘H’, ‘HL’, ‘L’, ‘LH’, LHL’, etc.; but it disallows structures like *‘HH’ or *‘HLHLLH’. If we have two vowels in a row which are pronounced at the same pitch, there is only one option: these vowels are linked to the same tone.

Meeussen’s Rule in Bantu

In the traditional tonology of Bantu languages, an OCP related rule is called Meeussen’s Rule (after the Belgian Bantuist Achilles Emile Meeussen, 1912-1978). This rule can be illustrated by the following example, from Kirundi (Bantu, Burundi):

\[
\begin{align*}
(55) & \quad \text{a. nà-rá-zi-bářírà (I- PAST -them-to sew) ‘I was sewing them’} \\
& \quad \text{b. nà-rá-bářírà (I- PAST-to sew) ‘I was sewing’}
\end{align*}
\]

In (55a), the high toned tense marker rá and the stem bářírà, which also starts with a high tone, are separated by a low tone agreement marker. Nothing happens here; we may assume that this form represents the underlying state of affairs quite faithfully. In (55b), on the other hand, the tense marker and the stem are adjacent. As a result of this, the second high tone has to go.

It is quite obvious that Meeussen’s Rule describes an OCP effect: two high tones which are adjacent are not allowed. The way to solve the OCP problem here is to turn one of the two ‘bad’ tones into a ‘good’ tone, giving an alternation of high and low tones.

Here is another example of the same phenomenon in a different Bantu language (Shona; Zimbabwe/Zambia):

\[
\begin{align*}
(56) & \quad \text{mbwá} \quad \text{‘dog’} \quad \text{né#mbwà} \quad \text{‘with a dog’} \\
& \quad \text{hóvé} \quad \text{‘fish’} \quad \text{né#hóvè} \quad \text{‘with a fish’} \\
& \quad \text{mbündúdzí} \quad \text{‘army worms’} \quad \text{sé#mbündúdzí} \quad \text{‘like army worms’} \\
& \quad \text{bádzá} \quad \text{‘hoe’} \quad \text{né#bádzá} \quad \text{‘with a hoe’} \\
& \quad \text{bënžibvünzà} \quad \text{‘inquisitive fool’} \quad \text{né#bënžibvünzà} \quad \text{‘like an inquisitive fool’} \\
& \quad \text{Fáráí} \quad \text{(name)} \quad \text{nà#Fáráí} \quad \text{‘with Farai’}
\end{align*}
\]

The examples show — among various other things — the following: Meeussen’s Rule (i) applies between (certain) clitics and stems, (ii) if the clitic has a high tone and (iii) the stem starts with a high tone. Of interest are the cases in which the stem starts with more than one high-toned syllable. It turns out
that in those cases, all of those syllables become low toned, even though it would be sufficient for Meeussen’s Rule if we would only change the first one (witness what happens to forms such as né#bàdzá, where it also not necessary to change the second high tone of the stem).

This behaviour of low toned words can be understood if we assume that again in the underlying representations two adjacent syllables pronounced at the same pitch are associated to the same tonal autosegment. If this tone has to change, all vowels attached to it will be pronounced differently:

\[
\begin{align*}
\text{Input:} & \quad \text{Output:} \\
\text{a. } & \quad \text{b. }
\end{align*}
\]

 Interestingly, there are certain sequences of high tones which do not change; but there is always an extra morpheme boundary involved in those cases. For example, we can ‘stack’ clitics in Shona, leading to sequences such as:

\[(58) \quad \text{sè#nè#hóvé ‘like with a fish’}\]

Notice that it is only the tone of ne which changes in this case. This high tone is not the same as the stem tone. Therefore the latter does not automatically change with the former.

Under the assumption that Meeussen’s Rule is an instance of the OCP, the latter principle takes two different effects in Shona:

1. It disallows sequences of the same tone in underlying forms, preferring multiply linked tones instead.
2. It disallows sequences of high tones on the surface, solving apparent problems not by spreading, but by changing one tone from high to low.

There is a third way in which the OCP is operative in Shona: it can also block rules from applying. This is true in particular for a rule spreading a high tone from the end of one word to the first syllable of the next word:

\[(59) \quad \begin{array}{ll}
zvırôngó & \text{‘water pots’} \\
zvínà & \text{‘four’} \\
zvırôngó zvínà & \text{‘four water pots’} \\
\text{Chipó} & \text{(name)} \\
àkàbkà & \text{‘and then he cooked’} \\
\text{Chipó àkàbkà} & \text{‘and then Chipo cooked’} \\
\text{ndákàtèngà} & \text{‘I bought’} \\
bàdzá & \text{‘hoe’} \\
\text{ndákàtèngà bàdzá} & \text{‘I bought a hoe’}
\end{array}\]
3.2. Autosegmental representations outside of tone

The last example shows that the spreading of the high tone does not occur if the second syllable of the second word already has a high tone. Spreading here would result, again, in a sequence of vowels linked to different high tones, and apparently, this is disallowed.

All in all, the OCP can thus have three effects in Shona:

1. It disallows certain underlying structures (by way of a Morpheme Structure Constraint)
2. It can trigger certain processes (H→L in clitic structures)
3. It can disallow certain processes (H spreading)

This is quite typical for phonological constraints: they can work out in different ways, just bluntly disallowing a structure altogether, or specifying a repair when it arises. Not every constraint will have all of these effects in every language, but very often there is a range of ways in which languages can work towards satisfaction of their constraints.

3.2 Autosegmental representations outside of tone

The OCP gives us a good handle on extending autosegmental ideas to areas beyond tone. In many dialects of Dutch (Indo-European, the Netherlands/Belgium/Surinam), the default allomorph of the diminutive suffix is \(-ke\) ([ko]). The following example is from Bergen Dutch:

(60) vrouw ‘woman’ - vrouwke ‘woman-DIM’ [vrAuk]

However, if the stem ends in a velar obstruent, we find the form \(-ske\) ([sko]) instead (the second example also illustrates umlaut, which is irrelevant for our purposes):

(61) a. vlieg ‘fly’ - vliegske ‘fly-DIM’ [vlixsk]

This can be understood as follows: bare addition of \(-[ko]\) to the stem would result in an OCP violation on the feature [velar]:

```
| v l i x k a |
| [vel] [vel] |
```

(62)

Inserting a segment with a different place of articulation — such as coronal \([s]\) —, solves the problem: the two segments with the ‘bad place’ are no longer adjacent.

A famous case of a non-tonal OCP effect is the interaction of Lyman’s Law with the Rendaku rule in a certain class of words in Japanese (Japonic, Japan). The latter rule turns the second element of a compound into a voiced segment; the former expresses the condition that there is no other voiced segment elsewhere in the word (3.2):

Lyman’s Law
Rendaku
3.2. Autosegmental representations outside of tone

Clearly, Lyman’s Law — which despite its name was first discovered by Motoori Norinaga in the 18th century — could be stated as a specific instance of the OCP:

\[(64)\]

Lyman’s Law (OCP style): Avoid two voiced obstruents within the same word.

The claim is thus that Lyman’s Law blocks Rendaku in Japanese in the way in which the OCP blocks high tone spreading in Shona.

There are various interesting problems connected to this. Most important among these is the issue that apparently vowels and sonorant consonants do not count for the OCP; they are, as it were, invisible. The first examples in demonstrate this clearly. The standard way of understanding this is by assuming that these segments simply do not have a link to any \([±\text{voice}]\) feature: they are underspecified for that feature. The reason for this is that they do not contrast for this feature: there are no minimal pairs of words where one has a voiced sonorant or vowel, and the other one a voiceless one. Implicit in our analysis of tone above was, by the way, similarly that consonants are underspecified for tones. Again, the reason for this is that the Bantu languages we discussed simply do not distinguish consonants from each other by tone.

Vowel Harmony

Another domain to which autosegmental analysis has been applied with considerable success is vowel harmony, a phenomenon that can be found in many languages of the world, albeit in different versions.

In a typical vowel harmony language, the set of vowels can be split up into two (or more) disjoint subsets; all the vowels within one word are taken exclusively from one subset. In Turkish, we can divide the set of vowels along the round-spread dimension as well as along the front-back dimension. The following gives a general idea of what is going on (Clements and Sezer, 1982):

\[(65)\]

<table>
<thead>
<tr>
<th></th>
<th>nom.sg.</th>
<th>gen.sg.</th>
<th>nom.pl.</th>
<th>gen.pl.</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘rope’</td>
<td>ip</td>
<td>ipin</td>
<td>ipler</td>
<td>iplerin</td>
</tr>
<tr>
<td>‘girl’</td>
<td>kız</td>
<td>kızın</td>
<td>kızlar</td>
<td>kızlarn</td>
</tr>
<tr>
<td>‘face’</td>
<td>yüz</td>
<td>yüzün</td>
<td>yüzler</td>
<td>yüzlern</td>
</tr>
<tr>
<td>‘stamp’</td>
<td>pul</td>
<td>pulun</td>
<td>pullar</td>
<td>pullarn</td>
</tr>
<tr>
<td>‘hand’</td>
<td>el</td>
<td>elin</td>
<td>eller</td>
<td>ellerin</td>
</tr>
<tr>
<td>‘stalk’</td>
<td>sap</td>
<td>sapın</td>
<td>saplar</td>
<td>saplarn</td>
</tr>
</tbody>
</table>

We can understand this autosegmentally by assuming that the features \([±\text{velar}]\) and \([±\text{labial}]\) can (and should) spread in Turkish:
The idea is that the phonological properties which are expressed by the harmonic features belong to the word as a whole, and get associated to everything within that domain; but they can ‘see’ only those things which have a harmonic counterpart, i.e. for which the feature makes sense. Since consonants usually do not have a harmonic sister, talking about e.g. [+round] does not make sense, and therefore they do not participate in the harmony.

Some consonants in Turkish do have a harmonic sister, however. Exactly those consonants can therefore participate in the harmony. I concentrate on /k/ here, but similar things can be said about /g, l/:

(67) -back /k/ +back /k/
 \hline
 kir ‘dirt’ & kar ‘meadows’
 kel ‘bald’ & kul ‘slave’
 kör ‘blind’ & kol ‘arm’
 dik ‘upright’ & sik ‘often’
 dök ‘pour’ & ok ‘arrow’
 sakin ‘calm’ & skan ‘warning’
 fakir ‘poor’ & mika ‘mica’
 nektar ‘nectar’ & boksit ‘bauxite’
 bol ‘abundant’ & bol ‘cocktail’
 kar ‘snow’ & kar ‘profit’

/k, k/ can also initiate harmonic behaviour themselves; to be precise on epenthetic vowels:

(68) | careful form | colloquial form |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>‘fetters’</td>
<td>pranga</td>
<td>pranga</td>
</tr>
<tr>
<td>‘prince’</td>
<td>prens</td>
<td>pirens</td>
</tr>
<tr>
<td>‘test’</td>
<td>prova</td>
<td>purova</td>
</tr>
<tr>
<td>‘announcer’</td>
<td>spiker</td>
<td>sipiker</td>
</tr>
<tr>
<td>‘credit’</td>
<td>kredi</td>
<td>kredi</td>
</tr>
<tr>
<td>‘cruiser’</td>
<td>kruvazör</td>
<td>kuruvažör</td>
</tr>
</tbody>
</table>

This can also be seen in words like kulüp ‘club’, and even (given the appropriate analysis, and in certain cases) for suffixes:

(69) | nom. sg. | acc. sg. |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>‘explosion’</td>
<td>infilak</td>
<td>infilaki</td>
</tr>
<tr>
<td>‘perception’</td>
<td>idrak</td>
<td>idraki</td>
</tr>
<tr>
<td>‘desire’</td>
<td>şevk</td>
<td>şevki (in some dialects; older speakers)</td>
</tr>
<tr>
<td>‘confirmation’</td>
<td>tasdik</td>
<td>tasdiki (in some dialects; older speakers)</td>
</tr>
</tbody>
</table>
3.3 The skeleton

The core of the phonological structure

Until now, we have been quite informal as to the precise structure of autosegmental representations. We know that tones and features such as \([\text{voice}]\) and \([\text{velar}]\) can behave like autosegments on independent tiers which are somehow linked to the ‘segment’, but we have not yet developed a clear notion of how all of these tiers are then organized into a larger structure. This is what we will set out to do today and in the next week.

Today we discuss the central tier of autosegmental representations, the timing tier or skeleton. Different from other autosegments, the elements on this tier do not correspond to their own independent (articulatory) instruction. Rather, each of them is represented as a neutral symbol \(\times\); these symbolic units are called timing slots, because their most important function is to organize all autosegments into temporal units. They are also sometimes called \(x\) slots. (Notice that this means that the OCP should not be able to apply to this tier, otherwise we would only be allowed to have 1 segment per word.)

Syllable structure is built on top of these timing slots, and all autosegmental features are linked to them. An autosegmental representation for a (hypothetical) word \([\text{pi}:\text{i}]\) with a falling tone would thus be approximately as follows:

\[
\begin{array}{c}
\sigma \\
\times \times \times \\
\text{b i} \\
(70) \quad \text{H L}
\end{array}
\]

Several remarks are in order here. In the first place, it may seem as if some of the association lines are crossing in this representation, even though we have argued in the first class that this is absolutely disallowed in the phonology of natural language. The reason for this line crossing is equally trivial, however: we are drawing a three-dimensional structure in two-dimensional space. The line with tones is in a different dimension from the line with segmental information; therefore the lines do not really cross. The logical problem connected with line crossing which we discussed in the first class therefore does not arise — this structure is perfectly legitimate.

Another thing we should note is that this representation is still overly simple. We have conflated many autosegmental tiers by just writing \(/\text{b}/\) and \(/\text{i}/\). Also the syllable structure is much too simple; we have marked it here by one \(\sigma\) which is associated to three segments, but that will need to be turned into something more sophisticated later on. In this class, however, we will stick to these two simplifications, and we will also no longer consider the tonal tier. Furthermore, we will in most cases stick to a further notational simplification, which is sometimes used in the literature. We assume that syllable positions will mark an \(x\) as being a consonant (C) or a vowel (V). In the pictures below, we will leave out the syllable structure altogether, and note \(x\)’s as
C’s and V’s instead. All of this means that the word [bi:] gets the following representation in our current discussion:

\[
\begin{array}{c}
C & V & V \\
| & \downarrow & \\
(71) & b & i
\end{array}
\]

If this is an autosegmental representation, we now know that we can expect the following variants, for instance for the vowel /i/:

\[
\begin{array}{cccc}
V & V & V & V \\
| & \downarrow & \downarrow & \\
(72) & a & i & b & i \\
& & c & i & c \\
& & d & i & d
\end{array}
\]

Indeed, all of this structures are attested: (72a) gives a regular (short) vowel; (72b) gives a ‘floating’ vowel (we will see what floatingness means for segments in Section 3.3); (72c) gives a diphthong; and (72d) gives a long vowel. We should also expect that (72a) (with a one-to-one association) is the regular case, which every language has. This is indeed what we find. For consonants we can set up the same set of structures:

\[
\begin{array}{c}
x & C \\
| & \downarrow & \\
(73) & a & t \\
& & b & t \\
& & c & t & s \\
& & d & t
\end{array}
\]

(73a) gives a regular (short) consonant; (73b) a floating consonant; (73c) a doubly articulated consonant; and (73d) gives a long consonant.

In what follows, we will see examples of the most important (and most surprising) structures of these from a variety of different languages. I will give examples of consonants and vowels each.

Long vowels in Finnish and in Germanic

The superlative suffix for nominative singular adjectives in Finnish is -in. If we add this suffix to a vowel final stem, the stem vowel gets lost:

\[
\begin{array}{l}
\text{vanha ‘old’ [vanha]} \\
\text{köyhät ‘poor’ [köyhät]}
\end{array}
\]

\[
\begin{array}{l}
\text{vanhin [vanhin]} \\
\text{köyhän [köyhän]}
\end{array}
\]

The last example shows that it is only the final vowel that gets deleted. At first sight, long vowels are exceptional: they do not get deleted, they get shortened instead:

\[
\begin{array}{l}
tervee- ‘healthy’ [terve:] \\
rakkaa- ‘beloved’ [rakka:] \\
\end{array}
\]

\[
\begin{array}{l}
tervein [tervein] \\
rakkaain [rakkaain]
\end{array}
\]
The behaviour of long vowels is hard to explain under the assumption that they would be carrying for instance a feature [long]. Things become clearer if we consider stems ending in two vowels. In such cases, the first vowel does not get deleted:

(76) tärkeä ‘important’ [tærkeæ] | tärkeä [tærkein]

We can unify the ‘exceptions’ in with the piece of data in if we assume that long vowels consist of two short vowels in a row. The behaviour of tereä then becomes completely parallel to the behaviour of tärkeä. This however would still leave us with two options for an underlying representation:

(77) x x x x
 e e e

It is hard to decide on independent grounds, within Finnish, which one of these two representations is the correct one. The language has vowel harmony, but this affects long and short vowels, and diphthongs or vowel sequences all alike.

In some other languages, we may find evidence that the representation on the righthand side is the correct one. One piece of evidence comes from a phenomenon called **compensatory lengthening**. An instance from this comes from the history of English. Compare the following Old English words with their Dutch or German cognates:

(78) Old English	Dutch/German
-góþ | ganz (Dutch)
-oþer | ander (Dutch)
-sóte | sanft (German)
-fúf | fünf (German)
-öþ | ons (Dutch)

The Old English words all have a long vowel, where the Dutch/German forms have a short vowel followed by a nasal. There is reason to assume that the latter is more faithful to the state of affairs in Proto-Germanic, predating all of the Germanic languages, and that English is the language that has changed.

How can we describe what has happened? Autosegmental phonology gives us a nice tool to provide this description: first, the nasal got lost, i.e. it was delinked from its position on the skeletal (for some reason which we cannot describe at this point yet). After this, the empty position was filled by the preceding vowel. The lengthening is compensatory in the sense that the vowel length compensates for the lost consonant:

(79) a. Input: u n s
3.3. The skeleton

A few things have been noted again. In the first place, the change we are witnessing is a priori nothing like a phonological rule in the sense we have seen them before. We are dealing with a diachronic change, the ‘input’ in (143) represents some stage in the history of English and the ‘output’ some other stage; and there is as yet no specific reason to assume that any speaker ever had both of them in his head. Still, also diachronic changes like this may give us some insight in the mental representations of speakers.

Under this assumption, then, we actually see autosegmental phonology at work. If a long \(\bar{u} \) would be nothing but a sequence of two short \(u \)'s, we would not really understand what was going on: we would have to say that the nasal would have turned into a full copy of the preceding vowel, which would make the representation of this change rather complex.

Compensatory lengthening is found in many of the world’s languages. A very well-known case can be found in Turkish. In this language, there is actually a reason to assume that it is a synchronic process and not just the result of language change, because, depending on sociolinguistic and pragmatic factors, speakers can choose to delete or not delete a consonant (to be more precise, one of /v, j, h/). When they do delete, compensatory lengthening follows suit automatically:

(80) a. kahya ‘steward’ [kalija]-[ka:ja]
 b. eylül ‘September’ [ejlyl]-[e:lyl]
 c. sevmek ‘love’ [sevmek]-[se:mek]

Long consonants in Italian

Next to long vowels, we also expect to see long consonants. And indeed, there is at least as much evidence for their autosegmental representation as there is in the case of long vowels.

A famous case comes from Italian dialects in which we find a phenomenon of Raddoppiamento sintattico (Syntactic doubling). In the first place, we have to know that most Italian dialects have long consonants (or geminates as they are usually called). For instance, there is a contrast between papa ‘father’ [papa] and pappa ‘porridge’ [pap:a], which can presumably only be described in these terms. Yet it should be noted that on the surface, the first vowel in the word for father lengthens, whereas the second vowel does not.

The reason for this presumably is that the following is true for Italian (as well as for many other languages):

(81) An x-slot has to follow the stressed vowel within the syllable.

In order to understand why (81) would need to be the case, we would need to delve deeper into the theories of syllable structure and stress; the idea is that stress needs some space within the syllable to be expressed. This space is
already available in *páppa*, but it needs to be filled by the vowel in *pápa* (the accents denote that stress is on the first syllable in both words):

\[
\begin{array}{c|c}
\sigma & \sigma \\
\hline
x x x x & x x x x \\
\hline
p a p a & p a p a \\
\end{array}
\]

There are thus two ways of satisfying (81): either by a long consonant or by a long vowel. For some reason, the latter option is not open in the last syllable of the word in Italian: the language does not allow words to end in a long vowel. Therefore, what we find is a doubling of the consonant (which is dependent on certain syntactic factors as well, hence the name):

(83)
 a. Cittá [sˈanta]
 Holy city
 b. La sciammia aveva appena mangiato metá [lˈzːanana].
 The monkey had just eaten half a banana.
 c. La sciammia aveva appena mangiato quáttro [lˈzanane].
 The monkey had just eaten four bananas.

At a sufficiently high level of abstraction, the phenomenon looks a little bit like compensatory lengthening, except that the position to be filled is not caused by deletion of a segment, but by stress. Again, it is hard to understand this without autosegmental representations: why would otherwise the empty position be filled by an exact copy of the following consonant or the preceding vowel?

Floating consonants in French

We now turn from the doubly linked structures (long vowels and long consonants) to the unlinked structures: the representation of floating segments. In particular, we will have a brief look at floating consonants in the phenomenon of French liaison.

In this language, final consonants of certain words are subject to a phonologically motivated alternation: they surface before a word starting with a vowel (noted as # V, where # is the symbol phonologists sometimes use for the beginning and the end of the word), but not before a word starting with a consonant (# C) or at the end of a phrase (the double boundary sign ## indicates this):

<table>
<thead>
<tr>
<th># V</th>
<th># C</th>
<th>##</th>
</tr>
</thead>
<tbody>
<tr>
<td>petit ami</td>
<td>petit-camerade</td>
<td>il est petit</td>
</tr>
<tr>
<td>gros enfant</td>
<td>gros-camion</td>
<td>il est gros</td>
</tr>
<tr>
<td>un enfant</td>
<td>un-gros enfant</td>
<td>il y en a un</td>
</tr>
<tr>
<td>premier étage</td>
<td>premier-cas</td>
<td>il est le premier</td>
</tr>
</tbody>
</table>
The nature of the consonant that surfaces before a vowel is determined by the preceding word: *petit* always has [t], *premier* always has [r], etc. Thus, these consonants somehow have to be present in the underlying representations of these words.

Further, we have to distinguish the /r/ from *premier* from that of *cher*, since the latter does not alternate, but always surfaces:

\[
\begin{array}{c|c|c}
\text{cher ami} & \text{cher camarade} & \text{ça coûte cher} \\
V & C & \\
\end{array}
\]

The autosegmental solution is to assume that the /r/ in *cher* is underlingly linked, whereas the one in *premier* is floating:

\[
\begin{array}{c|c|c}
\sigma & \sigma & \sigma \\
x x x & x x x & x x \\
\end{array}
\]

In French, like in many other languages of the world, syllables prefer to start with a consonant rather than with a vowel: syllables are optimally CV. In parallel to (81) we thus have (87):

\[
\begin{array}{c|c|c}
\sigma & \sigma & \sigma \\
x x x x x x x x x & x x x x x x x x x & x x x x x x x x x \\
\end{array}
\]

(87) An x-slot has to precede the vowel in a syllable.

Because words which start with a consonant underlyingly, already satisfy (87), nothing will happen in *premier camarade*: the /r/ will not find an x-slot to be linked to, hence it will not be timed and not pronounced. Yet in *premier ami*, the extra consonant projected because of this requirement, comes to the rescue of the floating consonant:

\[
\begin{array}{c|c|c}
\sigma & \sigma & \sigma \\
x x x x x x x x x & x x x x x x x x & x x x x x x x x \\
\end{array}
\]

(88) a. pr o m j e r a

b. pr o m j e r k a merade
Contour segments in Luganda

To round off our discussion of the various autosegmental possibilities of the skeleton, we need of course also to provide evidence for the existence of structures where more than one segment is linked to one timing slot. One piece of such evidence we can find in Luganda, a Bantu language from Uganda. Like many Bantu languages, Luganda has so-called prenasalized consonants such as \([mp, mb, nd, nt, ng, nk]\) and a few others. One might think of them as two segments (a nasal and a plosive) but at the same time they behave like one segment, for instance with respect to syllable structure (which we will not discuss). Furthermore, they are always preceded by a long vowel:

\[(89)\]
\begin{itemize}
 \item a. \textit{ku siinza} 'to worship'
 \item b. \textit{ku toonda} 'to create'
 \item c. \textit{mu leenzi} 'boy'
 \item d. \textit{ku laba} 'to see'
 \item e. \textit{ku: n daba} 'to see me'
\end{itemize}

The last example shows that the lengthening is not just another instance of a diachronic process, but it corresponds to a productive rule of Luganda phonology. It also shows that if we put a segment /n/ together with a stop, we create a prenasalized consonant.

The autosegmental analysis of this is not too complicated. Apparently a nasal will dock unto the x-slot of the following consonant, for whatever reason (maybe because the language does not like to have two consonants linked to independent x-slots in a row, due to some sort of OCP effect). Because of this, the original x-slot of the nasal becomes available, and the vowel spreads, just as in compensatory lengthening (I only draw the three relevant segments of ku n daba):

\[(90)\]
\begin{itemize}
 \item a. Input: k u n d aba
 \item b. Output: k u n d aba
\end{itemize}

Other candidates for representations with two segments being linked to one timing slot are affricates (e.g. [c] = /t/+ /s/ linked to one slot) and doubly articulated consonants (e.g [kp]).

3.4 Feature Geometry

The Place node

If features are organized into tiers, we still have to find out how those tiers are related to each other. Last week, we have seen that there is evidence for one
central timing tier, the skeleton. But this still leaves many different options. One possibility — maybe the simplest one — is to assume that all features are linked directly to this one central tier. This is sometimes called the bottle brush model:

\[\text{[labial]} \]
\[\text{[cor]} \quad x \quad \text{[velar]} \]
\[\text{[+voice]} \]

(91)

However, there is evidence against this simple model, and pointing in the direction of features being organized in arborescent structures; the school of thought is called feature geometry (using a somewhat eccentric definition of the term 'geometry'). The most straightforward evidence here comes from the fact that sometimes certain features group together. A well known case is place assimilation. In many languages of the world, nasal consonants assimilate in place of articulation to the following consonant. The following examples are from Chuckchi (Palaeosiberian, Siberia), where we assume the assimilating nasal is \(ñ \) underlyingly.

<table>
<thead>
<tr>
<th>Example</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>təŋ-əl-ən</td>
<td>‘good’</td>
</tr>
<tr>
<td>tam-pera-k</td>
<td>‘to look good’</td>
</tr>
<tr>
<td>tam-vairgin</td>
<td>‘good being’</td>
</tr>
<tr>
<td>tam-wa̱xoy̱ṟ-on</td>
<td>‘good life’</td>
</tr>
<tr>
<td>tan-təṉai</td>
<td>‘good tea’</td>
</tr>
<tr>
<td>ten-leut</td>
<td>‘good head’</td>
</tr>
<tr>
<td>tan-ran</td>
<td>‘good house’</td>
</tr>
<tr>
<td>ten-yə̱q̱at-ək</td>
<td>‘to sleep well’</td>
</tr>
</tbody>
</table>

(92)

In these cases, the nasal assimilates in the value for the features [coronal], [velar] and [labial], but not for any other feature (e.g. it does not lose its nasality or turn into a fricative).

We could of course assume that Chuckchi has three different phonological rules which we could informally state as follows:

(93) a. Spread [coronal] from a consonant to a preceding nasal.
 b. Spread [velar] from a consonant to a preceding nasal.
 c. Spread [labial] from a consonant to a preceding nasal.

But this is very unattractive, especially because we find a similar phenomenon in many languages of the world, and it always involves these features. But more in general, we would want to give a uniform description of phenomena such as this. In order to achieve this, we posit an organizing node in our phonological representations, called a Place node. The place nodes are not linked individually to the central skeleton, but through this organizing node:
We can now formulate the relevant rule in a very simple and straightforward way:

(95) Spread the Place node from a consonant to a preceding nasal.

When we spread the place node, we spread all the relevant features at the same time. Nasal assimilation thus gets a simple and straightforward formalisation.

Another type of evidence pointing in the same direction comes from debuccalization. For instance in certain dialects of Malay, consonants in coda position change according to the schedule in (96) (Humbert, 1995; Botma, 2004):

(96) a. /p, t, k/ → [ʔ]
b. /s, f, h/ → [h]
c. /m, n, ɳ/ → [N] (a ‘placeless nasal’)

(97) a. /ikat/ → [ikaʔ] ‘to tie’
b. /lipas/ → [lipah]
c. /ʔawan/ → [ʔawaN]

The traditional name for this process is ‘debuccalisation’, since all the oral articulators become inactive. On the other hand, the manner of articulation stays constant: a stop /t/ stays a glottal stop [ʔ], a fricative /s/ stays a fricative /h/, and a nasal /n/ stays a nasal, albeit a placeless one.

Again, we could formulate this in terms of three independent rules:

 b. Delink [labial] at the end of the syllable.
 c. Delink [velar] at the end of the syllable.

This would come at a loss of generality, however, especially since again the three processes seem often linked. For instance, the same phenomenon can be found in London English (Lass, 1976; Gussenhoven and Jacobs, 1998).
Introducing a Place node allows us to simplify the formalism considerably. Both Malay and London English are subject to the following rule:

\[(100) \text{Delink the Place node at the end of the syllable.} \]

Note that this means that we assume that segments such as [ʔ] and [h] lack a place of articulation node. It is not the case that these segments have a specification [-coronal, -labial, -velar]: they do not have any place features whatsoever.

This particular assumption also makes it easier to understand why the glottal stop very often functions as the ‘default consonant’. For instance, we fill in this consonant in German if otherwise a situation of hiatus – two adjacent vowels – would ensue, or if a word starts with an open syllable:

\[(101) \text{Theater ‘theatre’ [teʔatɛ], Chaos ‘chaos’ [káʔos], atmen ‘to breathe’ [ʔatmɛn]} \]

The reason why a consonant has to be inserted here, probably is the same as why we have liaison in French (which we have seen last week):

\[(102) \text{An x-slot has to precede the vowel in a syllable.} \]

Different from the liaison context, there is no obvious neighbouring consonant to fill the empty slot in cases such as in (101). Therefore the slot is filled by the phonological rule component. We can understand why it is the glottal stop that is inserted in contexts like this, if we assume some principle of representational economy: if we have to insert something, we prefer to insert as little as possible to satisfy our needs. If we need to insert a consonant, it is better to insert one where we do not have to include a Place node (and Place features).

It is not the case, by the way, that glottal stop is the default consonant in all languages of the world. Some languages do not allow this type of segment at all — apparently, they disfavour Place-less consonants. In such cases, some other consonant such as /t/ fulfills that role.

The feature tree

The next question obviously is whether the Place features are the only ones which are organized into a separate node. Most phonologists in the feature geometry paradigm would agree that this is not the case, and that there is more internal organisation to the segment. Although there is no general agreement on this point, the following structure may be considered as fairly representative for the mainstream:
Further structure is possible; for instance, Place and Aperture are often combined into a Supralaryngeal node, combining all the instructions for organs above the larynx. Also, the position of the features \([-\text{continuant}], [\text{nasal}]\) and \([-\text{lateral}]\) has been the topic of debate.

It needs to be observed that the claim underlying virtually all work in Feature Geometry is that the structure in \([103]\) — or whatever should be replacing it — is universal: if a language has a feature \([-\text{continuant}]\), it will be organized into the structure as indicated.

A prediction of this model is that all the organizing nodes should behave like the Place node. There should be processes — for instance of assimilation — which involve exactly the features that are dominated by some node and none of the others. We will briefly review some of this evidence for the Aperture node and the Laryngeal node.

As to the former, consider the following examples from Brazilian Portuguese \(\text{(Wetzels, 1995; Clements and Hume, 1995)}\):

\[
\begin{array}{c|c|c}
\text{2nd person} & \text{1st person} \\
/mor-a-s/ & /mor-a-o/ \\
/mov-e-s/ & /mov-e-o/ \\
/serv-i-s/ & /serv-i-o/ \\
\end{array}
\]

<table>
<thead>
<tr>
<th>2nd person</th>
<th>1st person</th>
</tr>
</thead>
<tbody>
<tr>
<td>/mor-a-s/</td>
<td>/mor-a-o/</td>
</tr>
<tr>
<td>/mov-e-s/</td>
<td>/mov-e-o/</td>
</tr>
<tr>
<td>/serv-i-s/</td>
<td>/serv-i-o/</td>
</tr>
</tbody>
</table>

Like in many (Romance) languages, verbs in Portuguese have a so-called theme vowel, which behaves in some respects like a suffix, but which at the same time is determined by the stem: the verb ‘to reside’ has \(-/a/-\) as its theme vowel, ‘to move’ has \(-/e/-\), and ‘to serve’ \(-/i/-\). These theme vowel surfaces for instance in the second person singular, which has the consonant-initial suffix \(/s/-\), as is illustrated in the lefthand column. However, the first person singular suffix is \(-/o/-\), and this may be a reason why the theme vowel disappears — otherwise we would again create a hiatus.

But when the theme vowel disappears, something happens to the stem vowel: it changes from \(/a/-\) to \(/o/-\) in ‘to move’ and from \(/e/-\) to \(/i/-\) in ‘to serve’. These are changes in vocalic aperture: \(/a, e, a/-\) are low vowels \([-\text{low}, \text{high}]\), \(/e, o/-\) are mid vowels \([-\text{low}, \text{high}]\) and \(/i/-\) is a high vowel \([\text{+high}, \text{low}]\). What happens, then, is that the stem vowel takes over the aperture features of the disappearing theme vowel. In autosegmental terms, we can describe this as relinking of the Aperture node, rather than the individual relinking of the features \([\text{+high}]\) and \([\text{+low}]\).
The argument for the Aperture node thus comes from relinking; we will provide an argument in favour of the Laryngeal node from neutralisation. Korean has three series of stops, traditionally called voiceless, ‘tensed’ and aspirated [Rhee 2002]. There is no general agreement as to what exactly are the phonetic or phonological correlates of these three dimensions, but it is clear that they have to be described by Laryngeal features. It is also clear that they can contrast in a position before a vowel:

(105) | lenis | fortis | aspirated |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[tɑl] ‘moon’</td>
<td>[t’ɑl] ‘daughter’</td>
<td>[tʰɑl] ‘mask’</td>
</tr>
<tr>
<td>[kɪn] ‘root’</td>
<td>[k’ɪn] ‘string’</td>
<td>[kʰɪn] ‘big’</td>
</tr>
</tbody>
</table>

However, at the end of the syllable, we only find the lenis variants:

(106) | lenis | fortis | aspirated |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>*[cɪp’to] ‘hous EMPHATIC’</td>
<td>*[cɪp]</td>
<td>*[cɪpʰ]</td>
</tr>
<tr>
<td>*[mɪt’to] ‘bottom side EMPHATIC’</td>
<td>*[mɪt]</td>
<td>*[mɪtʰ]</td>
</tr>
<tr>
<td>*[puɑk’to] ‘kitchen EMPHATIC’</td>
<td>*[puɑk]</td>
<td>*[puɑkʰ]</td>
</tr>
</tbody>
</table>

This looks very similar to a process which we know from languages such as Dutch, German, Turkish and Catalan and which is usually called final devoicing (the example is from Dutch, in case anybody did not realize):

(107) a. Beginning of syllable:

voiced | voiceless

| [dɑk] ‘roof’ | [tɑk] ‘branch’ |
| [bɑk] ‘bin’ | [pɑk] ‘suit’ |

b. End of syllable:

<table>
<thead>
<tr>
<th>voiced</th>
<th>voiceless</th>
</tr>
</thead>
<tbody>
<tr>
<td>*[hɑnd]</td>
<td>[hɑnt] ‘dog’</td>
</tr>
<tr>
<td>*[ɛb]</td>
<td>*[ɛp] ‘ebb’</td>
</tr>
</tbody>
</table>

For Dutch — as well as the other languages just mentioned — it may be assumed that what is going on is that the feature [+voice] gets lost at the end of the syllable; the remaining structure is then interpreted as voiceless. Korean shows the same phenomenon, but with one difference: at least two different features have to be lost — the ones distinguishing tensed and aspirated consonants from lenis ones. Again, this can be profitably described if we assume that the relevant rule is something like the following:

(108) Delink the Laryngeal node from a consonant at the end of the syllable.

This rule can even be applicable to the final devoicing languages such as Dutch; in these languages there is only one Laryngeal feature, so it is hard to tell a priori whether it is just this feature which is delinked, or the node dominating it.
3.4. Feature Geometry

Root nodes and skeletal points

There is one more organizing node to be discussed: the root node, the node to which all other organizing nodes, as well as individual features, are eventually attached. This is the node in (103) which carries the features \(\pm \text{consonantal}, \pm \text{sonorant} \).

The fact that the root node carries these features has an important implication under autosegmental assumptions: we cannot spread either one of those features independently. Whereas it is possible to spread e.g. [nasal] without spreading any other part of the tree, spreading of e.g. [+consonantal] will always result in total assimilation, a famous instance of which is found in the Lesbian and Thessalian dialects of Ancient Greek, where /s/ assimilated completely to an adjacent sonorant segment (Clements and Hume, 1995):

\[
\begin{align*}
*gw\text{o}s\bar{a} & \rightarrow \text{boll\`a} \quad \text{‘council’} \\
*a\text{ws}\bar{o} & \rightarrow \text{aww\`os} \quad \text{‘dawn’} \\
*\text{emmi} & \rightarrow \text{emmi} \quad \text{‘I am’} \\
*n\text{aswos} & \rightarrow \text{nawwos} \quad \text{‘temple’}
\end{align*}
\]

(Notice by the way that again we are not dealing with a synchronic phonological rule in this case, but with a phonological change; which is not necessarily the same thing.)

What is impossible, according to this model, is a change where a sonorant would change to a stop with exactly the same place features due to assimilation:

\[
\text{amta} \rightarrow \text{apta} \quad \text{(impossible change; and impossible phonological rule).}
\]

Another implication of these assumptions, and of the analysis underlying (109), is that the root node organizes all the features, but is still distinct from an x-slot; for we see the process happening in (109) as spreading of the root node with all its features from one x-slot to the next.

This assumption seems necessary also for most of the analyses we presented last week, where it was equally the case that all the features spread together from one skeletal point to the next.

At the same time it may be seen as a little unfortunate that we now have two tiers which organize all the segments. Furthermore, there is an empirical problem with this particular implementation of segmental structure in autosegmental phonology. We know that complex segments can be for instance affricates (sharing place features but differing on continuancy: \([ts, \, pf]\), prenasalised segments (sharing place features but differing in nasality: \([\text{\textipa{\textipa{d}}, \, m\text{~b}}]\), or doubly articulated stops (sharing all features except for place). There has never been any evidence for complex segments where the two parts differ on many different dimensions (e.g. *\([\text{\textipa{\textipa{i}}, \, [\text{\textipa{\textipa{a}}}}\)). This is unexpected, given the autosegmental model.

As a methodological aside, note that an assumption underlying this criticism is that every structure which can be generated by the formal model, also needs to be attested in some of the world’s languages. In principle, it is of course possible that structures such as *\([\text{\textipa{\textipa{a}}}\) do indeed exist, but only in languages which have not yet been considered in sufficient detail: we simply
do not know about them yet. However, it is good practice in phonological theorizing to assume that structures do not exist until somebody points out that we do need them in the analysis of some language. If we would not take this as our guideline, it would be almost impossible to compare theories: a model which would say that ‘anything goes in natural language’ would beat everybody else; but it would not be very interesting. In other words, we try to make our model as restrictive as possible. The model developed so far is not restrictive enough from this point of view; it overgenerates.

This problem still awaits a full formal solution at present. Somehow we have to assume (without an explanation) that one timing slot cannot host more than one root node. Therefore, we have to find a different representation for complex segments.

From what we have seen so far, we can already conclude the following:

(111) Complex segments bear more than one feature (value) of a specific type.

For instance, \([\text{ts}]\) is exactly like \([t]\) and \([s]\), except for one point: whereas \([t]\) is [+continuant] and \([s]\) is [-continuant], \([\text{ts}]\) is both [+continuant] and [-continuant]. Heavily simplifying our feature trees, we can draw the three segments as follows:

\[
\begin{array}{lll}
\text{[t]} & \text{[s]} & \text{[\text{ts}]} \\
+\text{ consonantal} & +\text{ consonantal} & +\text{ consonantal} \\
-\text{ sonorant} & -\text{ sonorant} & \\
\text{Place} & \text{Place} & \text{Place} \\
\text{[-cont]} & [+\text{cont}] & [-\text{cont}] [+\text{cont}] \\
\text{[cor]} & \text{[cor]} & \text{[cor]} \\
\end{array}
\]

In the structure for the affricate, two feature values (on the same tier) are now linked to the same segment (in this particular case, to the same root node). This parallels two tones being linked to one segment. A similar picture can be drawn for prenasalised segments\(^1\). Multiply articulated segments might be a little bit different; the following represents \([\text{kp}]\) (again, abstracting away from certain complexities):

\[\text{\texttt{van Oostendorp and van de Weijer (2005).}}\]

\(^1\)It should be noted that in the most recent literature, alternative analyses have become available for both affricates and prenasalised segments which do not use this particular type of representation; cf. van Oostendorp and van de Weijer (2005).
This representation is different because the two Place features are probably not on the same tier; they are linked to the same node, but they still represent different dimensions. Because they are not on the same tier, they are also not temporally ordered with respect to each other; which gives the (correct) prediction that they are realised at the same time.

3.5 Exercises

1. Give the tonal representation of ‘they looked’ and ‘we sent them’ in Kikuyu, taking (43) as your model.
2. In Mende, vowels in monosyllabic words can have one of five tones: high, low, rising, falling, or first rising and then falling. In words with two syllables, the first syllable is always high or low, and the second syllable is high, low, or falling; a falling tone only occurs after a low toned first syllable. Finally in words of three syllables, all syllables have only a high or a low tone. How can you explain this pattern autosegmentally? (You can make up your own examples if you want to illustrate.)
3. Look at the following forms in Chizigula, in which high toned syllables have an accent and toneless syllables do not (ki is a prefix):

(114) kudamanj ‘to do’, kudamanjiza ‘to do for’, , kudamanjizana ‘to do for each other’, kulombéza ‘to ask’, kulombezezana ‘to ask for each other’, kulombezéza ‘to ask for’

4. In a secret language in Thai, words are changed a little bit so that outsiders cannot understand them: khluáì hòóm ‘banana’ is pronounced as khlóòm huàí and té`n ram ‘dance’ as tá`m ren (acute accent denotes a high tone, grave accent a low tone, no accent on a vowel is a mid tone). How can this be constructed as an argument for autosegmental phonology?
5. In some varieties of Latin American Spanish something remarkable happened to the [s] at the end of a syllable. Give a precise description of what has happened (the circle under a vowel indicates that the vowel is voiceless):

(115) European Spanish L.A. Spanish
mismo miimo of mimmo ‘same’
fosforo fofo foro ‘match’

6. In an innovative variety of the dialect of Shanghai we find an interesting tonal pattern. Consider first the following underlying representations
for several morphemes (tonal specifications are added in parentheses; M denotes a mid tone, a third tonal level in some languages):

- çi ‘fresh’ (HL); wa ‘yellow’ (LH); du ‘big’ (LH); ço ‘small’ (MH)

Now consider the tones of following phrases:

- ço+ŋ → ço (M) ŋ (H) ‘small fish’
- çi+ŋ → çi (H) ŋ (L) ‘fresh fish’
- wa+ŋ → çi (L) ŋ (H) ‘yellow fish’
- ço+wa+ŋ → ço (M) wa (H) ŋ (L) ‘small yellow fish’
- çi+wa+ŋ → çi (H) wa (L) ŋ (L) ‘fresh fish’

Describe what is going on here in autosegmental terms, and give the tonal pattern for ‘big yellow fish’.

7. Consider the following forms in Tiberian Hebrew.

(116) a. seefer ‘book’
 b. geSem ‘rain’
 c. iťiʃ ‘man’
 d. h Processor ‘mountain’

Now look at the following forms, to which we added the definite determiner ha:

(117) a. hasseefer ‘book’
 b. hageSem ‘rain’
 c. haítiʃ ‘man’
 d. ha ha Processor ‘mountain’

Assume laryngeals and pharuungeals cannot geminate. Give a description of what happens.

Discussion and further reading

The Kikuyu data are wonderfull described and analysed in Goldsmith (1990); so are the Luganda data later on in this chapter.

The Margi data are from Hoffmann (1963), Williams (1976), Kenstowicz (1994).

Since the work of Odden (1986), it is no longer assumed that the OCP is a universal principle, but it can still be seen at work as a tendency in some languages.

The Shona data are discussed in Odden (1980), Myers (1987), Kenstowicz (1994).

The Bergen Dutch data are from van Oostendorp (1998).

The interaction between Rendaku and Lyman’s Law is the topic of extensive literature. See for example Itô and Mester (2003).

The discussion of Finnish follows Keyser and Kiparsky (1984), Gussman (2002). Compensatory lengthening in Old English was described in Ewen...
3.5. Exercises

and van der Hulst (2001; Gussman, 2002); the Turkish data have also been amply discussed, for instance in Sezer (1986); Goldsmith (1990); Kenstowicz (1994); Gussman (2002). Italian Raddoppiamento Sintattico has been described by Nespor and Vogel (1986).

The Chuckchi data are in Odden (1987); Clements and Hume (1995).
Chapter 5

Syllables

5.1 Evidence for syllable structure

Where in the world can we find syllables? The best place to look might be in poetry. In many poetic traditions, every line in a poem has a fixed number of syllables. Very famous in this respect is the Southern Slavic epic tradition: many poems in Serbian and Croatian poetry consist of lines of exactly ten syllables each (decasyllables; deka is the Greek word for ten):

\begin{verbatim}
Što se bili u gori zelenoj?
 What itself be-white in mountain green
 al su snizi, al su labutovi?
 or is snow, or is swans
 da su snizi, već bi okopnili,
 if were snow, already it melted
 labutovi već bi poletili
 swans already fly-away

“What is white on the green mountain? Snow or swans? If it were snow, it would already have melted away; and swans would already have flown.”
\end{verbatim}

These are the first lines of ‘The Mourning Song of the Noble Wife of the Asan Aga’ (Asanaginica), a folk ballad from 1646-49 and a region which currently belongs to Croatia. Although decasyllables are still occasionally written by modern authors in the region, their origin lies in a medieval oral tradition; they were composed by poets who did not necessarily write their poems. This, and the fact that there are other traditions around the world which ‘count syllables’ in poetry, shows that the syllable is an intuitive concept for human beings, and does not necessarily depend on their literacy.

Similarly, we can observe that people tend to find it easier to count the number of syllables in the word syllabicity than the number of segments in sounds. There is evidence that children know how to syllabify words before they can divide them into segments and before they can write.

At the same time, it turns out rather difficult to give a precise definition of the syllable that covers all the intuitions. In addition, syllables so far have not been straightforwardly detectable in the acoustic signal, possibly even less so than individual segments. Even so, the phonological evidence in favour
of the syllable is manifold. Many different observations can be phrased in a much more elegant way if we accept the notion of a syllable. Furthermore, the syllable comes very close to being universal: most, if not all, languages give evidence for it.

We will now review the most important types of evidence that have been put forward for recognizing the syllable as a formal unit of phonological analysis. We will see that this evidence comes from many different angles, and converges on two properties that syllables have:

- They are constituents, i.e. groups of smaller units (segments, in this case) which behave as a unit in some ways.
- They are headed, i.e. one of the smaller units is more prominent than the others and determines the properties of the constituent as a whole. We call this prominent unit the head; the other units are called the dependents.

In syllable structure, the head is typically a vowel.

We will discuss this terminology in more detail in section 5.2. For now, we should note that headed constituents are also known in other branches of grammatical description, such as syntax.

In order to represent these two properties, phonologists draw diagrams like the following (for the English word *drop*):

(124)

\[
\begin{array}{c}
\sigma \\
\downarrow \\
d & r \\
\end{array}
\]

The Greek letter σ (sigma) denotes the syllable node, and the lines — which are sometimes thought of as association lines — the fact that segments belong to the constituent. The vertical line between σ and \(\sigma \) is special and denotes the relationship between the head and the constituent. A more refined view of this structure will be given in section 5.2.

Stress

The most important argument in favour of syllables is consistent asymmetries between vowels (V) and consonants (C) in human language. There are many phenomena where the vowels can ‘see’ each other at a distance across consonants, whereas there are very few cases where consonants could see each other across vowels.

One such phenomenon is word stress. Many (albeit not all) languages have one vowel in the word standing out for being more prominent than the others: it has a higher pitch and/or it is longer and/or it is louder. A simple example is Southern Peruvian Quechua. Stress in this language is on the penultimate vowel (with some exceptions):

(125)
\begin{align*}
\text{a. } & \text{'wassi} \quad \text{“house”} \\
\text{b. } & \text{was'sipi} \quad \text{“in (the) house”} \\
\text{c. } & \text{wassi'kuna} \quad \text{“houses”} \\
\text{d. } & \text{wassiku'napi} \quad \text{“in (the) houses”}
\end{align*}
5.1. Evidence for syllable structure

In order to determine where the stress falls in these words, one needs to count syllables. The absolute number of segments is irrelevant: in (125) the stressed vowel is the fourth segment counted from the end, whereas in the other words, it is the third segment. In order to determine the exact position of the stress, we thus should not count segments, but we should count vowels from the end and just disregard the consonants.

Importantly, there are no similar known processes which apply to the second consonant from the end and disregard all the vowels. We can account for this in the following way: we assume that stress is not so much a property of vowels as it is of syllables. We thus assign stress to the second syllable from the right. However, we also assume that this property is first and foremost expressed on the head of the syllable, which is typically the vowel. Since consonants are not typically heads, but dependents of syllables, it is not possible to apply a similar technique to them to get a system to count consonants and not vowels.

An even stronger argument comes from those languages in which not just the distance from the edge plays a role in terms of stress but also the structure of the individual syllables. Many dialects of Arabic (Afroasiatic) are of this type. Let us briefly consider Palestinian Arabic as an example. In this language, stress falls preferably on the rightmost heavy syllable (i.e. a syllable that is closed by a consonant or that contains a long vowel; as opposed to a light syllable, which ends in a short vowel). If there is no such syllable, then stress falls on the first syllable of the word (the final syllable does not count):

(126) a. Words with a heavy syllable:
 i. [baːjuːf] ‘I don’t see’ ([fuː] has a long vowel, and hence is heavy)
 ii. [kaːtabti] ‘you FEM SG wrote’ ([tab] is closed and hence heavy)

 b. Words without a heavy syllable
 i. [ˈdaraːbu] ‘they hit’
 ii. [zaːlama] ‘man’

It would be difficult to describe this system without referring to syllables and their structure, but just considering vowels and consonants, as you can try out for yourself. Furthermore, there are many languages in the world that make this distinction between heavy and light syllables, as we will see in Chapter 7. This therefore gives us a piece of evidence that is not direct (we establish the existence of the syllable not by directly observing that it is there) but still very forceful, in particular because it turns out that we need the concept to understand many other, at first sight unrelated phenomena.

Reduplication

Another phenomenon where we find evidence for the syllable is in reduplication, a morphological process in which a portion of a stem is copied to express a certain meaning. In almost all known cases, the copied part corresponds to a phonological constituent; in several languages this is a syllable.
Yaqui (Uto-Aztecan), for instance, reduplicates the first syllable of the word (there is a lot of discussion in the literature as to what the semantics of this reduplication really is; it could be some intenser reading of the verb stem):

(127)
 a. vu.sa vu.vu.sa ‘awaken’
 b. chi.ke chi.chi.ke ‘comb one’s hair’
 c. he.wi.te he.he.wi.te ‘agree’
 d. ko.a.rek ko.ko.a.rek ‘wear a skirt’
 e. vam.se vam.vam.se ‘hurry’
 f. chep.ta chep.chep.ta ‘jump over’
 g. chuk.ta chuk.chuk.ta ‘cut with a knife or saw’
 h. bwal.ko.te bwal.bwal.ko.te ‘soften, smooth’

The dot between two segments denotes the syllable boundary. The examples in (127a-d) show that if the stem starts with an open syllable, a sequence of a consonant followed by a vowel (‘CV’) is copied, whereas (127e-h) show examples of a stem starting with a closed syllable, which is also faithfully copied as a consonant-vowel-consonant sequence (‘CVC’). Describing such a morphological process requires referring to the syllable, and in this sense, then, reduplication provides another piece of indirect evidence for its existence.

Language games

Language games also sometimes refer to the concept of the syllable. A case in point is Vesre, a secret language originating in the underworld of Argentina (around Buenos Aires) and Uruguay, and sometimes used in tango lyrics (for instance in the famous tango song “¿Qué querés con ese loro?”). Vesre takes a Spanish word and puts the syllables in the opposite order:

(128)
<table>
<thead>
<tr>
<th>Spanish</th>
<th>Vesre</th>
<th>gloss</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. pizza</td>
<td>zapi</td>
<td>‘pizza’</td>
</tr>
<tr>
<td>b. caballo</td>
<td>llobaca</td>
<td>‘horse’</td>
</tr>
<tr>
<td>c. rêves</td>
<td>vesre</td>
<td>‘inverse’</td>
</tr>
</tbody>
</table>

Other languages have similar procedures in language games (e.g. French Verlan and Tagalog Binaliktad).

Another common type of language game is one in which a syllable is added before or after every syllable of the original word, as in the following example from Hausa (Chadic) in which da is prefixed to every syllable of the word:

(129)
 tsíntsíyáa → dá-tsín-dà-tsíi-dà-yáa ‘broom’

(Notice that interesting things also happen to the tones, but we will ignore this here.) In order to be able to play this game, one needs to be able to divide the word into syllables in the first place; further, it probably is no coincidence that the prefixed sequence is also a syllable. (At this point we obviously do not yet have a precise definition of where the syllable boundaries are; we will return to this later in this chapter.)
5.1. Evidence for syllable structure

The crucial aspect of such language games is that they play a role in a context that is playful and oral. Just like in the case of the South Slavic poetry at the beginning of this chapter, this demonstrates that ordinary language users do not find it difficult and do not need a high level of literacy for ordinary language users to acquire such a system, or to understand it. This is not true for sequences that form phonological non-constituents. There are apparently no language games in which one would take random segment sequences and revert them or prefix them by other material.

We should take approach from language games with some caution, however. There is obviously always something ‘artificial’ about them: the rules of these games have been made up with the purpose of playfulness or deception and there is no ‘real’ morphological process which shifts around syllables in this way. Nevertheless, it is suggestive that human creativity in inventing successful language games seem to have boundaries, and these boundaries are among other things defined by constituency.

Psycholinguistic evidence

Another type of evidence concerns several type of data from psycholinguistic research. One type concerns speech errors. For many decades, psycholinguists have been studying the mistakes which people occasionally make from a phonological point of view. One of those is so-called blending, in which two words get inadvertently mixed. An example is youl, which blends the beginning of yell and the end shout.

We can call the point where one word turns into the other (in this case, between y and out) the break. Where do these breaks occur exactly? Already in 1972, the psychologist D.G. McKay studied this question, based on a corpus of mistakes made by university professors in Vienna at the end of the 19th Century. McKay did something simple: he looked whether breaks occurred within syllables (such as in the case of youl) or at the boundary between two syllables (e.g. in war.der from warmer and col.der). Here are his results:

\begin{tabular}{ccc}
<table>
<thead>
<tr>
<th></th>
<th>Breaks within syllables</th>
<th>Breaks between syllables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data%</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>Chance %</td>
<td>64</td>
<td>36</td>
</tr>
</tbody>
</table>
\end{tabular}

The ‘chance’ level means that a clear majority of 64% of all boundaries between segments are within syllables (which means that syllables span more than two segments on average). Still, breaks are much more likely to occur at the boundaries between two syllables than between any two segments within a syllable. This shows then that somehow syllables play an important role in language planning, and this has been confirmed by many studies since, also for speakers who were not Viennese university professors.

There is also evidence that the syllable plays a role in the perception of speech. In a famous experiment, a group of French speakers listened to long lists of individual words. They were asked to find a specific sequence in these words, for instance pa or pal, and press a button if they heard this sequence. The trick was that the word list would contain items that started with the same three segments (in our example p-a-l), but which were syllabified in a different way; in our case these would be palace ‘palace’ which has an initial
syllable *pa*, and *palmier* ‘palm’, which has an initial syllable *pal*. (Other pairs were *carotte-carton*, *tarif-tartine*, *garage-gardien*, *balance-balcon*.)

It turned out that people were much faster in detecting *pa* in *palace* than *pal*, and much faster detecting *pal* in *palmier* than *pa*, as the following graph illustrates (the horizontal axis denotes the type of sequence the subjects were looking for, the vertical axis how much time it took them to press the button):

These data show that the French speakers divided the word into syllables while they were listening to them, and found it more difficult to hear sequences that were smaller or bigger than a syllable, although they managed to do that as well.

Later experiments showed that the same effect does not hold for all languages. In particular, English speakers did not show the effect of syllable structure at all, and found it just as easy to find *pa* as *pal* in any word which contained those sequences. The reason may be that syllable boundaries in English are relatively blurry as compared to e.g. German and French: it is difficult to find agreement about where exactly the boundary is in words like *bitter*. It might therefore be less helpful to people listening to English to pay close attention to syllables than it is for speakers of other languages.

Syllabaries

The final type of evidence for syllables we want to discuss are writing systems. You are probably familiar with *alphabetic systems*, in which every letter corresponds (roughly) to a segment — the Roman alphabet is such a system, and this book is written in it, although the correspondence between sound and letter in the case of English is very rough — and *logographic systems*, in which every symbol stands for a meaning unit, such as a morpheme: Chinese is often cited as an example of the latter (although matters are more complicated, especially in Modern Chinese).

However, another quite widespread system is *syllabic writing*, in which the syllable is the smallest unit of writing. One example is (or was) the Akkadian *cuneiform*, a system that was invented by the Sumerians around 4000 BCE and written on clay tablets. The system had several logograms as well, but at its core it was syllabic. Here are some examples:
5.2 The internal structure of the syllable

Even though we are thus unable to directly observe the phonological syllable, there are plenty of reasons to assume that it has an organizing role in the sound systems of many, if not all, languages of the world. There is also evidence that the structure in (124), of one vocalic head and a few consonants preceding and following the vowel, is too simplistic.

You may have already observed in the preceding section that we sometimes took decisions that require more motivation than we actually gave. For instance, in the French perception experiment we assumed that *pal* is a syllable in *palmier*, but not in *palace*. Similarly, in the Yaqui example in (127), we were tacitly assuming that some consonants belong to the same syllable as the preceding vowel, whereas others do not. This may have seemed quite plausible, because it is the same as one would do in English, but how do we motivate these divisions further?

In this section, we will study the internal structure of the syllable in somewhat more detail. This structure looks as follows (again for the English word *drop*):

```
O R N C
  
  d r oo p
```

The capital letters in this graph denote an onset (O), a rhyme (R), a nucleus (N) and a coda (C). These are all headed constituents: in *drop*, *d* is the head of the onset, *p* the coda and *o* the head of the nucleus, the rhyme and the syllable.

Onset

There is one property of headedness in constituents that we have not mentioned yet: heads are obligatory, whereas dependents are not. This means that
5.2. The internal structure of the syllable

every syllable in every language always will be expected to have a nucleus and a rhyme, whereas not every syllable necessarily has an onset.

An example is Indonesian (Austronesian). Here is how you count from one to ten in this language:

(134) satu, dua, tiga, empat, lima, enma, tujo, delapan, sembilan, sepuluh

Most numerals in this language start with a consonant, but the words for four and six start with a vowel. Since we assume that all words are divided into syllables, this means that at least these words start with a syllable with a rhyme, but no onset. Similarly, the word for 'two' has two syllables, of which the second does not have an onset (a configuration in which two vowels occur next to each other without an intervening consonant is called hiatus).

Obviously English is like Indonesian in that it has syllables without an onset — one only has to look at a few words like eight and eleven to get convinced of that. Many other languages also allow onsetless syllables.

The requirement that syllables have onsets is on the other hand very strong in certain languages. An example of this is Axininca (Maipuran). Whenever the concatenation of morphemes would result in an onsetless syllable, an epenthetic [t] is inserted in this language, as the following examples demonstrate:

(135) a. /no-ŋ-koma-i/ [noŋkomat]i ‘he will paddle’
b. /no-ŋ-koma-aa-i/ [noŋkomataat]i ‘he will paddle again’
c. /no-ŋ-koma-ako-i/ [noŋkomaako]t]i ‘he will paddle for’
d. /no-ŋ-koma-ako-aa-i/ [noŋkomaako]taati ‘he will paddle for it again’

(135) shows several affixes which are added to the base form koma. Whenever such a suffix starts with a vowel and the preceding stem or suffix ends with a vowel, a consonant t is inserted. This t provides the following syllable with an onset. (Such insertion of phonological segments is called epenthesis.)

There are thus languages in which onsets seem obligatory, like Axininca, and languages in which they are optional, like Indonesian. There do not seem to be languages in which onsets are consistently disallowed. Since rhymes and nuclei are also allowed (because they are heads), we have the following universal:

(136) All languages allow CV syllables.

Syllables with one consonant followed by one vowel are also called core syllables. There are no other syllable types which can make this claim to universality. Core syllables are typically the first that are acquired by children, even in languages that allow other syllable types. Indeed, it has even been demonstrated that at a very early stage of acquisition, children replace even the smaller V syllables with CV structures. The following examples are from Dutch (Indo-European):

(137) adult form child’s output

| /oto/ | [toto] | ‘car’ |
| /api/ | [tapi] | ‘monkey’ |
In these examples, the first syllable of the word has no onset in the adult language. It is filled with a /t/ in the child language, just like in Axininca. (The fact that it is a /t/ in both cases is a coincidence.)

Certain languages also allow for more complex onsets. In many languages, these will consist of two consonants of which the first is an obstruent and the second a sonorant, such as in Sanskrit (Indo-Aryan):

Sanskrit /v/ is probably a glide, and thus a sonorant, as it can alternate with the vowel /u/.

The fact that two consonants can occur together at the beginning of a word does not in itself provide sufficient indication that they form a constituent. However, just as there is strong phonological evidence for the syllable , there are also good arguments for taking this position.

As a matter of fact, one example briefly discussed above already sheds some light on the issue: the blended form \textit{yout} for \textit{shout} and \textit{yell}. We argued that most blends occur at the boundary between two syllables, but there also are examples where blending happens within a syllable. In many cases, like in \textit{yout}, it then occurs at the boundary between onset and rhyme.

Blending is not always a speech error in English. It can sometimes also be a way in which speakers actively create new words out of two existing ones:

(139) \textit{smog} (\textit{smoke} and \textit{fog}), \textit{brunch} (\textit{breakfast} and \textit{lunch}), \textit{motel} (\textit{motor} and \textit{hotel}), \textit{infotainment} (\textit{information} and \textit{entertainment})

Interestingly, also in these cases, the blending occurs exactly at the boundary between two constituents. For instance, in \textit{brunch}, it occurs exactly between the onset and the rhyme; there are no blends of the shape \textit{breanch}.

As to the headedness of onsets, the most popular type of evidence comes from reduction processes: if, for some reason, only one of the two consonants is pronounced, it is typically the first one, the head. (Recall that headedness involves the claim that the head is necessary but the dependent is less so.)

One piece of evidence comes from language acquisition. In a study on the acquisition of children with a \textit{cochlear implant}, i.e. a permanent hearing aid that is implanted close to the ear, it was shown that these children tend to reduce clusters at some stage of their acquisition:

(140) \begin{tabular}{|l|l|}
\hline
\textit{adult word} & \textit{child form} \\
\hline
‘clocky’ & [kʰakki] \\
‘frog’ & [Joŋ] \\
‘brush’ & [butʃ] \\
\hline
\end{tabular}

There was a handful of cases in which it was the second consonant that survived \textit{[lʰak]} for ‘clock’, but the cases where it was the first segment were an overwhelming majority. Very similar results were obtained with normally hearing children in many experiments as well.

Furthermore, adult languages also sometimes show signs of the same phenomenon. An example is reduplication in Sanskrit. Recall that the morphological process of reduplication can copy a syllable. In Sanskrit, the copied
syllable is simplified: one of the simplifications is in the onset, which consists of only one consonant. (Other simplifications involve the nature of the vowel, which is of no concern to us now.) This is always the head. In the examples, the reduplication adds perfective meaning to the stem; I added a dash between reduplicant and base for clarification:

(141) base	reduplicant
prath ‘spread’ | pa-pratha
soaṭ ‘embrace’ | sa-soaṭ
mjaks ‘glitter’ | mi-mjakṣa
mna: ‘note’ | ma-mnur

The fact that in processes such as this, it is uniformly the first consonant that is preserved, can be described nicely by claiming that it is a head — since that is the only obligatory segment by definition.

Rhyme

As in the case of the onset, the evidence for the rhyme comes from several different sources; we will discuss only a few. One we have actually already seen above, in our discussion of Arabic stress: languages distinguish between light and heavy syllables in the assignment of stress. This distinction can (almost) always be described as a difference between a branching rhyme (with more than one segment, which is heavy and attracts stress) and a non-branching rhyme (with one segment, which is light). In the case of Arabic, taḥ in katabti ‘you wrote’ has stress because it is heavy, but ra in darabu is light and therefore unstressed.

Another piece of evidence comes from a phenomenon called compensatory lengthening. An instance of this can be found in the history of English. Compare the following Old English words with their German cognates:

(142) Old English	German
gos | Gans
oþer | Ander
softe | sanft
fiſ | fünf
us | uns

The Old English words all have a long vowel, where the German forms have a short vowel followed by a nasal. There is reason to assume that the latter language is more faithful to the state of affairs in Proto-Germanic, predating all of the Germanic languages, and that English is the language that has changed.

How can we describe what has happened? The assumption of the rhyme gives us a nice tool to formulate this description: the nasal was lost, i.e. it was delinked from its position on the skeletal tier in cases where it was followed by a fricative. After this, the empty position in the rhyme was filled by the preceding vowel. The lengthening is compensatory in the sense that the vowel length compensates for the lost consonant (we disregard the position of the s for now):
5.2. The internal structure of the syllable

In this example, the skeletal tier (which we have disregarded so far) has been added explicitly in order to see more clearly what is going on. The crucial step in the argument is that compensatory lengthening only involves consonants that get lost in the rhyme. There are basically no known cases in which compensatory lengthening involves an onset consonant that gets lost and results in lengthening of the vowel. CL is thus restricted to the domain of the rhyme.

The change we are witnessing in (143) is a priori different from the phonological processes we have seen before. We are dealing here with a diachronic change, the ‘input’ in (143) represents some stage in the history of English and the ‘output’ some other stage; and there is as yet no specific reason to assume that any speaker ever had both of them in his head. Still, diachronic changes like this, too, may give us some insight in the mental representations of speakers. After all, there must be a reason why it is only deletion of consonants in ‘heavy’ syllables that results in a long vowel.

On this assumption, then, we see autosegmental phonology at work. If a long u: would be nothing but a sequence of two short u’s, we would not really understand what was going on: we would have to say that the nasal would have turned into a full copy of the preceding vowel, which would make the representation of this change rather complicated.

Compensatory lengthening is found in many of the world’s languages. A well-known case can be found in Turkish (Turkic). In this language, there is good reason to assume that the process is synchronic, because, depending on sociolinguistic and pragmatic factors, speakers display optional deletion of a consonant (to be more precise, any of /v, j, h/). When deletion occurs, compensatory lengthening follows suit automatically:

(144) a. kahya ‘steward’ [kahja]-[ka:ja]
 b. eyül ‘September’ [e:yl]-[e:yl]
 c. sevmek ‘love’ [se:mek]-[se:mek]

Alternatively, one could assume that words are just stored in two different ways in the Turkish lexicon and that one is historically derived from the other. However, such an analysis would disregard the fact that the relation between not having a consonant and having a long vowel is systematic.
Nucleus

Within the rhyme, we sometimes distinguish a nucleus and a coda. The latter (like the onset) is the exclusive domain of consonants, whereas the former is assumed to contain vocalic material, for instance diphthongs, sequences of two vowels that occur in the same syllable (with a technical term: that are tautosyllabic).

A well-known example of a complex nucleus comes from French (Indo-European). This language has words such as the following:

(145) *trois* ‘three’ [trwa], *croix* ‘cross’ [krwa], *pluie* ‘rain’ [plwoo], *truite* ‘trout’ [trwit]

These words all start with three consonants: a sequence that we can recognize as a regular onset also in English, followed by a glide [w]. Since there is no place for this [w] in the onset, it has to be postulated somewhere else, and the nucleus seems an obvious place to do so.

Interestingly, there is independent evidence that indeed [w] can function in a nucleus in French. In order to see this, we have to look briefly at the definite determiner (the word meaning ‘the’). This small word is sensitive to whether the following word starts with an onset, as the following examples demonstrate:

(146) *camerade* ‘friend’ [kamrad] *ami* ‘friend’ [ami]
 le camerade ‘the friend’ [le kamrad] *l’ami* ‘the friend’ [lami]
 les camerades ‘the friends’ [le kamrad] *les amis* ‘the friends’ [lez ami]

If the following word starts with a consonant, the singular determiner has a schwa and the plural determiner has [e]. If the following word starts with a vowel, on the other hand, the singular determiner consists of a consonant only, whereas the plural determiner has a [z] after the [e]. (Notice that the allomorphy is reflected in French orthography for the singular, but not for the plural.)

We can already understand what triggers this allomorphy: French wants to create an onset in the first syllable of *ami*. In the singular we do this by dropping the schwa at the end of [a], whereas in the plural we do it by pronouncing an extra [z] after [le].

All of this means that the definite determiner gives us a test to see whether a noun starts with an onset or not. We can now apply this test to words starting with our glide [w]:

(147) *watt* ‘watt’ [wat] *oiseau* ‘bird’ [wazo]
 le watt ‘the watt’ [le wat] *l’oiseau* ‘the bird’ [lwazo]
 les watts ‘the watts’ [le wat] *les oiseaux* ‘the birds’ [lez wazo]

It turns out that there are two types of words in French. Some words, such as *watt*, behave as if they start with an onset, and we should therefore conclude that the [w] is in this onset. Other words, such as *oiseau* behave like *ami*. In these words, then, the [w] can only be part of the nucleus.
5.2. The internal structure of the syllable

It is important that allomorph selection is consistent for the singular and the plural of the definite determiner. There are no words which take e.g. [lo] in the singular and [le] in the plural. This makes it unlikely that speakers just remember what the singular and plural determiners are for every word. Rather, speakers have a system in their minds in which one form of the determiner goes with onset-initial words and another form with non-onset initial words. It is this system that can be neatly described under the assumption of subsyllabic constituency.

Coda

Whereas every syllable has a nucleus and a rhyme, and onsets are at least allowed in all languages, and often preferred, the coda position is restricted, and dispreferred in many different languages. As a matter of fact, there is an array of languages which do not have coda consonants at all. Examples of these are Fijian (Malayo-Polynesian), Mazateco (Mesoamerican) and Cayuvava (isolates). As a matter of fact, the following implicational universal seems to hold:

(148) If a language has closed syllables, then it also has open syllables.

In other words, all languages have open syllables (syllables without a coda), but only a subset has closed syllables.

As we mentioned, Boumaa Fijian is an example of a language without closed syllables. In order to repair potential violations of this generalisation, the language employs *vowel epenthesis*, the insertion of a vowel. We can see this at work in loanword adaptation. If a word with a closed syllable is borrowed (from English), a vowel is epenthesized to make the word more well-formed:

(149) Vowel epenthesis in Boumaa Fijian
 a. kaloko ‘clock’
 b. aapolo ‘apple’
 c. tfone ‘John’

As you can see, various other changes are also performed on these words. For instance, in the first word, the complex onset [kl] is broken up by a vowel, because Fijian does not allow complex onsets either. Similarly, Boumaa Fijian disprefers /dʒ/, and the first consonant of *John* has therefore turned into the affricate [tʃ]. Another thing you may observe that there are several potential vowels which can be epenthesized. This will not concern us here, either. The important fact is that final ‘coda’ consonants are not allowed, and vowels are epenthesized to ensure this. In this way, the consonant can be saved by being pronounced as an onset. Here are the syllable structures for the two languages:
The arrow in this example indicates that the English form is in some way ‘underlying’ to the Fijian form. At some point, speakers of Fijian must have adapted the English word to the phonological system of their language, which does not have codas.

Even in languages that do allow coda’s, the coda position is often quite restricted. For instance, Japanese (Japanese-Ryukyuan) only allows coda consonants if they share their place of articulation with the immediately following consonant. We thus find words such as those in (225a), whereas the forms in (225b) are not allowed.

(151) a. *kap.ta, *tog.ba, *pa.kap, etc.

This is not exclusive for Japanese; we also find it in an unrelated language such as Ponapean (Micronesian). In this language, we can see that this restriction takes a phonological effect: it causes vowel epenthesis, as the following examples demonstrate:

(152) /ak-dei/ a.ke.dei *ak.dei ‘a throwing contest’
/kiti.ki.men/ ki.ti.ki.men *ki.ti.ki.men ‘rat INDEF’

Another way in which the restriction on codas can be satisfied is by deletion of the offending consonant. Also this is attested in some of the world’s languages, e.g. in Jola-Fonyi (isolate):

(153) /let-ku-jaw/ le.ku.jaw *let.ku.jaw ‘they won’t go’
/jaw-bu-ŋar/ ja.bu.ŋar *jaw.bu.ŋar ‘voyager’

(We leave it as an open question why the final consonant of the word does not need to be deleted; word-final consonants tend to show a slightly different behaviour in many languages of the world.)

5.3 Sonority

The study of the way in which consonants and vowels are arranged in a word is called phonotactics. Obviously, dividing the word into syllables, and subdividing syllables in further subconstituents sets one step in the direction of a phonotactic theory.
Yet, so far we have been mostly implicit about another necessary step: we need to determine which segments can go into which positions in the onset, nucleus and rhyme. We have briefly and informally mentioned several such restrictions, e.g. that nuclear positions are (typically) vowels, and that languages allow only a small subset of consonants to appear in coda position. Further, we have observed that a typical complex onset consists of an obstruent as the head and a sonorant as the dependent.

In order to make more sense of these observations, phonologists often invoke the notion of the *sonority scale*, which looks roughly as follows (there are much more refined versions of the scale, taking into account many more categories):

(154) **Sonority scale**

<table>
<thead>
<tr>
<th>obstruents</th>
<th>nasals</th>
<th>liquids</th>
<th>glides</th>
<th>vowels</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

The notion of sonority was introduced already in 1881, by the German linguist Eduard Sievers (1850-1932), but there is no absolute consensus on the precise phonological or phonetic definition of sonority; as a matter of fact, many different definitions are used. For instance, it has been equated to the openness of the vocal tract and to amplitude (relative loudness). We will ignore the issue here; intuitively, the notion seems to correspond to ‘similarity to a vowel’. Obstruents are the absolute anti-vowels. They have a complete or almost complete constriction, they can be voiceless, etc. Nasals are already more vowel-like, for instance because they are inherently voiced, although, like plosives, they also involve complete closure of the oral cavity. The constriction of liquids is less constricted, and glides are obviously the consonants that come closest to the vowels.

If we use the numbers in (154) and transfer them into columns of asterisks (so obstruents get a column of height 1, nasals of height 2, etc.), we can represent the syllable structure of the English word *trim* as follows:

(155)

```
*       *
*       * *
*     * * *
*  * * * *
```

This mountain-like structure is typical of human language syllables. In particular, the vowel is always the highest element (not surprising, given our informal definition; the nucleus is therefore also sometimes called the *peak*). Furthermore, the segments before the peak (thus, those in the onset) gradually rise in sonority, whereas those following the peak, fall.

There are several points where languages may differ. One is in the required steepness of the rise before and after the peak. Generally, languages prefer to have a rather steep rise in the onset. For instance, in English, [kr] (creek) and [kl] are fine clusters, rising from the 1 of [k] to the 3 of [l], but [klu] is not, and neither is any other cluster of an obstruent and a following nasal (disregarding...
5.3. Sonority

See Section 5.4

dispersion

The reason for this is that the dispersion — the difference in sonority — between an obstruent and a nasal is not large enough. Languages can differ on this point: in German, the word *Knie* ‘knee’ is still pronounced with the initial [kn] cluster, which was lost in English. We can thus say that the minimal dispersion in the English onset is $3 - 1 = 2$, whereas in German it can be $3 - 2 = 1$. (German does allow onsets with greater steepness such as [kr] and [kl] as well.)

The fall after the peak, on the other hand, tends to be less steep. In many languages, obstruents are not allowed in the coda although nasals and liquids are. We will return to this below.

The irrelevance of word-edges

See p. 94

The following words are from Attic Greek, an ancient dialect of Greek (Indo-European) in which the classical playwrights Aeschylus, Sophocles, Euripides and Aristophanes wrote their major works (in the 5th Century BCE). Consider the forms in (156), where I have denoted the syllable boundary in each case:

(156)

<table>
<thead>
<tr>
<th>mi.kron</th>
<th>‘small’</th>
<th>ok.to:</th>
<th>‘eight’</th>
</tr>
</thead>
<tbody>
<tr>
<td>pa.tri</td>
<td>‘father’</td>
<td>des.mos</td>
<td>‘fitting’</td>
</tr>
<tr>
<td>(oi)a.gros</td>
<td>name</td>
<td>hag.nos</td>
<td>‘holy’</td>
</tr>
</tbody>
</table>

How can we know where these syllable boundaries are correct? Ancient scribes would not even write spaces between words, let alone that they would explicitly mark the boundaries between syllables. Still we have good reason to assume that the syllable boundaries are indeed in this position.

This reason is that the playwrights would write their works in verse, which consisted of regular patterns of light and heavy syllables (in a typical pattern, every line would consist of a number of *dactyls*: either one heavy syllable followed by two light, or two heavy syllables in a row). The first syllables of the words on the left systematically appear in the position of light syllables, whereas those on the right systematically appear in a heavy position. From this we can conclude that the first consonants in the clusters on the left belonged to the onset whereas those in the clusters on the right belonged to the coda.

You will observe that this fits nicely with the theory of the sonority profile lined out above. The complex onset clusters start with an obstruent and are followed by an *r*. On the other hand, the clusters in the column on the right consist either of two plosives or of a plosive followed by a nasal. If Attic Greek had the same dispersion profile as English, then the reason for this is easy to see: a consonant cluster forms a complex onset only if it has the right sonority profile; if not the consonants form a coda-onset sequence (i.e., they are *heterosyllabic*).

Although this argumentation seems solid, it runs into trouble once we consider the following words:

(157)

p^hbero ‘I destroy’, *kse nos* ‘stranger’, *skapto*: ‘I dig’

Exactly the clusters that were avoided word-internally as complex onsets seem to appear here at the beginning of a word. Since there is nowhere else for these
consonants to go, the conclusion seems unavoidable that Ancient Greek did have remarkable onset clusters after all.

You may have noticed however, that also English has a number of clusters which do not fit the template that we have described so far. These are words such as *skate*, *spy*, *steam*, *spray*, *splash*, *stream*, and *scream*. Not only do these words all start with two obstruents, in spite of the high demands on dispersion which English otherwise displays, but words like *spray* and *splash* even start with no fewer than three consonants.

In particular the latter facts give us an indication of what is going on here. All these clusters look like they have an *s* followed by what is otherwise a normal complex onset: an obstruent followed by a liquid. It looks as if in English, a word can be preceded by an *s* that does not belong to the syllable structure proper, so that we have the following structure for a word like *splash*:

\[
\begin{array}{c}
\sigma \\
O \quad R \\
\text{N} \quad \text{C}
\end{array}
\]

The reason why *s* possesses this mysterious property in English is unclear (one phonological article about the issue is called “Do you believe in magic?”), but this property of being *extrasyllabic*, i.e. not belonging to the syllable structure might be a property of a number of consonants in Greek. Apparently, the following is true for some languages:

(159) \text{At the beginning of the word, at most one consonant may be extrasyllabic.}

In English and some other languages, extrasyllabicity is restricted to /s/; in Greek, other consonants can have it as well. One might object to this move that it is a trick to save the original hypothesis. This criticism is justified to the extent that we do not really understand what is going on here, but notice that we have at least restricted the ‘trick’ to one position in the word.

Furthermore, there is evidence that the ‘extrasyllabic’ *s* indeed behaves the same as the Greek consonants. This evidence comes from Italian (Indo-European), a language that has onsets very similar to the English ones: normally an onset consists of at most two consonants of which the first is an obstruent, but *str*, *sp*, etc. are also allowed, in other words, /s/ can be extrasyllabic. In this language, the one syllable in the word which has stress, needs to be heavy. This can be seen in the following facts:

(160) a. *fato* ‘fate’ [ˈfatto]
 b. *capra* ‘goat’ [ˈkaːpra]
 c. *parco* ‘park’ [ˈparko]
 d. *pasta* ‘pasta’ [ˈpastə]
Examples (160a) and (160b) show that the vowel is usually lengthened to satisfy this condition, regardless whether one or two consonants follow, as long as the consonants form a well-formed onset. In (160c), you see that this does not happen before a cluster [rk], which has the wrong sonority profile for being an onset. Finally, (160d) shows that /st/ behaves as the non-onset [pr] rather than the onset [pt], in spite of the fact that it can occur at the beginning of the word (as in *stella* ‘star’).

Notice that this is exactly the same pattern as we saw for Attic Greek before: clusters which are possible at the beginning of the word do not behave as onsets in the middle of the word, but one of the consonants becomes a coda, making the previous syllable heavy.

Interestingly, there is even evidence for a special position of the /s/ at the beginning of a word. Italian has two forms of the masculine definite determiner (*lo* and *il*), which are distributed in a way that looks very similar to what we saw in French:

(161)

\[
\begin{align*}
l'est & \text{ 'the East'} \ [\text{lest}] \ (/lo\ est/) & \quad \text{il burro 'the butter'} \ [\text{il burro}] \\
& \quad \text{il clima 'the climate'} \ [\text{il kli:ma}]
\end{align*}
\]

We find *il* if the word starts with a simple or complex onset, but *lo* if it does not. This gives us the perfect test for s clusters’ as (162a) demonstrates, these show the expected behaviour, viz. they do not start with an onset:

(162)

a. *lo studente* ‘the student’ [lo studente]
 b. *cf. il senatore* ‘the senator’ [il senatore]

Clearly, the words do not behave exactly the same as those starting with a vowel (in the latter case the form of the determiner is *l* not *lo*), but the similarity is striking enough to count as evidence that our analysis of the special status of /s/ is right.

The syllable structure of *studente* thus can be drawn as follows, with the s outside of syllable structure:

(163)

\[
\begin{array}{c}
\sigma \\
O & R \\
\sigma & R \\
O \\
N & N & C & N
\end{array}
\]

Syllable contact

Sonority does not only play a role within the syllable, but also across syllable boundaries. In particular, many languages require codas to have a lower sonority than the following onset consonant. For instance, in French, although both [pat] (*pâte* ‘pastry’) and [ri] (*que je rie ‘that I laugh (SUBJUNCTIVE)’) are well-formed syllables, the combination *[pat.ri]* is not well-formed; we find *[pa.tri]* (*patrie* ‘fatherland’) instead.

We call this requirement the Syllable Contact Law:
5.4. The syllable structure of English

(164) Syllable Contact Law (SCL)
If \(C_1 \) is in the coda, and \(C_2 \) is the head of the onset of the following syllable, the sonority of \(C_1 \) should not be smaller than that of \(C_2 \).

We already implicitly used the SCL above, in our discussions of Attic Greek and Italian. The SCL can also be seen at work in Korean (isolate). In this language, whenever a sequence arises that would violate the SCL, a phonological process applies to repair this unwanted configuration:

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
<th>Gloss</th>
<th>Related form</th>
</tr>
</thead>
<tbody>
<tr>
<td>/sip-nyon/</td>
<td>[sɪm.nyon]</td>
<td>‘ten years’</td>
<td>[sɪp-il] ‘ten-ACC’</td>
</tr>
<tr>
<td>/kaum-li/</td>
<td>[kaum.ni]</td>
<td>‘supervision’</td>
<td>[to-li] ‘ethics’</td>
</tr>
</tbody>
</table>

Nasalisation (of plosives and laterals) and lateralisation (of plosives and nasals) apply either to the first or to the second segment in the sequence, depending on certain complicated factors which will not concern us here. What is important for us is that these processes always apply to clusters that violate the SCL and results in clusters that no longer do: the SCL is the trigger of the process.

Neither of these processes occurs if the underlying cluster satisfies the SCL:

(166) a. /kun-tæ/ - [kʊn-tæ] ‘army’
 b. /kal-ku/ - [kɑl.ku] ‘desire’
 c. /kal-maN/ - [kɑl-maN] ‘desire’

This is a strong indication that what is at work in these cases is the SCL. Sonority restrictions of this type show up in many languages. Importantly, the reverse effects are never found; these would be languages which have e.g. \(rt \) onsets, but no \(tr \); or which allow \(ak.la \) syllable contacts, but not \(al.ka \).

5.4 The syllable structure of English

To conclude this chapter, we briefly consider the syllable structure of one language. English is a good choice, given that you will be familiar with it when you can read this book, but also because it has a reasonably complex syllable structure. (There are languages which only have core syllables, hence are much simpler, but also languages like Polish, Georgian and Berber, which are much more complex). We will see that the theory developed in the preceding sections gives a good frame for understanding the phonotactics of English, although several details require further elaboration. I concentrate on the consonantal positions here (i.e. onset and rhyme); English vowels are a rather complicated area.

Let us first consider the onset. The constituent is obviously not obligatory in English, given words like English and onset, which start with a vowel, yet are perfectly acceptable to the English speaker.

Simple onsets can be filled by any consonant, with one notable exception: the \([ŋ]\) can occur at the end of the word (sing), but not at the beginning (*ngis),
and, in most varieties of English, not in the onset of a word-internal syllable either. A word such as finger is pronounced as [fɪŋɡər], not as *[fɪŋɡə]. (There are a few marginal cases such as dinghy) It is true that singer is pronounced as [ˈsɪŋə], but this is only possible because there is a morpheme boundary between the [ŋ] and [ə]. (More on the interaction with morphology in Chapter 9.)

As to complex onsets, we can draw the following table (+ denotes that a combination exists, − that it does not or is very marginal):

<table>
<thead>
<tr>
<th>C₂</th>
<th>l</th>
<th>r</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>t</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>k</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>b</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>d</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>g</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>f</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>θ</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>s</td>
<td>+</td>
<td>−</td>
<td>+</td>
</tr>
</tbody>
</table>

See Section x

The first segment of a cluster is always a ‘simple’ obstruent. Affricates such as [tʃ, dʒ] do not occur in clusters at all (*frøhn, *chleaf). The second consonant in a cluster is either one of the liquids [l, r] or the glide [w].

You can see that not all cells are filled in the table. In particular, the combinations [tl, dl, 0l] and [pm, bw, fw] are missing. If you observe these triples closely, you will discover that the first three all involve a coronal obstruent followed by a coronal liquid, and the second triple all a labial obstruent followed by a labial glide. In other words, English onsets satisfy the following criterion:

(168) The two segments in the onset cannot have the same place of articulation.

The odd one out is of course coronal s which can be followed by a coronal l, but as we have already seen, s can occupy a position outside of the syllable. The reason why sr does not occur in English is a mystery; it seems that in onsets with r, English prefers [ʃ] (sh·ril, shrimp).

We now turn to the coda position in English. We can observe that every consonant can occur in this position, except [l]: sip, sick, sit, sin, ill, in, rush, rib, kid, etc. Furthermore, we also find consonant clusters:

(169) harp, help, lamp, walk, dark, rank, old, word, wound, etc.

We can take these as evidence for English having a complex coda, which we have not seen so far:
The sonority profile of the codas in (169) is always the same: a liquid or nasal followed by an obstruent. A coda is therefore almost the mirror image of an onset, except that nasal+obstruent sequences are viable codas (lamp, rank, hand) but the opposite is not a well-formed onset in English (*pmal), although it is in other languages.

However, this is not the whole story. In the first place, complex codas are (almost) completely restricted to the word-final syllable in English: a word like *lampbroo does not seem well-formed. In the second place, there are quite a number of apparent counterexamples to the generalization that complex codas have a falling sonority profile:

(171) act, lapse, past, apt, etc.

The list becomes even longer if we consider morphologically complex forms (length, depth, barred, etc.) Notice that in all these cases, the final, ‘offending’ consonant is a coronal obstruent. It seems that just like the voiceless coronal fricative s can be an exception at the beginning of the word, all voiceless coronal plosives can be exceptional at the end of the word.

5.5 Exercises

1. Draw the syllable structure of the following English words: stream, black, each, blister.

2. The American poet Adelaide Crapsey (1878-1914) became known for developing a verse form she called the cinquain, which was supposed to be an American analogue of the haiku. Below are two examples from her work:

(172) a. Triad

These be
Three silent things
The falling snow... the hour
Before the dawn... the mouth of one
Just dead.

b. Amaze

I know
Not these my hands
And yet I think there was
A woman like me once had hands
Like these.
Describe the form of the cinquain. Can you give a reason why the existence of such a form (created by a 19th Century American author) is less compelling an argument for the syllable than the South-Slavic decasyllable?

3. A spoonerism is an error in which sounds in two different words get transposed. Here are some examples of spoonerisms by English speakers:

(173) a. three cheers for our queer old dean ‘dear old queen’
 b. is it kisstomary to cuss the bride ‘customary to kiss the bride’
 c. a blushing crow ‘a crushing blow’
 d. a well-boiled icicle ‘well-oiled bicycle’
 e. is the bean dizzy ‘dean busy’
 f. frish gotto ‘fish grotto’
 g. flake bruid ‘brake fluid’
 h. spicky toint ‘sticky point’
 i. The Shaming of the True ‘taming of the shrew’ (title of a rock opera)

In what way do such errors provide evidence for subsyllabic constituency? What about speech errors such as frake bluid?

4. Italian, like French, has a number of rising diphthongs (e.g. [je, ja, we, wa]). Considering the fact that these rising diphthongs can occur after a single consonant, but never after two in Italian, what is the difference in syllabification between the two languages?

(174) a. pieno ‘full’ [pjeno]
 b. chiave ‘key’ [kja:ve]
 c. quello ‘that’ [kwel:ɔ]
 d. guado ‘ford’ [gwa:do]

5. What explains the epenthesis of i in the following words in Lénakel (Tanna)?

(175) Underlying	Epenthesis
a. /t-n-ak-ol/	[ti.na.gol] ‘you will do it’
*[tia.gol]	
b. /ark-ark/	[ar.ga.rik] ‘to growl’
*[ar.gark]	
c. /kam-n-μan-n/	[kam.ni.μa.ni:ni] ‘for her brother’
*[kamn.μann], *[kamm.μann]	

6. Here are some verbs in present and future tense in Tagalog (Austronesian):
5.5. Exercises

(176) Present Future
bili ‘to buy’ bibili ‘will buy’
talon ‘to jump’ tatalon ‘will jump’
alis ‘to leave’ aalis ‘will leave’
kain ‘to eat’ kakain ‘will eat’
matulog ‘to sleep’ matutulog ‘will sleep’ (you can consider ma a prefix)
maligo ‘shower’ maliligo ‘will shower’

How is the plural form derived from the singular? How can this type of morphology be described?

7. In the history of Spanish clusters of consonants sometimes reversed their order. Look at the following examples.

(177) Latin Old Spanish Middle Spanish
spatula espald a espald a ‘blade’
retina riend a rienda ‘rein’
titulo tild e tilde ‘tilde’

The relevant clusters have been underlined. What principle of syllabification could explain this change?

8. Voiced obstruents are disallowed in certain positions of the word in German (Indo-European). Consider the following arguments and explain why it can be taken as an argument for the syllable (the examples in the lefthand column are real words of German, the examples on the right could never be).

(178) a. [di:p] ‘thief’ *[dizh]
b. [rac:t] ‘wheel’ *[razd]
c. [berk] ‘mountain’ *[berg]
d. [glas] ‘glas’ *[glaz]
e. [motiv] ‘motive’ *[motif]
f. [votka] ‘vodka’ *[vodka]
g. [vikwam] ‘wigwam’ *[vigwam]
h. [betmuntan] ‘badminton’ *[bedmuntan]

9. It could be argued that open syllables satisfy the Syllable Contact Law in the best possible way. Comment.

10. The oldest known form of Greek (called Mycenaean Greek) was written in a syllabic writing system called Linear B. Some of the properties of this system are that l, r, m and n are not written at the end of the word or before another consonant: for instance, one wrote pa-ta instead of panta. Another property was that certain consonant clusters were written as more than one syllable (po-to-li-ne for ptolin). A third property was that word-initial s was omitted before a consonant (stathmos became ta-to-ma). Comment on each of these three observations from the point of view of syllable theory.

11. English words are nowadays being borrowed into many languages. Sometimes there phonological shape is adapted to the borrowing language. Consider the following words in Brazilian Portuguese (very similar things happen e.g. in Arabic):
Comment on the reason for this epenthesis from the point of view of syllable theory.

12. In many varieties of English a [j] sound is inserted before an [u] in words like pew, cue and hue. Give evidence to demonstrate whether the [j] is inserted in the onset or in the nucleus.

13. The online edition of the [WALS](World Atlas of Language Structures) has, among other things, a chapter on syllable structure, written by Ian Maddison. The map shows three types of languages: with simple syllable structure, with moderately complex syllable structure and with complex syllable structure. Give the templates that are used for each of them, and draw them as in the form of a syllable bracket. (You are allowed to put segments in parentheses.)

14. Look at the following data from Kazakh (Turkic) and explain how they are evidence for the Syllable Contact Law.

(180) /kol-lar/ [kol.dar] ‘hands’ cf. [al.ma.lar] ‘apples’

/murin-ma/ [mur.in.ba] ‘nose-INT’ cf. [kol.ma] ‘hand-INT’

15. (If you are a fieldworker.) Working with an informant, give a complete overview of the syllable structure of some language (other than English) along the lines of section 5.4. (Since we have not covered the whole body of phonological knowledge on syllable structure in this chapter, it may well be that you encounter things that do not fit the model of this chapter. Describe those too, and explain what the problem is.)

16. (If you are a computer programmer.) The CELEX database is a database of English (as well as Dutch, German and Tuvan) words, which you can access among other things in syllabified form. Build a program that makes an inventory of all the syllables of English. Do you find any syllables which do not fit the templates described in this chapter?

Sources and further reading

Section 5.1. The text of the Asanaginica can be found on the internet at [Wikipedia](https://en.wikipedia.org/wiki/Asanaginica). The data on syllable structure in Quechua (Quechua) are taken from O’Rorke (2008). Watson (2011) gives an overview of stress in (Palestinian) Arabic. The reduplication data from Yaqui are discussed in Haugen (2003). More on the Tagalog language game: Conklin (1956); the Hausa language game is documented in Alidou (1997). A classic study on the role of syllable structure in speech errors is MacKay (1972); his data in the study reported here were from Meringer and Mayer (1895). A classical collection of papers on the relevance of speech errors for phonology is Fromkin (1973). The classical article on syllabification in children is Liberman et al. (1974). The experiment of perception in French was originally reported on in Cutler et al. (1986). More on writing systems and their linguistic analysis can be found in Coulmas (2003).
Section 5.2. The relevance of the Axininca Campa data for phonological theory was pointed out by McCarthy and Prince (1993a). The acquisition data of Dutch children are from Fikkert (1994). The facts about reduplication in Sanskrit are discussed in more detail in Kennedy (2011). The study on complex onsets in children with a cochlear implant is Chin (2006). Old English Compensatory Lengthening has been described in Campbell (1959) and Hogg (1992) and further discussed in Ewen and van der Hulst (2001); Gussman (2002). The Turkish phenomenon is discussed in Sezer (1986); Goldsmith (1990); Kenstowicz (1994); Gussman (2002). A standard reference to the modern analysis of Compensatory Lengthening is Hayes (1989).

The French examples are discussed in Kaye (1989), who gives them a slightly different interpretation. The Fijian case is analysed in much more detail in Kenstowicz (2007). One study on Japanese (and other) syllable structure is Itô (1986).

Section 5.3 The notion of sonority is discussed in Parker (2002, 2008). It was introduced into phonology by Sievers (1881); the particular scale discussed here is from Clements (1990). The data from Attic Greek are discussed among others in Steriade (1988); Kenstowicz (1994); Kiparsky (2003). The article “Do you believe in magic?” is written by Kaye (1992). The Italian data are discussed in that article as well as in Chierchia (1986) and Davis (1990). Krämer (2009) summarizes the literature on Italian phonotactics. Work on the Syllable Contact Law includes Vennemann (1988); Clements (1990); Gouskova (2003). The Korean data are from Davis and Shin (1999), and the data from Old Spanish are from Holt (2004).

Section 5.4. Some descriptions of English phonotactics are Lass (1976); Harris (1994); Hammond (1999).

Chapter 6
Phonological computation

6.1 Computation and representation

We have so far concentrated on the internal structure of phonological forms: the way phrases and words are organized into smaller units of sound structure. Theories about this aspect are often referred to as theories of phonological representation: how are the concrete physical events corresponding to speaking represented in the language system, and in the mind.

Next to this, any phonological theory needs to talk about computation as well. Theories of computation talk about how phonological forms are related to each other. For instance, it is not unreasonable to assume that the following words start with something which is the same thing (the same morpheme). Here is an example. Turkish is a language which displays the process of vowel harmony, which means, roughly, that suffixes take a different form based on the phonological shape of the stem to which they are attached:

b. pul ‘stamp’, pul-lar ‘stamps’, *pul-ler, *pil-ler

We want to say that the thing which expresses the plural is always the same morpheme (LAR), which sometimes shows up as lar and sometimes as ler. The relation between ler and lar is the topic of computational phonological theories. Such theories usually assume that one of the two — say, lar — is underlying and that the other derived from it (for instance by spreading a feature from the stem to the base. We tacitly already used such derivational terminology already below.

Seen in this way — which seems to be the standard view and is the view we will also adopt here — phonological computation thus takes an input, an underlying form, as an input and some more concrete form, a surface representation, as the output. Phonology thus works as a little computer which transforms things which are there in our mental lexicon, where the underlying representations are thought to reside, to things which are closer to the phonetic reality. The latter are derived from the former; since this is the most common view, theories of computation are often also called theories of derivation.

Theories of representation and theories of computation are largely inde-
pendent of each other, since they are designed to explain different kinds of
phenomena. In (181) above, it is a fact about phonological representations in
Turkish that all vowels in a word are either front vowels or back vowels. It is
a fact about derivations that it will be the suffixes which change in stem-suffix
combinations, and not the stems.

The theory of representations will tell us what are the objects that a phono-
logical theory can talk about — for instance, phonological features, phon-
ological segments, autosegmental tiers, syllables, etc., as well as what kinds
of relations these will entertain with each other: it gives us a measure for the
well-formedness of an individual representation. The theory of computations,
on the other hand, tells us how different representations can be related to each
other: when one morpheme takes a different shape in different phonological
contexts, how these shapes are related to each other; what are the possible
changes a phonological representation can undergo.

Underlying representations

There is a difference between printed letters and hand-written letters: the
former are all independent from each other on the paper — except in the case
of so-called ligatures like ‘fi’ — but the latter are usually connected to each
others by all kinds of small lines. A hand-written <n> looks a little different
after a <n> (line is coming from below) than after a <o>.

Sounds tend to adapt themselves even more to each other than hand-
written letters, both phonologically and phonetically. For instance, the last
consonant of the English prefix in- changes according to the context, witness
words such as:

 (182) impopular, inactive, impopular, if[y]consistent, irregular, illegal.

We have of course already seen that this is the result of spreading a Place
of Articulation feature from the base to the nasal consonant. In order to do
make explicit how assimilation works as a computation, we have to add a
dynamic element to our theory, which can explain why certain things change
and others do not. Such a theory should also describe why certain changes are
possible in some languages but not in others, even though they have to deal
with similar problems: other languages may react to ‘problematic’ sequences
such as /uv/ in a different way, for instance by deleting the nasal.

In order to do set up a theory of computation, we distinguish two types
of phonological representations for every form: an underlying representation —
the form as we assume it is stored in the mental lexicon of the speaker — and
a surface representation — the phonological form which is closest to the actual
speech sounds and/or articulatory instructions. One underlying representa-
tion (/u/ for the prefix) can correspond to more than one surface representa-
tion ([u], [uu], [iu], etc.) and it is not the case that underlying representation
and surface representation are necessarily distinct: underlying /u/ corre-
ponds to surface [uu]. We will assume that underlying representations and
surface representations have the same formal structure: they consist of fea-
tures, autosegmental tiers, syllables, etc., in exactly the same way.

Let us concentrate on one fairly simple process, final devoicing in German,
illustrated in\(^{(183)}\):

\[
(183) \quad \text{a. Hünd 'dog (sg.)' [hunt], Hunde 'dogs (pl.)' [hund\(\alpha\)]}
\]

The first observation we have to make is that we know that \([a]\) is a plural suffix in German. We also find it for instance in Schuh 'shoe (sg.)' [\(\text{Su}\)] - Schuhe 'shoes (pl.)' [\(\text{Su}\@\)]. We thus have a situation where we have to assume that the forms hunt and hund are derived from the same underlying form.

As a rule of thumb, we can safely assume that the underlying form always is a surface form somewhere, so that we have two possibilities: either /hund/ is the underlying form or /hunt/ is. Notice a notational point here: we write underlying forms between dashes //, whereas output forms are written in square brackets \([\]). A further notational point is that we write a derivational relation between two forms with an arrow, pointing from the underlying form to the phonetic form, as follows:

\[
(184) \quad /a/ \rightarrow [\beta]
\]

So which of the two /hund/ or /hunt/ is the underlying representation for the German word for ‘dog’? In principle, both are possible and the isolated fact in \((183)\) does not provide us enough information to decide. We have to consider the overall system of German. Notice that we have to decide between the following two derivations:

\[
(185) \quad \text{a. } /\text{hund}/ \rightarrow [\text{hunt}] \text{ (at the end of the syllable)}
\]
\[
\quad \text{b. } /\text{hunt}/ \rightarrow [\text{hund}] \text{ (before } @\text{)}
\]

How do we choose? One observation we can make is that there actually are no German words ending in a [d] (or any other voiced obstruent, for that matter). This is captured by the derivation in \((185a)\): even if a word starts its life in the lexicon having an /d/, it will never make it to the surface as a [d], but will become a voiceless consonant, in something like the derivation \((185a)\). Derivation \((6.1)\), however, has nothing to say about this fact.

On the other hand, cannot easily be extended to other kinds of facts. For instance, there are many German words in which the /t/ does not change before a schwa. For instance, the adjective for ‘colourful’ is bunt. When we inflect this adjective, it can get a schwa, but the /t/ remains unchanged: bunt[\(\text{un}\)].

Although descriptively for this one individual fact both analyses are equivalent in linguistics, and in science more generally, we aim to choose the analysis that is most easy to generalize to other facts. Since it is easy to generalize \((185a)\) (viz. to \((186)\)), but not \((6.1)\), we assume that the former holds, and hence /hund/ is the underlying form:

\[
(186) \quad /\ldots\text{[voice]}/ \rightarrow [\ldots\varnothing] \text{ (at the end of the syllable)}
\]

Notice that the condition ‘at the end of the syllable’ is also a familiar one: it is an effect of the special status of codas.
6.2 Optimality Theory

In this chapter, we will look at one specific theory of phonological computation, *Optimality Theory (OT)*, which for the past few decades has been dominant in this area, albeit in several varieties (we concentrate here on the most classical, standard variety of the theory).

Operations

Like other derivational theories, Optimality Theory involves derivation from an input form for every morpheme to an output form. We can get from one to the other by applying a number of *minimal operations*, each defined in terms of the representations we use; so autosegmental structures, syllable structures, etc.:

- We can *add* or *delete* a feature – and in this way we may turn */hund/ into [hunt] by deleting the feature [voice] at the end
- We can *spread* features such as tone, or vocalic features such as we have seen for Turkish
- We can *shorten* or *lengthen* consonants and vowels — we have seen an instance of this where we derived *cittá* [s:o:lnta] from a form with an underlyingly short consonant in Italian
- We can *epenthesize* (insert) consonants and vowels — such as has happened for instance in the Axininca Campa word [noŋkomati] which is derived from */noŋkoma:i/ ('he will paddle'). Klopt dit?
- We may *change syllable structure* as exemplified e.g. in the derivation between */hund/ (where */d/ is in the coda of the first syllable) and [hun.d@] (where it occurs in the onset of the second syllable).

We could apply each and every one of these operations on any underlying form. In actual practice, we only take action however if this improves the form in some sense; if the output form becomes better than the input form. As we have seen, the reason to delete the feature [voice] in */hund/, is that in this way we can satisfy a requirement on syllable coda’s. We can write such a requirement (in OT, these are usually called constraints) as follows:

\[(187) \text{DEVOICE: Consonants at the end of the syllable should not have the feature } [\text{voice}].\]

Notice that this formulation of the constraint presupposes certain representational assumptions, for instance that we can distinguish consonants, that there is syllable structure and consonants can occur at the end of syllables, and that we have a feature [voice]. \[(184)\] is probably an instance of a more general principle requiring coda consonants to have as few consonantal features as they can get.

An important step in OT thinking is that we only delete [voice] in */hund/ because DEVOICE asks for it. We would not delete [voice] in e.g. the word *denn* ‘then’ [d:sn], because there is no constraint which requires deletion in this case. To the contrary, there is a general principle of economy or *faithfulness* — as it is called in OT — which states the following:

\[\text{faithfulness: } \text{any feature not disallowed by DEVOICE must be retained.}\]
6.2. Optimality Theory

(188) **FaiHfulness**: The surface representation should be as close to the underlying representation as possible; do nothing.

If **DvoiCe** is not operative in German, **FaiHfulness** is; therefore *[tun] is a bad output form for /dan/; it has violated **FaiHfulness** without necessity.

Two functions

So how do we decide which operations can be applied and which cannot? The (phonological) grammar consists of two functions, called **Gen (Generator)** and **Eval (Evaluator)**. **Gen** takes an input form and blindly applies phonological operations to it in any conceivable combination. In this way it creates a very large number of possible output forms, called **candidates**.

As a matter of fact, this number will be infinite in classical OT. If we take the input form /hund/, we can change all the features of all four segments, but we can also go on adding consonants and vowels to this structure indefinitely. Adding 5,000,000 consonants to this form will probably not improve the structure for any kind of constraint, but **Gen** is assumed to be blind to this. The idea is not to be psychologically real (nobody assumes that every time you utter a word, you go through all logically possible things you could do to that word), but to offer a precise model of what the best possible form in a language is.

The output of **Gen** thus is a very large set of candidates. The function **Eval** takes this set as its input and determines which single one of these best satisfies all grammatical principles, including the two we have just introduced, **DvoiCe** and **FaiHfulness**. The form is thus a kind of compromise: something has changed, but only in order to satisfy the needs of the language.

Schematically, the derivation can now be drawn as follows:

```
```

In this case, **Eval** will choose *[hunt]* as the definitive surface structure for German because it satisfies **DvoiCe** without making all kinds of unnecessary changes. For the principle of **FaiHfulness**, however, this is not the best possible form; that would have been *[hunt]*.

This observation has a few implications; in the first place, the actual surface form is not perfect in the sense that it satisfies all possible constraints. It is not possible to be perfect in this sense, since constraints can impose conflicting demands. This is why the theory is called Optimality Theory: the ‘winner’ of the evaluation is not necessarily impeccable, but it is optimal; the best one can do.
Secondly we may observe that apparently Devoice has more weight in the grammar of German than Faithfulness. We can write this down as follows:

(190) Devoice >> Faithfulness
(pronounce: ‘Devoice dominates Faithfulness’)

There are also languages in which the order of these constraints is reversed. There is no devoicing in the Yiddish word [hund] and we may assume that the reason for this is that in this language we prefer to be faithful rather than satisfy this particular requirement on syllable structure wellformedness. The crucial difference is that German has the order in (190), whereas Yiddish has the ordering in (191).

(191) Faithfulness >> Devoice

An interesting assumption of (the classical version of) OT is that all constraints are universal; languages differ only in the relative ordering of the constraints. Metaphorically speaking, phonology in all languages consist of a number of forces, and these forces are always the same. The only difference between languages is how powerful each and every one of these forces is. Constraint ranking is the only possible difference between two languages; in this sense, OT is a strong theory of language variation: it claims that systematic differences between languages always can be described with an ordering of universal constraints.

Faithfulness is not one thing

Our analysis of final devoicing in German is not completed yet. It is true that [hunt] satisfies Devoice, but this is true also for e.g. [hant] and [hunda]. So why is the former the winner? The answer is relatively easy to give for [hant]. Like [hunt], this form violates Faithfulness, in that it has deleted a feature [voice], but it has done even more: it has also changed the specification for [round] on the vowel, and this is an unnecessary extra violation of Faithfulness. Apparently, we do not just count whether or not a constraint is violated, but also how often this is the case.

Matters are more difficult for the comparison with [hunda]. In order to get there from our underlying form, we arguably need to take only one step: insert an empty vocalic position. So why does this form lose from our winner [hunt]? We will have to split up our cover constraint Faithfulness into a more fine-grained structure of constraints which are all ordered. In particular, we will need at least the following two faithfulness constraints:

(192) a. Keep-Feature: All features in the underlying representation must be present in the surface representation
b. *Feature: All features in the surface representation must be present in the underlying representation
c. (Dutch): *Feature >> Keep-Feature

We can now consider [hunt] as a better surface structure than [hunda], because the former violates a lower-ranked constraint than the latter.
6.3. A case study: Nasal assimilation

Tableau

It is common practice to draw the evaluation of surface candidates in a so-called tableau; in the case at hand, this tableau looks like this:

<table>
<thead>
<tr>
<th>/hund/</th>
<th>DEVICE</th>
<th>*FEATURE</th>
<th>KEEP-FEATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>hund</td>
<td>*!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hunt</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>hundo</td>
<td>*!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hunt</td>
<td></td>
<td></td>
<td>**!</td>
</tr>
</tbody>
</table>

This should be read in the following way. In the left-hand column you see the underlying representation on top. Immediately below it you see some of the more interesting output candidates. Given that there are infinitely many things we can do, it is impossible to draw all of them, but you do not have to worry about this: it is typically possible to determine which forms are relevant for a discussion and which are not.

From left to right, you see the names of the relevant constraints, in the order in which the grammar (of German, in this case) has ordered them. An asterisk in a cell indicates that the form in question violates a constraint, and two asterisks indicate that it violates the constraint twice. An exclamation mark behind an asterisk indicates that this violation is ‘fatal’ for the form in question; it is the reason why this form is not the ultimate winner. The pointing finger directs the reader’s attention to the form which has no fatal violations and is therefore the optimal form and the actual surface structure.

6.3. A case study: Nasal assimilation

Let us now turn to an example which is slightly more complicated, viz. the behaviour of the English prefix /in-/ which displays nasal assimilation. Nasal assimilation is a phenomenon which is much more wide-spread in languages of the world, and has been analysed in terms of autosegmental representations.

How are we going to integrate such an analysis into an OT framework? We obviously need to have the right constraints, which is a craft in its own right. This section will be an exercise in formulating one such constraint.

Consider the input representation (194a) and the candidate outputs in (194b).

(194) a. /in+polite/
 b. { [impolite], [impolite], [impolite] }

The fact that [impolite] is the winner means that we prefer a structure in which the nasal and the following consonant share their Place node. Let us formulate the relevant constraint as follows:

(195) PLACEHARMONY (first version): A nasal has to bear the same Place node as a neighbouring consonant.

Clearly, impolite is the only form among our set of candidates satisfying this constraint, if we assume that it has the following structure:
6.3. A case study: Nasal assimilation

However, as soon as we make our set of candidates just a little bigger, we will see that there are more possibilities. Take for instance the form *intolite*, in which the stem consonant has adapted to the prefix, rather than the other way around:

\[
\text{impolajt}
\]

\[
\text{Place}
\]

In *intolajt*, there are more possibilities. Take for instance the form *intolite*, in which the stem consonant has adapted to the prefix, rather than the other way around:

\[
\text{intolajt}
\]

\[
\text{Place}
\]

Presumably, the nasal in the input /in+polite/ is more sensitive to harmony than the plosive is. There are two possible explanations for this difference. It could be that there is some internal difference in the structure of nasals and segments which causes the asymmetry; alternatively, this could point to a difference between affix segments and stem segments. Although the second explanation has something to say for it (as we will see later in chapter), there are also clear indications that there is something right about the first explanation. In English place assimilation, for instance, there is always a nasal involved: there is no assimilation in words such as *actor* (*[ækkɔr]*, *[ættɔr]*)

Let us assume than for the moment that the second analysis is the correct one. We can build this restriction into our theory in various ways. We could make it a matter of a faithfulness constraint, which would somehow say that nasals tend to be less faithful to their underlying representation than other consonants. Alternatively, we may build the restriction into our definition of the constraint \(\text{PLACE}_\text{HARMONY} \), which we will do here:

\[
\text{PLACE}_\text{HARMONY} \text{ (second version): A nasal at the surface structure has to bear the underlying Place node of a neighbouring consonant.}
\]

This now explains why /in+polite/ is not rendered as *[intolite]*. But we are still not completely satisfied. This second version suggests that every nasal will borrow the place of its neighbor, either on its left or on its right. This is not true for English, witness words such as *techno* in which there is no assimilation at all.

Again, there are several possibilities. We could assume, for instance, that the difference with the previous case is that nasal occurs on the righthand side of the neighbouring consonant rather than on its left. We could now revise \(\text{PLACE}_\text{HARMONY} \) in the following way:

\[
\text{PLACE}_\text{HARMONY} \text{ (third version): A nasal at the surface structure has to bear the underlying Place node of a neighbouring consonant on its righthand side.}
\]
This version will work sufficiently well for English, even though the question remains open what is so special about the righthand side of the nasal. Yet if we consider other languages, we discover soon enough that ‘righthand side’ and ‘lefthand side’ are not the right concepts to be used. Since OT assumes that constraints are universal, we are however on the quest for a constraint which can explain the facts of as many languages as possible.

We will have a brief look at Dutch dialects. Many of these dialects — we take the dialect of Hellendoorn, a small town in the north east of the Netherlands, as an example — show syllabic nasals, for instance as the infinitival ending: *eten* ‘to eat’ [etn]. The nasal forms the nucleus of the syllable on its own in cases such as these. Interestingly enough, also this nasal is sensitive to place assimilation, and shows up with the same place as the preceding consonant:

\[
\begin{align*}
\text{roep} & \quad \text{‘call’} \\
\text{werk} & \quad \text{‘work’} \\
\text{poef} & \quad \text{‘roast’}
\end{align*}
\]

Syllabic nasals can also borrow their place from their neighbour on their righthand side, for instance if they function as indefinite determiner clitics:

\[
\begin{align*}
\text{n}[\text{n}e]ve & \quad \text{‘a pigeon’} \\
\text{n}[\text{f}i]e & \quad \text{‘a bicycle’} \\
\text{n}[\text{b}a] & \quad \text{‘a ball’} \\
\text{n}[\text{ke}r] & \quad \text{‘once (a time)’}
\end{align*}
\]

Apparently, left and right are not the relevant categories, at least not in Hellendoorn Dutch. Still, also in words like *opnemen* ‘take on’ or *pneumatisch* pneumatic we would not find assimilation in this dialect, showing that not every nasal assimilates in place. The correct definition of the (universal) constraint on Place assimilation is not sensitive to these categories, but instead of this to syllable structure. From your introductory class to phonology you may recall that it is usually assumed that syllables form constituents of the following type (disregarding various details):

\[
\begin{align*}
\sigma & \\
O & \\
R & \\
t & r & i & k
\end{align*}
\]

The generalisation now seems to be that nasals within the coda assimilate, but nasals within the onset do not. An improved version of PLACEHARMONY will therefore say:

\[
\text{PLACEHARMONY (fourth version): A nasal in the coda has to bear the underlying Place node of a neighbouring consonant.}
\]
We could speculate why a nasal in the rhyme has this peculiar property. It seems reasonable to relate it to the effect of DEVOICE and other constraints we have seen, which all state that independent consonantal features in the rhyme are undesirable. In some sense, rhymes are the domain of vowels and vocalic material and consonants are aliens in that domain; consonants belong to the onset, where they are much less restricted: they do not have to devoice and they do not have to assimilate. We could now go on to find a general constraint of this sort which will give us all the right results, but that is not something we can go into here.

It is still (intentionally) unspecified in our constraint which of the two neighbours is going to lend its place in case of a choice. Hellendoorn facts shed light on this issue as well:

(204) a. loop \[y\] keer ‘walk one time’
 b. (ik heb) de kat \[m\] bettien (geroerd) ‘(i feeded) the cat a little bit’
 c. (ik heb het) rek \[m\] verfien (gegeven) ‘I painted the rack (I gave the rack a little paint)’

In these cases there seems to be a preference for the consonant on the righthand side. Does this mean we will have to build the notions ‘left’ and ‘right’ into our theory after all? An important observation is that in these cases we are considering a determiner which entertains an intimate relationship with the noun on its righthand side and a much less intimate relationship with the word (verb or noun) on its lefthand side. The former is within the same syntactic phrase, but the latter is not. It thus is not necessary to distinguish between left and right; we just have to understand that the nasal attracts place from its closest neighbour in terms of syntactic structure. That could be built into the ultimate version of the constraint as well, but we will refrain from doing that here.

6.4 Beyond place harmony

In our discussion of nasal harmony, the notion of coda is important, which we know from chapter 5 (more precisely, section 5.2). We have already seen there that coda consonants are weak, and dispreferred in many different languages.

As a matter of fact, there is quite an array of languages which do not have coda consonants at all. Examples of these are Fijian, Mazateco and Cayuvava, and the following implicational universal seems to hold over known phonological systems:

(205) If a language has closed syllables, then it also has open syllables.

All languages have open syllables (syllables without a coda), but only a subset also has closed syllables.

In section 5.2 we have seen that Fijian is an example of a language without closed syllables. In order to repair potential violations of this generalisation, the Boumaa dialect employs vowel epenthesis, the insertion of a vowel. If a word with a closed syllable is borrowed, a vowel is inserted to satisfy the constraint against closed syllables (the following is repeated from example 149 in chapter 5):
6.4. Beyond place harmony

(206) Vowel epenthesis in Boumaa Fijian
 a. kaloko ‘clock’
 b. aapolo ‘apple’
 c. tfone ‘John’

In order to capture this effect, we can posit a constraint NoCODA:

(207) NoCODA: Syllables should not have a coda, *C]

Like all constraints, the constraint NoCODA should be assumed to be universal, it is present in all grammars. The difference between English, allowing codas and Fijian, disallowing them, is one in constraint ranking with respect to a faithfulness constraint (ignoring a few segmental differences between the languages):

(208) a. NoEPENTHESIS: (= a subtype of faithfulness) Do not insert vowels
 b. English grammar: NoEPENTHESIS ≫ NoCODA
 c. Fijian grammar: NoCODA ≫ NoEPENTHESIS

(209) a. English

<table>
<thead>
<tr>
<th>/dɒn/</th>
<th>NoEPENTHESIS</th>
<th>NoCODA</th>
</tr>
</thead>
<tbody>
<tr>
<td>🐱dɒn</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>dɒne</td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

b. Fijian

<table>
<thead>
<tr>
<th>/dɒn/</th>
<th>NoCODA</th>
<th>NoEPENTHESIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>dɒn</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>🐱dɒn</td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

If we now look at the other side of the syllable template, the onset constituent. The typological behaviour here is quite different. We can posit an implicational universal here as well, but it runs in the opposite direction:

(210) If a language has syllables that lack an onset, then it also has syllables that have an onset.

In other words, all languages have so-called CV syllables, but not all languages have syllables that consist of only a V; we have seen an instance of such a language last week: Axininca Campa. We have expressed this informally before in the observation that the onset is the consonantal domain and the rhyme the domain of the vowels.

In order to describe this situation, we need a constraint of the following type:

(211) Onset: Every syllable should start with a consonant.

Note that this constraint is almost exactly the mirror image of NoCODA; together they describe the ideal syllable template CV, which all languages have. Formally, the reason for this state of affairs is that no matter how high or how low we rank the faithfulness constraints with respect to these two constraints,
CV syllables will always surface, viz. when they are underlying: nothing will have to change to them in order to get to the surface.

Another universal follows from these two constraints:

(212) An underlying (monomorphemic) sequence VCV will be syllabified in all languages as V.CV

(212) is not completely self-evident. It is not hard to imagine a world in which it would not be true. For instance, in French pat in pâte ‘pastry’ [pət] and e in é(gale) ‘equal’ [e (gai)] are both well-formed syllables, so why do we syllabify pâté ‘paste’ [pate] as [pa.te] rather than *[pat.e]? The answer is that these two constraints conspire to this result:

(213) a. /pate/ ONSET NOCODA

<table>
<thead>
<tr>
<th></th>
<th>ONSET</th>
<th>NOCODA</th>
</tr>
</thead>
<tbody>
<tr>
<td>/pate/</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>pat.e</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

b. /pate/ NOCODA ONSET

<table>
<thead>
<tr>
<th></th>
<th>NOCODA</th>
<th>ONSET</th>
</tr>
</thead>
<tbody>
<tr>
<td>/pate/</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>pat.e</td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

In other words, every language which has pâté will syllabify it in the French way. Faithfulness constraints are irrelevant, at least as long as we assume that there is no syllabification in underlying representation (a standard assumption although it is sometimes contested).

Epenthesis

We have seen that both Fijian and Axininca Campa solve their problems with syllable structure by way of vowel epenthesis. We will now go into this a little deeper for the latter language.

The ONSET constraint is very strong in Axininca. Whenever the concatenation of morphemes would result in an onsetless syllable, an epenthetic [t] is inserted:

(214) a. /no-ŋ-koma-i/ [noŋkomati] ‘he will paddle’

b. /no-ŋ-koma-aa-i/ [noŋkomataati] ‘he will paddle again’

c. /no-ŋ-koma-ako-i/ [noŋkomatakotii] ‘he will paddle for’

d. /no-ŋ-koma-ako-aa-i/ [noŋkomatakotaati] ‘he will paddle for it again’

Once we introduce a specific faithfulness constraint against epenthesis, we have all the constraints set in place to describe this behaviour:

(215) NOEPENTHESSIS: Segments in the output should also be present in the input.

(216) /no-ŋ-koma-i/ ONSET NOEPENTHESSIS

<table>
<thead>
<tr>
<th></th>
<th>ONSET</th>
<th>NOEPENTHESSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>/no-ŋ-koma-i/</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>noŋ.ko.ma.ti</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>noŋ.ko.ma.i</td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>
However, given the properties of the Gen function, we should also take into account numerous other candidates. Most interesting among these are those forms which satisfy both Onset and NoEpenthesis. This is certainly possible; for an input /no-ŋ-koma-i/ there is an output candidate [ŋoŋ.ko.ma] in which nothing is epenthesized, but there is also no Onset violation.

The point here is that here a different type of faithfulness constraint is violated, viz. one against deletion:

(217) NoDeletion: Underlying segments (vowels) must be preserved in the output.

Apparently, this constraint dominates NoEpenthesis in Axininca:

(218)

<table>
<thead>
<tr>
<th>/no-ŋ-koma-i/</th>
<th>Onset</th>
<th>NoDeletion</th>
<th>NoEpenthesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ŋoŋ.ko.ma.ti</td>
<td>*!</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>ŋoŋ.ko.ma.i</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

We have ordered Onset $$\gg$$ NoDeletion, but it is not very hard to see that we would have got the same result if we would have ordered these constraints in the opposite order, given the fact that NoEpenthesis is low ranking (you will be asked to show this in exercise (10)). In cases like this, we say that the ordering is irrelevant, which we write down as Onset, NoDeletion, so with a comma instead of the $$\gg$$-sign.

More generally, we can order three constraints in 3x2x1 = 6 different logically possible ways: all three constraints can be in the first position, but once we have chosen one, only the two remaining ones can be put in the second position, and if they are fixed, only the one remaining constraint can be put in the final position. Similarly, if we have four constraints, the number of orderings is 4x3x2x1=24, and the number of orderings for five constraints is 5x4x3x2x1=120. These numbers are also written as 3!, 4! and 5!, respectively, in mathematics, which are pronounced ‘the factorial of 3, 4, 5’ respectively. If we write down all possible orders for a given set of constraints, we get a factorial typology. The prediction is that every individual grammar should describe some (possible) human language.

We thus have six different possible constraint rankings for our three constraints. Yet some of these grammars produce exactly the same result no matter what the input is:

(219) Factorial typology for { Onset, NoDeletion, NoEpenthesis }:

1. Onset, NoDeletion$$\gg$$NoEpenthesis: Consonant epenthesis to create onset (e.g. Axininca)
2. Onset, NoEpenthesis$$\gg$$NoDeletion: Vowel deletion to create onset (e.g. Modern Greek)
3. NoEpenthesis, NoDeletion$$\gg$$Onset: Onsetless syllables freely allowed (e.g. English)

We thus have three possible different languages, according to this miniature typology. Every language should fit into one of these three categories.
6.4. Beyond place harmony

Harmonic bounding

It is one prediction of Optimality Theory that changes never happen without a cause. If we delete something, we violate NoDELETION; if we insert something, we violate NOEPENTHESIS. Such violations will only be allowed if they help us satisfy a higher-ranked constraint. Violation of constraints is always minimal, because there will always be a competing candidate which has less violations, and unnecessary violation of constraints will not help a candidate in the struggle for life.

In order to see this, consider the following example from Lenakel. The relevant syllable structure constraint in this language is slightly different from what we have seen so far, although it is clearly related:

(220) *COMPLEX: Onsets and codas should not contain more than one consonant.

This constraint is responsible for the fact that consonant clusters are broken up by an epenthetic vowel [i] if they would result in syllables with complex marginal clusters:

(221) a. /t-γ-ak-ol/ [tι.γα.gol] ‘you will do it’ *[tua.gol]
b. /ark-ark/ [ar.γa.rik] ‘to growl’ *[ar.γark]
c. /kam-γ-man-γ-γ/ [kam.ιι.ма.nιι] ‘for her brother’ *[kam.ιι.ма.nιι], *[kamn.ιι.ма.nιι]

This can be described by assuming the ranking *COMPLEX, NOINSERTION) ≫ NOEPENTHESIS for Lenakel. Now study the following alternative candidates for these forms:

(222) a. *[a.ри.i.ga.ри.кι]
b. *[tι.на.gа.лι]
c. *[ka.mi.ιι.ма.nιи.нι]

Like the real winners, all these candidates satisfy *COMPLEX and violate NOEPENTHESIS. The problem is, however, that they violate this constraint more than necessary.

It would be necessary to violate NOEPENTHESIS as often as these forms do it, if Lenakel would have a high-ranking NOCODA, but apparently this is not the case: Lenakel allows closed syllables, so that the language can be assumed to have the following constraint ranking:

(223) *COMPLEX ≫ NOEPENTHESIS ≫ NOCODA

Yet even in a language which disallows closed syllables, a candidate such as the following would never win:

(224) *[a.ри.i.ga.ри.и.кι]
It is safe to assume that this particular form would never win in any language, given the input we studied. It contains an epenthesis which does not improve anything, and it is *harmonically bound* by other forms which do not violate this constraint.

Another sense in which vowel epenthesis in Lenakel is minimal is in its choice of the central vowel [i] as the epenthetic vowel. This vowel (as well as its non-high counterpart [a]) very often serve as the epenthetic vowel. We know why this is: these vowels are quite empty, since they do not contain place features. By inserting them rather than place-bearing vowels, we epenthesize as little as possible into our phonological structure.

6.5 A theory of constraints

You may have noticed that many of the constraints which have been presented here talk about codas in one way or another. Codas are marked positions for consonants. In some languages, they are disallowed altogether, but even in languages which do have them, they are restricted. French word-final floating consonants only show up if there is an onset position created for them, rather than a coda position. Nasals in the rhyme borrow their place features from their neighbour. Obstruents undergo final devoicing in the coda in many languages. We will study a few more examples in this chapter.

Here is the first such an example. Japanese only allows coda consonants if they share a place of articulation with the immediately following consonant. We thus find words such as those in (225a), whereas the forms in (225b) are not allowed.

(225)

| b. *kap.ta, *tog.ba, *pa.kap, etc.

The constraint which is responsible for this is the so-called Coda Condition, well-known from the study of Japanese phonotactics:

(226) **CODA-COND:** Consonantal place features should occur in a position outside the coda.

Note that the constraint is satisfied by the forms in (225a) under autosegmental assumptions: the place features are all in an onset position; CODA-COND does not care that they are also in a coda. The only structure it militates against is one where place features occur in a coda position to the exclusion of other positions.

The CODA-COND is not idiosyncratic to Japanese; we also find it in an unrelated language such as Ponapean. In this language, we can see that it takes a phonological effect: it causes vowel epenthesis, as the following examples demonstrate:

(227)

| /ak.dei/ a.ke.dei *ak.dei ‘a throwing contest’

| /kitik-men/ ki.ti.ki.men *ki.tik.men ‘rat INDEF’

| /naŋ kep/ *na.ŋi kep naŋ kep ‘inlet’

Note that the constraint is satisfied by the forms in (225a) under autosegmental assumptions: the place features are all in an onset position; CODA-COND does not care that they are also in a coda. The only structure it militates against is one where place features occur in a coda position to the exclusion of other positions.

The CODA-COND is not idiosyncratic to Japanese; we also find it in an unrelated language such as Ponapean. In this language, we can see that it takes a phonological effect: it causes vowel epenthesis, as the following examples demonstrate:
Another way in which CODA-COND can be satisfied is by deletion of the offending consonant. Also this is attested in some of the world’s languages, e.g. in Diola Fogny:

\[(228) \quad /\text{let-ku-jaw/} \quad \text{le.ku.jaw} \quad \ast \text{let.ku.jaw} \quad \text{‘they won’t go’} \\
\quad /\text{jaw-bu-ıjar/} \quad \text{ja.bu.ıar} \quad \ast \text{jaw.bu.ıar} \quad \text{‘voyager’} \\
\quad /\text{jaw-bu-ıjar/} \quad \ast \text{ja.bu.ıa} \quad \text{ja.bu.ıar} \quad \text{‘voyager’} \]

(We leave it as an open question why it is the first consonant which is deleted rather than the second one.)

We can now see CODA-COND as one member of a ‘family’ of constraints, all of them having parallel definitions:

\[(229) \quad \text{a. CODA-COND: Consonantal place features should occur in a position outside the coda.} \\
\quad \text{b. FINALDEVOICING: Consonantal [voice] should occur in a position outside the coda.} \\
\quad \text{c. NASALHARMONY: Nasal place features should occur in a position outside the coda.} \\
\quad \text{d. NOCODA: Consonantal features should occur in a position outside the coda.} \]

In a theory of phonological computation which is based on constraints, such as OT, one should obviously have a theory about what is a possible constraint. If we are allowed to freely formulate new ‘universal’ constraints all the time, we cannot say that we have much of a theory. We do not make any specific predictions about what is and is not possible in human language, since we can always change the structure of the theory once we encounter a new phenomenon.

Within OT, we posit that all constraints are universal; that is already a restriction of some sort, since we at least need to show how a constraint which we posit for one language plays a role in (all) other languages of the world. But if we can freely invent constraints, then we can have a constraint X and a different constraint \(^{-}X\) which says exactly the opposite, and which would ‘explain’ why we do not see the effect of X in all languages: because many of them would happen to have \(^{-}X >> X\), and \(^{-}X\) would just make X ineffective whenever its occurrence would be unpleasant to us.

Organizing constraints into families such as we have done in (229) is a first step towards building a better theory of constraints. We could build one schematic constraint from which the various concrete instances in (229) can be derived by instantiating the variable F in different ways:

\[(230) \quad \text{CODA-COND}(F): \text{Consonantal feature F should occur in a position outside the coda.} \]

We could now say that the universal set of constraints consist only of concrete instances of a small set of constraint schemes (or even that an individual language chooses one or more instances of the scheme in its actual grammar.) It is then unexpected that constraints are needed in the analysis of a language which does not fit into some general schema.
6.6 Implications of the theory of computation

Psychological reality

One can see the kind of computation here as reflecting the mapping which speakers probably do while speaking: one retrieves a form from the lexicon, and transforms this in certain ways in order to get to something that can actually be pronounced. The underlying representation stands for the former, the output representation for the latter. Similarly, there must be a mapping going on while listening; the sound waves we here must somehow be mapped onto the structure of words as we remember them.

Phonological computation models some part of this process: it does not deal with actual sound waves, or instructions to the articulatory organs, nor does it deal with configurations of neurons, but it does represent the mapping in some way.

The model of Optimality Theory also abstracts from what is presumably the psychological reality in some other way. We most probably do not entertain an infinite number of possibilities every time we utter a word. In actual practice, the generator function will thus be restricted in some way, and in any case, the theory here seems to be able to describe more why a certain input-output mapping is made than how it is made.

Altogether, an OT mapping thus gives a fairly abstract account of what is going on; but the claim by its practitioners is that it is also the best, or the most precise account we have. There are various alternatives as well, for instance, people who claim that there is no mapping at all, and that all forms are stored. So German speakers remember both *Hund* [hunt] and *Hunde* [hund@] separately. The fact that one ends in a [t] and the other has a [d], and furthermore that we systematically find no [d] or other voiced obstruent at the end of a German word, is then seen as the result of one or more historical processes, not as something that needs to be represented in the grammar. Under this view, there is no phonological grammar, there is just a collection of words, each of them the result of some path through history.

An argument against this is that people show that they have knowledge of patterns such as the devoicing of obstruents in a coda. German speakers display this knowledge in various ways. For instance, it is a mark of a German accent when speaking English to also devoice consonants in that language; but German speakers also do it when borrowing words from English or other languages which do not show final devoicing. Furthermore, in laboratory experiments, Germans will not accept words ending in a voiced obstruents as plausible German words.

All of this implies that even if speakers store both the singular and the plural form for words such as *Hund* 'dog', they also have some way of accessing the regularity of the sound correspondences between these words. From experimental work, we know that speakers do not know about all statistically significant patterns which linguists can detect in a language, but only about the ones which somehow make phonological sense, such as the devoicing pattern. When confronted with loanwords, they will only adapt them to such patterns, not to patterns which seem completely random from a phonological point of view. In our terms, they can see patterns which can be expressed by the machinery of phonological computation, but not random other patterns.
This of course implies that we take the cognitive view on phonology seriously. It seems reasonable to say that there is phonological computation, and that it may even be ‘optimizing’, although the precise way in which it is implemented in the brain may be different from the tableaux we draw in an OT analysis.

Typology

The computational theory of Optimality Theory furthermore provides us with an interesting view on linguistic typology. Remember that the claim is that the only differences between languages are in the ranking of constraints, while these constraints themselves, as well the representations about which they are computed are universal. All languages have coda constituents in some sense, but in some languages the constraint against them are disallowed.

Obviously, when we say that the only difference in languages is in their constraint ranking, we mean the only systematic differences in their sound system. The fact that the French word for ‘tree’, *arbre*, sounds very different from the English word, is not the result of the constraint ranking, but from an arbitrary, and hence non-systematic, fact about the French and English lexicons.

Still, the claim that all systematic differences between languages are describable in terms of constraint rankings is a fairly strong one. As we have already pointed out, it means that we make a claim also about universals: every constraint should be present in all languages, even though its effect might be covered by other constraints in some languages. Those constraints should then actually be identifiable, and themselves also universal.

Furthermore, the claim is that every permutation of constraints gives at least a possible human language. This hypothesis can then also be tested. For instance, we can check whether we find an attested human language which actually behaves according to the constraint ranking we have established.

If we do find such a language, we find a confirmation of our theory. It is well-known, however, that part of the scientific methodology is to look not for confirmation (or verification), but for falsification of the theory. Unfortunately, it is rather difficult to find such a falsification. The fact that we do not find a language which confirms the expected pattern in itself, could be due for instance to the fact that it is impossible to check all existing languages. But what is worse, the languages we now have in the world almost certainly do not show all possible human languages: some of the latter may simply already be extinct without leaving a trace, or yet to arrive in the world, or may even never actualize for extra-linguistic reasons (the people who would speak such a language just give up their language altogether before it could change into the required pattern).

It is important to see, then, that the claim is not about existing or non-existing languages. The claims of cognitively inspired theories of language are ultimately theories about human beings. The claim of Optimality Theory is that humans can compute some languages, but not others. The ultimate test would therefore be to take a given constraint ranking, apply it to some complete lexicon of words, and see whether we can raise a population using this language.
Such an experiment is of course not feasible, but linguistics sometimes use approximations to it, for instance teaching artificial (miniature) languages to (adult) speakers, displaying the required pattern and compare the way in which those speakers acquire patterns that could not be generated by any ranking of the constraints. (More on artificial language learning was said in section 1.2.)

6.7 Exercises

1. Consider the following forms in Yoruba, and provide an analysis in terms of the constraints given in the chapter. Give a constraint ranking and a tableau for the first form, with some of the reasonable candidates.

 For the purposes of this exercise, you may ignore what happens to tones.

 /bu ata/ [bata] ‘pour ground pepper’
 /gô olû/ [gôlû] ‘cut mushrooms’
 /ta epo/ [tepo] ‘sell palm oil’

2. Consider the following forms in Diola Fogny, and provide an analysis in terms of the constraints given in this chapter. Give a constraint ranking and a tableau for the first form, with some of the reasonable candidates.

 /lot ku jaw/ [lokujaw] ‘they won’t go’
 /uju ja/ [ujuja] ‘if you see’
 /kobkoben/ [kokoben] ‘yearn’

3. Consider the following forms in Lebanese Arabic, and provide an analysis in terms of the constraints given in this chapter. Give a constraint ranking and a tableau for the first form, with some of the reasonable candidates.

 /?isni/ [?isim] ‘name’
 /?ibni/ [?ibin] ‘son’
 /?igil/ [?igil] ‘work’

4. Consider the following forms in Samoan, and provide an analysis in terms of the constraints given in this chapter. Give a constraint ranking and a tableau for the first two forms, with some of the reasonable candidates.

 [olo] ‘rub’ [oloia] ‘rub (perfective)’
 [a?a] ‘face’ [a?aia] ‘face (perfective)’
 [tau] ‘repay’ [tauia] ‘repay (perfective)’
 [tau] ‘cost’ [tauia] ‘cost (perfective)’

5. Consider the following forms in Turkish, and provide an analysis of the consonant alternation in terms of constraints. You may have to form a new constraint, modeled on the constraints you have seen. Give a constraint ranking and a tableau for the first four forms, with some of the reasonable candidates.
6. Draw tableaux for the dataset in (221), taking also the hypothetical forms in (222) into the datasets.
7. Draw a tableau for a hypothetical input /kapta/ in Japanese, assuming it comes out as [kappa] (cf. the dataset in (225)).
8. How many different constraint rankings do we get with 7 constraints? If we call them A, B, C, D, E and F and we assume that (only) the relative ranking of A and B does not matter, in the sense that A ≫ B always gives the same language as B ≫ A, how many different languages are produced by these different rankings?
9. There are approximately 7,000 languages in the world. With 8 constraints we can generate more than 40,000 different rankings. Already within this chapter we introduced more than 8 constraints, which however do not suffice to describe all phonological phenomena in languages (let alone all linguist phenomena). One might therefore claim that the theory predicts too many different languages. Discuss.
10. On page [115] it is claimed that it does not make a difference for Axininca Campa whether we assume that ONSET ≫ NOEPENTHESIS ≫ NODELETION or NOEPENTHESIS ≫ ONSET ≫ NODELETION. Show that this is correct, by showing the tableaux for some relevant examples.
11. Korean has a both plain and aspirated stops. Consider the following table, and use an (adapted version of) a constraint from the main text to give an analysis, as well as a typology which includes at least German and English as well.

<table>
<thead>
<tr>
<th>Nominative</th>
<th>Dative</th>
</tr>
</thead>
<tbody>
<tr>
<td>[sap]</td>
<td>[sapa]</td>
</tr>
<tr>
<td>[elmas]</td>
<td>[elmasa]</td>
</tr>
<tr>
<td>[ev]</td>
<td>[eve]</td>
</tr>
<tr>
<td>[tat]</td>
<td>[tada]</td>
</tr>
<tr>
<td>[at]</td>
<td>[ata]</td>
</tr>
<tr>
<td>[deniz]</td>
<td>[denize]</td>
</tr>
<tr>
<td>[kap]</td>
<td>[kaba]</td>
</tr>
<tr>
<td>[masraf]</td>
<td>[masrafa]</td>
</tr>
</tbody>
</table>

Are any other languages also predicted by your typology? If yes, what kind of patterns would you find in such languages? (It would be even better if you could name a concrete language, of course.)
12. It has been claimed in this chapter that VCV sequences in all languages tend to be syllabified as V.CV. However, in English a word like inadequate gets syllabified as in-a-de-quate. What could the reason be? Invent a constraint which could do the right job. Place it in a constraint hierarchy and draw a tableau to show how your analysis would work.
13. Given an analysis of Belorussian centropetal reduction (in section 2.4 on page 35) in terms of Optimality Theory. You will have to invent your own markedness and faithfulness constraints.
14. It has been claimed in the literature that there are languages which have syllable-final devoicing (as we have seen), but no languages with syllable-initial devoicing. How is this related to our observations on ONSET and NOCODA in this chapter?
15. Suppose we want to test the claim of the previous exercise that there are languages which have syllable-final devoicing (as we have seen), but no languages with syllable-initial devoicing. Set up a small artificial language experiment to study this claim: create two small artificial languages showing the two patterns (but otherwise the same).

(You can now also test these two languages if you have sufficiently large groups of, say, 5 people each, willing to try to learn them. Do they succeed applying the rule on new forms?)

6.8 Sources and further reading

Section 6.1. [Anderson (1985b)] shows how phonological theory throughout its history has been involved with the study of representations as well as with the study of computation. The subdivision between underlying and surface representations has been introduced by early generative phonology, in particular [Chomsky and Halle (1968)].

Section 6.2. [Prince and Smolensky (1993)] is the classic text on Optimality Theory; [Kager (1999a)] gave the first introductory text, nicely summarizing the classical version of the theory up until the moment of the publication of that book for beginning students. Another nice textbook — also talking more generally about doing advanced phonological research — is [McCarthy (2008)].

Final Devoicing has been the topic of debate for many languages. [Iverson and Salmons (2011)] gives a nice overview.

Section 6.3. Nasal place assimilation is a type of local assimilation, and as such it has been described by [Zsiga (2011)]. The data from the Hellendoorn dialect are taken from [Nijen Twilhaar (1990)].

Section 6.4. The Fijian data are from [Kenstowicz (2007)]. The observation that VCV is syllabified as V.CV in all languages is made in various places, for instance in [Charette (1991)], [McCarthy and Prince (1993a)] also discuss this, as well as the data on Axininca Campa. The standard source on Lenakel data is [Lynch (1974)].

Section 6.5. The Japanese data are from [Ito (1986)], the Ponapean data from [Rehg and Sohl (1981)], and the Diola Fogny data from [Sapir (1965)]. The idea of constraint families originates with [McCarthy and Prince (1993b)]. I do not think that the particular family organisation here has been proposed in the literature, but the observation that the various constraints resemble each other has been made more often.
Chapter 7

Stress

7.1 Languages with stress

So far, we have seen that languages can organize features into segments and segments into syllables. Although it has sometimes been claimed that the arguments for syllables are weaker in some languages than in others, it seems fairly uncontroversial to assume that all languages share this kind of organisation.

We could now wonder whether there is also any kind of higher order organisation. Does a speaker of a human language simply utter a string of syllables, one after the other, or are these syllables in turn organized into higher-order units?

At least certain languages seem to give evidence for this. These are languages, such as English, which have stress: one syllable stands out among the other syllables as being particularly prominent. It is not always clear what the exact phonetic correlates of this ‘prominence’ are — it is a partly language-specific mixture of higher pitch, longer duration and longer intensity — but speakers will agree which syllable in a word is more prominent. This syllable can be called the head of the word.

A proper subset of these languages also has more organisation of the word, in the sense that some syllables in longer words have secondary stress, i.e. they are not as prominent as the head syllable, but more prominent than other syllables in the word. This secondary stress is often rhythmic: stressed and unstressed syllables tend to alternate each other.

Not all languages show evidence for stress, and of those which do, not all languages show also secondary stress. Such languages typically have other ways of organizing the word, e.g. by certain autosegmental tonal patterns.

In any case, there seems little doubt that something like a word plays a role in the phonological organisation; this word may not always be exactly what people write in between spaces, or as separate characters, but is is remarkably often something coming close to that. In stress languages (on which we will concentrate in this chapter), there furthermore is evidence that such words have a hierarchical internal structure: like a syllable has a nucleus, a word has a head syllable.

Secondary stress furthermore gives evidence for a further level of organisation, in between the syllable and the word: that of the foot. The heads
of feet surface as having secondary stress, and the feet themselves have one head, the head foot. The syllable which is the head of this head foot has the primary stress. Thus in the English word *encyclopedia*, *pe* is the head of the main foot, and *en* is the head of a secondary foot, whereas all other syllables are unstressed.

7.2 Metrical feet

The notion of a *foot* is derived from the study of classical metrics, the study of rhythm in verse; it has been extended to the study of the rhythmic grouping of syllables within the word. In English (as well as Dutch) poetry, poetic feet are usually bisyllabic, they consist of two syllables. One of these two is more prominent than the other, and this gives us two options:

In the first option, the first syllable is the most prominent one; we then have a *trochee*:

\[(231)\]

\[
\begin{array}{cccccccc}
\text{s} & \text{w} & \text{s} & \text{w} & \text{s} & \text{w} & \text{s} & \text{w}
\end{array}
\]

(On thè) (shórè stóod) (Hi- à) (wá- thà)

s w s w s w s w

(Túrnèd ând) (wáved hí) (hánd àt) (pár- ting)

(Henry Wadsworth Longfellow, *Hiawatha*)

In this example we see some useful notation illustrated. Accented syllables are denoted by an accent (á), unaccented ones by a breve symbol (ˇa). Furthermore we put an *s* (for *strong*) above the accented syllable and a *w* (for *weak*) above an unaccented one. The brackets indicate that the syllables are grouped in a foot.

The other possibility is that the second syllable is the most prominent one; we then have an *iamb*:

\[(232)\]

\[
\begin{array}{cccccccc}
\text{w} & \text{s} & \text{w} & \text{s} & \text{w} & \text{s} & \text{w} & \text{s}
\end{array}
\]

Now is the win- ter of our dis- con- tent

w s w s w s w s w s

Made glo- rious sum- mer by this sun of York;

(William Shakespeare, *Richard III*)

Iambic and trochaic feet are the most important building blocks in the stress systems of most (stress) languages as well as in poetry. As we have already indicated, feet are different from all other levels of phonological organization (segments, syllables, words) in one important way. Although it is hardly ever contested that all languages have features, segments and syllables, there is quite a number of languages for which there is no evidence for metrical feet; for these languages it cannot be said that some syllable is systematically stronger than its phonological neighbours.

Languages which do have feet, however, very often choose to have either iambic or trochaic feet. This seems furthermore to be a choice which is made within a language once and for all; there might be no languages in which the two types of feet are mixed.

Pintupi, a Pama-Nyungan language of Australia is a typical example of a language with trochaic feet. In our linguistic transcription, we only note
7.2. Metrical feet

stress, by an accent marker placed in front of the syllable with primary stress, and placed in front of a syllable with secondary stress:

(233) a. \(\sigma \sigma \) 'pana 'earth'
 b. \(\sigma \sigma \sigma \) 't\(\sigma\)jaya 'many'
 c. \(\sigma \sigma \sigma \) 'ma\(\sigma\)wana 'through from behind'
 d. \(\sigma \sigma \sigma \sigma \) 'pu\(\sigma\)kalat\(\sigma\)u 'we (sat) on the hill'
 e. \(\sigma \sigma \sigma \sigma \) 'amu\(\sigma\)limpa \(\sigma\)ju 'our relation'

The notation which we use in these examples is convenient because it is compact. However, many phonologists really think of these structures in terms of trees. The form in (233), for instance, can be pictured as follows:

\[\omega \]
\[F \]
\[F \]
\[\sigma \sigma \sigma \sigma \]
\[pu \]
\[li \]
\[ka \]
\[la \]
\[t\(\sigma\)u \]

The straight lines here represent 'heads' — the most prominent members in a constituent — whereas slanted lines represent 'dependents' — less prominent members. Furthermore, \(F \) abbreviates 'Foot', and \(\omega \) is often used in the literature for the phonological word. Thus \(pu \) is the head of the (trochaic) foot \(pu\(\sigma\)N\), and this foot is in turn the head of the whole word. For this reason, \(pu \) gets most stress in the word (primary stress), whereas \(ka \) (the head of a foot which is not the head of the word, viz. the foot \(kala \)) gets less stress (secondary stress) and the other syllables get no stress at all.

In a word with an odd number of syllables, such as the one in (234), there will be one syllable which does not participate in the foot structure at all: it is unfooted. Languages can choose where they leave their unfooted syllable, but usually this will be at one of the two edges of the word: in Pintupi, this is the righthand edge of the word. In other languages, such as MalakMalak (another Australian language, spoken in Western Arnhem), it is the left edge of the word:

(235) a. \(\sigma \sigma \sigma \) 'wuru 'arm, rivulet'
 b. \(\sigma \sigma \sigma \sigma \) 'mel\(\sigma\)papu 'father (emphatic)'
 c. \(\sigma \sigma \sigma \) 'munan\(\sigma\)kara 'beautiful'
 d. \(\sigma \sigma \sigma \sigma \) 'ar\(\sigma\)kini\(\sigma\)ya\(\sigma\)ka 'we are all going to stand'
 e. \(\sigma \sigma \sigma \sigma \) 'n\(\sigma\)n\(\sigma\)r\(\sigma\)n\(\sigma\)y\(\sigma\)uka 'you (pl) will lie down'

From studying the words with an even number of syllables, it is again easy to see that the language has trochaic feet: stress is always on the first syllable in such words, and then alternates. Furthermore also in MalakMalak, the head foot is the first syllable. However, in words with an odd number of
syllables, the languages differ. One syllable is left out of the template, and in MalakMalak this is the first, whereas in Pintupi it is the last. As far as we know, these are the main options; there are no languages which leave for instance the syllable right in the middle of the word unparsed.

We thus have distinguished two axes along which languages may vary:

\[(236)\]

a. iambic feet vs. trochaic feet
b. first syllable vs. last syllable unfooted in words with an odd number of syllables

This gives us a miniature typology of four different kinds of languages: we expect two types of iambic languages as well as the two types of trochaic languages we have seen. Creek is a famous example in the literature of a language with iambics.

\[(237)\]

a. co ko 'house'
b. a'mifa 'my dog'
c. apata'ka 'pancake'
d. anoki cita 'to love'
e. isimahici ta 'one to sight at one'

Again, that we are dealing with an iambic system rather than with a trochaic one, is something we can most easily see in words with an even number of syllables; a word with two syllables simply has an iambic pattern, which is most easily explained if we assume that it consists of one iambic foot. Similarly, also words of four syllables have stress on the final syllable, which makes us assume that there must be two feet there, even though the secondary stress on the first foot is not noted on the data we have.

From the odd-numbered syllable words we can furthermore learn that it is the last syllable of the word which is unfooted. For some reason, this seems to be the option which is chosen by most iambic languages; as a matter of fact, some scholars believe that all iambic languages choose to leave the final syllable unfooted rather than the initial one.

One potential example of an iambic language leaving the first syllable unparsed is Weri, but the data for this language are rather sketchy:

\[(238)\]

a. yin tip 'bee'
b. kuli pu 'hair of arm'
c. ulu mit 'mist'
d. aku nete pal 'times'

Again, the words with an even number of syllables give us a good indication of the foot structure. They have the same shape as Creek words, although in this case we do have evidence for secondary stress as well. It is the odd-numbered words which show a different pattern, and one which makes us believe that the first syllable might stay unfooted.

It is not clear at present why there are no well attested examples of this type of language; given the typology suggested above, we would expect four
kinds of languages, but in actual practice only three seem to be attested so far. Languages seem to prefer to have at least some stress at one of the first two syllables of every word; maybe this is because stress is often used as a demarcation of the edges of words. Because the speech signal is uninterrupted, the listener needs cues as to where the word boundaries are in order to be able to make sense of what she hears. Stress can be one such cue that a new word has begun. Allowing words to start with two unstressed syllables might makethis task too complex.

Leaving this problem aside for a moment, we now have to translate our different options into OT constraints. One way of doing this is the following:

(239) a. i. ALIGN(Foot, Left, \(\sigma\), Left): The left edge of a foot should be aligned with the left edge of the head syllable (so: the heads are on the lefthand side, feet are trochaic).
 ii. ALIGN(Foot, Right, \(\sigma\), Right): The right edge of a foot should be aligned with the right edge of a syllable (so: the heads are on the righthand side, feet are iambic).

b. i. ALIGN(Word, Left, Foot, Left): The left edge of a word should be aligned with the left edge of a foot (so: no unfooted syllables at left edge).
 ii. ALIGN(Word, Right, Foot, Right): The right edge of a word should be aligned with the right edge of a foot (so: no unfooted syllables at right edge).

These constraints are instances of some more general family of constraints, aligning phonological and morphological edges to each other. You can see that there would be a general template which these constraints satisfy:

(240) ALIGN(X, Left/Right, Y, Left/Right)

It will be left as an exercise to formulate more instances of this particular constraint schema.

7.3 Syllable quantity

In the languages we have considered so far, all syllables are treated equally. This is a pattern that we find quite often among stress languages. However, in a substantial number of the world’s languages, stress is quantity sensitive: the stress system looks at the structure of syllables and distinguishes between (at least) two types of them: heavy and light syllables. The distinction is usually connected to the structure of the rhyme in the following way:

(241) In heavy syllables, there are (at least) two positions in the syllable rhyme; in light syllables, there is only one position.

Having two positions in the rhyme means having a long vowel, a diphthong or being a closed syllable. Variations on this theme are also possible. For instance in certain languages, syllables are heavy iff they are closed by a consonant of a certain type, and light otherwise.
A famous example of a language with a quantity-sensitive system is the Uto-Aztecan language Tübatulabal. In this language, the distinction between light and heavy syllables is made in the following way:

(242) In heavy syllables, vowels are long; in light syllables, vowels are short.

You may check for yourself how this distinction can be seen as a special case of (241) if we base ourselves on autosegmentalist assumptions on the skeleton.

Consider the following data (we do not distinguish between primary and secondary stress in these examples because we are only interested in foot structure):

(243) a. i ponih.win ‘of his own skunk’
 b. wi layha tal ‘the Tejon Indians’
 c. wi tay ha t差不多 ‘away from the Tejon Indians’
 d. yu; du yu; dat ‘the fruit is mashing’
 e. ta; hawi la sp ‘in the summer’
 f. wa ša; gaha ja ‘it might flame up’
 g. ana yi; nini mut ‘he is crying wherever he went (distr.)’
 h. pi tipi tita nat ‘he is turning it over repeatedly’

One thing which strikes us if we study these examples, is that all long vowels are stressed. This is the reason why we say that stress is quantity-sensitive in this language: the ‘normal assignment’ of feet gets interrupted by the requirement that heavy syllables want to be stressed.

In grammatical terms this can be seen as a result of a constraint which is usually called \textit{WeightToStress}:

(244) \textit{WeightToStress}: Heavy syllables should be stressed.

This constraint has a very high ranking in Tübatulabal grammar — it is never violated. Another observation we can make is that a light syllable before a heavy syllable stays always stressless, whereas light syllables following them are sometimes stressed. This is an indication that we are dealing here with an iambic system: light syllables tend to go into feet with a head on their righthand side. A similar conclusion may be drawn from the first two words, in which there is no heavy syllable at all, and in which the stress pattern is weak strong weak strong (abbreviated as \textit{wsws}).

In other words, the language seems to have a basic iambic pattern, and we may assume that also the constraint in (239a-ii), repeated here, is operative:

(245) \textit{Align}(Foot, Right, \textit{σ}, Right) (henceforth abbreviated as \textit{Iamb})

Together, these two constraints will give analyses such as the following, in which we placed feet in between parentheses:

(246) a. (i po)(nih win)
 b. (wi tan)(ha tal)
7.4 Lexical stress: faithfulness to feet

The last two examples are not in accordance with the facts of (243), as you can check for yourself: we predict the last syllable in (246c) and the first one in (246d) to be stressless, but this is not the case. They are stressed.

The difference between Tübatulabal and the languages we have seen so far is that in the latter all feet need to be binary: they need to have both a head and a dependent. In words with an odd number of syllables, the one ‘remaining’ syllable stays outside of the foot structure and is unstressed.

For Tübatulabal, a foot can also only have a head and no dependent. Formally, Creek and the other languages have a high-ranking constraint on foot binarity:

(247) FOOTBIN: A foot needs a dependent.

In Tübatulabal, this constraint is dominated by another constraint, which is violated in the other languages:

(248) PARSE-σ: Every syllable needs to be parsed into a foot.

We thus get the following typology for iambic languages (something similar could be done for trochaic languages):

(249) a. Tübatulabal: PARSE-σ ≫ FOOTBIN
 b. Creek (and Weri): FOOTBIN ≫ PARSE-σ

The difference between the two types of languages will only be seen in words with an odd number of syllables. In Tübatulabal, the remaining syllable has to be put in a foot, even if that foot is less than perfect as a result. In Creek, one prefers to keep all feet binary, even if that leads to the one syllable being left out of foot structure altogether.

Notice that we can see from examples such as (243d) that FOOTBIN is indeed lowly ranked in Tübatulabal: this word consists exclusively of feet which have only one syllable. The reason for this is of course that all syllables (but the last one) are heavy. In other words, this piece of data provides us with evidence that WEIGHTTOSTRESS ≫ FOOTBIN, but also that IAMBD ≫ FOOTBIN (because otherwise we could have solved our problem by making the last two syllables of (243d) into one foot). All in all, we thus have established the following miniature constraint ranking for Tübatulabal stress:

(250) PARSE-σ, WEIGHTTOSTRESS, IAMBD ≫ FOOTBIN

7.4 Lexical stress: faithfulness to feet

Word stress in Modern Greek is quite puzzling at first. We may observe that stress can be on many different syllables of the word:

(251) a. last syllable: uralos 'sky'
b. penultimate syllable: _ku_baros_ ‘godfather’
c. antepenultimate syllable: _an_tropos_ ‘man’

How are we going to account for this lexical variation? An obvious answer to this is: apparently Greek has feet already present in the underlying representation, and a strong faithfulness requirement on underlying foot structure:

(252) **FAITHFOOT**: Do not delete underlying feet.

Suppose there are reasons to assume that Greek feet are trochees, and furthermore that _pyjama_ (penultimate stress) represents the default. These reasons are manifold; one of them is language acquisition, in which children tend to regularize the other patterns to this one. This gives us the following ranking:

(253) **TROCHEE** ⌷ **FAITHFOOT** ⌷ **ALIGN**(Word, Right, Foot, Right), **FOOTBIN**

We get the following tableaux for our three example words (leaving out candidates without trochees):

(254) a.

<table>
<thead>
<tr>
<th></th>
<th>FAITHFOOT</th>
<th>ALIGN</th>
<th>FOOTBIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>ura(nos)</td>
<td>*!</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>ura(nos)</td>
<td>*!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ura(nos)</td>
<td>*!</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

b.

<table>
<thead>
<tr>
<th></th>
<th>FAITHFOOT</th>
<th>ALIGN</th>
<th>FOOTBIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>kubaros</td>
<td>*!</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>kubaros</td>
<td>*!</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>kubaros</td>
<td>*!</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

c.

<table>
<thead>
<tr>
<th></th>
<th>FAITHFOOT</th>
<th>ALIGN</th>
<th>FOOTBIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>antropos</td>
<td>*!</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>antropos</td>
<td>*!</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>antropos</td>
<td>*!</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that it is not necessary to posit an underlying foot for the default stress structure _kubáros_. This is what it means to be default: the grammar will assign the appropriate structure without instructions from the underlying form. (But note that it would do no harm to assign underlying structure either.)

The constraint **TROCHEE** is ranked most highly since there is no evidence that there is ever an iambic structure in Greek. Even words such as _uranós_ or are analysed as _ura(nos)_.

Still, not everything is possible. One observation to be made is that Greek — like many other languages — displays the effects of a so-called **three-syllable window**: stress is on one of the last three syllables of the word, but never outside it. In other words, (monomorphemic) forms of the following type are unattested in Modern Greek:

(255) *makaroni
The reason for this is straightforward. If we posit an underlying structure (máka)roni, the last two syllables are still unfooted. We can then parse these two into a new foot, which will receive primary stress, because this is always on the last foot of the word in Greek. This makes (máka)roni different from (ánθro)pos, where there is no room to build an extra binary foot.

7.5 The moraic theory of syllable structure

There is a popular alternative to the representations of syllable structure that we have seen so far. Under this conception, the syllable does not consist of an onset and a rhyme, but of two mora’s (from the Latin word meaning ‘a short period of time’ or ‘delay’). The main generalisation underlying this theory is the following:

(256) a. Heavy syllables consist of two mora’s
 b. Light syllables consist of one mora

In other words, if both long vowels and coda consonants count, mora’s are the same as positions in the rhyme. However, we can also model other kinds of languages using mora’s.

Suppose we are dealing with a language in which closed syllables and syllables with a long vowel are heavy, whereas other syllables are light. We can represent syllable structure in this language in the following way:

(257) a. light b. heavy c. heavy

\[
\begin{align*}
&\sigma \\
&\mu \\
&C \ V \\
\end{align*}
\begin{align*}
&\sigma \\
&\mu \mu \\
&C \ V \ C \\
\end{align*}
\begin{align*}
&\sigma \\
&\mu \mu \\
&C \ V \\
\end{align*}
\]

In a language in which only long vowels count as heavy, on the other hand, we get the following structures:

(258) a. light b. light c. heavy

\[
\begin{align*}
&\sigma \\
&\mu \\
&C \ V \\
\end{align*}
\begin{align*}
&\sigma \\
&\mu \\
&C \ V \ C \\
\end{align*}
\begin{align*}
&\sigma \\
&\mu \mu \\
&C \ V \\
\end{align*}
\]

It is usually assumed that the mora’s take the position of skeletal points; the C’s and V’s in this figure represent root nodes. This means that the phonological timing in this model is slightly different from that in the theory we have developed in earlier chapters, the one based on a skeleton with x-slots: onset consonants do not count for timing, for instance.
One language to which moraic analysis has been applied quite successfully,
is Japanese. As a matter of fact, the mora, called *haku* in Japanese, plays an
important role in traditional Japanese linguistics. For instance, in the ‘phonetic’
part of Japanese spelling, heavy syllables are represented by two symbols,
whereas light syllables are represented by one. Traditional Japanese poetry
(like *haiku*) is also based on counting 5+7+5=17 mora’s (rather than syllables,
as in Western renditions of haiku).

It is generally considered true that moraic theory solves two problems of
traditional syllable structure/stress analysis. In the first place, weight usually
refers to coda consonants and not to onset consonants (as in our discussion of
Tübatulabal stress).

In the second place, compensatory lengthening of vowels is claimed to
be always the result of the deletion of *coda* consonants, and never of *onset*
consonants. So in in our discussion of the history of Germanic in section 5.2
on page 86 we saw that e.g. *gans* can correspond to *ga*: the *n* gets deleted
and the *a* takes its place. The inverse does not happen: when a consonant in
the onset gets deleted in some language, vowel lengthening is not the result
(so there are no languages where onset deletion turns *gans* into *ans*.

Moraic theory provides us with a formal language which can link these
observations and express them in a uniform way. As to weight, we can posit,
that some languages build stress feet on syllables, whereas others build them
on morae (more on this below). Compensatory lengthening can now be de-
scribed in terms of mora preservation: if a coda consonant is lost, it may leave
a mora behind, which will then be filled by the vowel. However, if an onset
consonant is lost, there is no resulting mora, and hence no possibility for onset
loss.

It should be noted, that there is some discussion in the literature on the
validity of both of these claims. For instance, there are a few languages for
which it seems to be true that onsets count for weight. One famous instance
of this is Pirahã, which has the following stress rule:

(259) Stress the rightmost heaviest syllable of the last three syllables of the
word.

Like many other languages, Pirahã thus displays a three-syllable window at
the end of the word: it is as if the stress assignment process only look at those
last syllables, Within, this window we choose the heaviest syllable, where the
notion of ‘heaviness’ is defined according to the following hierarchy:

(260) PVV > BVV > VV > PV > BV (> V)

\(P = \text{a voiceless plosive, } B = \text{a voiced plosive; } a > b \text{ means } a \text{ is heav-
ier than } b \)

The notion of weight is thus fairly complex in Pirahã, but it can be decom-
posed into the following:

(261) a. long vowels are heavier than short vowels
 b. syllables with an onset are heavier than syllables without an onset
 c. syllables with a voiceless onset are heavier than syllables with a
 voiced onset
Here are a few examples illustrating these effects (I leave out tone markings and note stress with an acute accent):

(262)
a. "kao.ba.bai" 'almost fell'
b. "kau.gai" 'word'
c. "bii.ao.ii" 'tired'
d. "pia.hao.gi.so.ai.pi"
e. "ta.ba.gi" 'toucan'
f. "ta.ba.pi" 'Amapá'
g. "ho.ao.ii" 'shotgun'
h. "pao.hao.hai" 'anaconda'
i. "ti.po.gi" 'species of bird'

(261b) is relevant to our present discussion in particular; it shows that at least in some languages onsets do seem to be relevant to the calculation of syllable weight — there is a handful of languages for which a similar claim has been made.

Compensatory lengthening may also be attested, albeit again in marginal cases. A rather well-known example is the Samothraki dialect of Greek, where deletion of an onset /r/ may result in lengthening of the preceding vowel:

(263) /ro'ya/ → [o'ya], /ri'zi/ → [i'zi], /rema/ → [ema], /ro'ya/ → [or'ya], /ru'xa/ → [u'xa], /ra'fts/ → [af'ts]

(In spite of the phonological notation, it may not be clear that we are dealing with a synchronic process in this case; the underlying representations here as a matter of fact represent Standard Greek and other dialects, but we have no a priori evidence that these are also the underlying representations for Samothraki.)

What are we going to do with this type of evidence? A reasonable first approach might be to be very sceptical about it: if our theory forbids it, and the data are so rare, maybe there is something wrong with the sources we have.

However, in this case, this line of attack will not work. In the first place, the Pirahã data stem from afield worker who has spent a large amount of time on his work on this particular language. The Greek dialectological data might be a bit more shaky, but they have been confirmed by some other speaker. In the second place, it is not really true that our theory ‘forbids’ these facts; there is nothing very deep inherent to any of the theories presented thus far which would disallow onsets to carry morae.

But if this is the case, we are dealing with a typological puzzle: why are data of the Pirahã/Samothraki Greek type so rare as compared to similar effects with coda’s? The answer to this might fall outside of the domain of formal linguistics proper: it might have something to do with the phonetic perceptability of codas vs. onsets, for instance.

But given all this, it becomes less clear that mora theory is really superior to the more traditional theories we have seen. If the two reasons why it is introduced in the first place do not really seem to fall within the realm of
formal phonological analysis proper, mora theory mainly becomes a convenient notation to talk about the interaction between syllable structure and stress.

As an example of such a notational property, consider the following. The representation of short vs. long vowels will be as in (264a) within mora theory; the representation of short vs. long consonants will be as in (264b):

(264) a. short long

\[
\begin{array}{l}
\mu \\
\nu
\end{array}
\begin{array}{l}
\mu \\
\nu
\end{array}
\]

b. short long

\[
\begin{array}{l}
C \\
\nu
\end{array}
\begin{array}{l}
C \\
\nu
\end{array}
\]

One observation which is nicely represented by these pictures is that geminate (long) consonants do not occur in onsets — although, again, there seem to be a few exceptions. Typically, a long consonant will be attached to the coda of one syllable, and the onset of the next one:

(265) \[
\begin{array}{l}
\sigma \\
\mu \\
\nu
\end{array}
\begin{array}{l}
\sigma \\
\mu \\
\nu
\end{array}
\]

Most languages allow for only monomoraic or bimoraic syllables; syllables with one or two morae. This means that long vowels could not be followed by long consonants. The following example is from Koya:

(266) /ke: t: o:ïãa/ [ket:ɔŋa] ‘he told’
/o:t:ɔŋ[au]/ [otɔŋ[u] ‘he brought’

These facts can be understood under assumption of the representations in (265), plus a requirement that Koya syllables have at most two morae, and the idea that nongeminate consonants are never moraic in Koya — this explains why the vowel before the cluster [ŋ] does not have to be shortened. Note that especially the latter fact is more difficult to express in a nonmoraic framework.

7.6 Stress typology

Determining where a language fits in our typology

In this chapter, we have introduced a simple model of stress typology. The core of the foot typology are a number of binary distinctions:
7.6. Stress typology

(267) a. Feet are left-headed (trochaic) or right-headed (iambic)
b. Feet are necessarily binary / can be unary
c. Unfooted syllables (if any) or unary feet (if any) appear on the left / on the right
d. Feet are quantity sensitive / quantity insensitive
e. The head foot appears on the left / on the right
f. Stress is lexically determined / predictable
g. Stress is determined on the whole word / on the last three syllables

Because each of these properties is binary, this gives us a rather vast space of possibilities. If we want to classify an individual language, we have to navigate this space somehow. It is important for this to have enough words, of various lengths and with various different types of syllables.

A good way to proceed is as follows. First you try to determine whether the language has iambs or trochees. For this you collect as many words with an even number of syllables as you can find. If they all have a uniform stress pattern, stress is probably not lexically determined and also not quantity-sensitive. It becomes then fairly easy to see whether the feet are iambic or trochaic.

If the even-numbered syllables word do not show equal stress on all words, you should first check whether stress is always on syllables which are heavy, i.e. whether they have a long vowel or are closed by a consonant. If it looks like this is indeed the case, the best is to first concentrate on even-numbered words with only light syllables. This will tell you more information about what the ‘normal’ foot structure is. You can then assume that the feet in words with heavy syllables will be of the same basic type (iambs or trochees).

If it is not clear that heavy syllables attract stress and if the stress seems even randomly distributed in words with an even number of light syllables, the language probably has lexically determined stress. If that is the case, the analysis basically stops, although you may still want to check on long words, whether stress is always at least on one of the last three syllables, or occurs elsewhere.

If stress is not lexically determined, you can then proceed to words with an odd number of syllables. First you check how many stressed syllables there are. Suppose the word has \(n \) syllables; if the number of stresses is \((n - 1)/2 \) (so for instance a word with 5 syllables has 2 stresses), it seems likely that the language only has binary feet, and the remaining syllables are unfooted. Because you already know what the type of feet are, you should now be able to see whether unfooted syllables appear on the left or on the right.

If words with an odd number of syllables \(n \) have \((n + 1)/2 \) stressed syllables (so a word with 5 syllables has 3 stresses), it is more likely that the language allows unary feet. Again, given that you know what ‘normal’ binary feet are like, you should be able to determine where this ‘extra’ unary feet is placed.

The only final parameter you have to determine, regardless of what the foot type is, and whether or not the language is quantity-sensitive or lexically determined, is which of the feet gets the main stress. You may safely assume — at least in the case of the exercises to this chapter! — that this is either the first or the last foot. Other options have sometimes been shown in languages of the world, but they are rare and will not be taken into account here.
Some typological gaps

Hayes (1987, 1995) claims that one of the four basic types of feet (iamb vs. trochee, quantity-sensitive vs. quantity-insensitive) which we would expect to exist is typologically inexistent: there are no quantity-insensitive iambs. On the other hand, most trochaic languages seem to be also quantity-sensitive. Hayes connects this to a psycholinguistic finding (in particular Woodrow 1909). If we expose informants to a signal ta-ta-ta-ta-ta-ta-. . ., and we alternate the intensity of the ta’s, listeners will tend to group them in a trochaic fashion; that is to say, they will tend to hear . . . (táta)(táta)(táta). . . . On the other hand, if we keep the intensity constant, but alternate the length of the vowels, the listeners will tend to group the sounds as . . . (tata:)(tata:)(tata:). . . . The conclusion of this is that the difference between foot types is partly determined by the iambic/trochaic law (Bolton 1894):

(Iambic/trochaic law)

(268) iambic/trochaic law:

a. Elements contrasting in intensity naturally form groupings with initial prominence (trochees).

b. Elements contrasting in duration naturally form groupings with final prominence (iambs).

Trochees now should be constituents which consist of two elements with roughly the same duration. There are two types of these, according to Hayes we can build feet on the basis of morae, or on the basis of syllables. In the former case, we have a type of quantity sensitive system:

(269) Moraic trochees

\[
\begin{align*}
\text{Ft} & \\
\sigma & \sigma \\
\mu & \mu \\
\end{align*}
\]

In a system with moraic trochees, heavy syllables will form a foot of their own, whereas light syllables will be grouped together. An example of this is so-called ‘Egyptian Radio Arabic’, also called ‘Cairene Arabic’. In bisyllabic words, stress is on the last syllable if it is (super)heavy, and otherwise it is on the first syllable:

(270) a. Last syllable (super)heavy: sa’lazm ‘peace’ di’mašq ‘Damascus’

b. Last syllable light: malik ‘king’ huna ‘here’

Another possibility is to build trochees on syllables, disregarding the internal structure. We then get a quantity-insensitive trochaic structure:

(271) Syllabic trochees

\[
\begin{align*}
\text{Ft} & \\
\sigma & \sigma \\
\end{align*}
\]
7.6. Stress typology

An example of this is Icelandic, where primary stress is on the first syllable of the word, and secondary stress alternates:

(272) \h^öfðing\ ja ‘chieftain\ (gen.pl)’, \akva\rella\ ‘aquarelle’, \biög\ \raf\ i\ ‘biography’

Yet in iambics, the requirement is that the two parts of the foot are uneven in length, and we have only one canonical foot type:

(273) \textit{iambics}

\[
\begin{array}{ccc}
\sigma & \sigma \\
\mu & \mu & \mu \\
\end{array}
\]

An example of this is Tübatulabal, the language we have discussed already. It can furthermore be observed that many languages which use iambic feet have some rule of lengthening vowels and/or consonants to satisfy requirements on foot structure. An example of this is provided by Menomini, a Central Algonquian language. In this language, when a word begins with two light vowels underlyingly, the vowel of the second syllable is lengthened; this can be understood if we assume that these first two syllables are grouped into an iamb:

(274) a. /ahl\sama:w/ \rightarrow [ahl\sama:w] ‘he is fed’

 b. /neta\hsama:w/ \rightarrow [neta\hsama:w] ‘I feed him’

It thus seems that we would have to relax our typology of feet some more to also include a preference for uneven trochees.

More in general, it seems that the typology is more lenient for trochees than for iambics. We could also observe that the number of attested (and well-understood) trochaic systems is much larger than the number of attested iambic systems; the latter mainly consist of native languages of (North) America. We could, once again, wonder which conclusions we can draw from these typological considerations. On the one hand, some might wish to argue that the relative paucity of iambic systems is just some accident of history, and that, given this arbitrary historical fact, it is no wonder that there is less diversity in iambic systems: even syllabic or moraic iambics might be possible in principle, but we simply have a much smaller opportunity of finding them actually attested.

Alternatively, some have argued that there is a more principled reason why iambic systems are so few. We could claim, for instance, that iambic feet are not part of our inventory of possible structures. Iambic languages would then need an alternative analysis.
7.7 Exercises

1. Consider the following examples from the Pacific language Awtuw. What kind of foot does this language have — iambs or trochees? Which foot carries main stress?

i 'ki.nik ‘sit’
ii 'ow.ti.ka.yæn ‘old’
iii 'wa.ru.ke ‘big’
iv la.pe ‘village’

2. Consider the following examples from the Semitic language Modern Hebrew. What kind of foot does this language have — iambs or trochees? Which foot carries main stress?

i ˇga.дол ‘big’
ii bi. ra ‘capital city’
iii la.am ‘tasted’
iv me. vu.ga. rim ‘adults’

3. Consider the following examples from the Austronesian language Malay. What kind of foot does this language have — iambs or trochees? Is the language quantity-sensitive or quantity-insensitive?

i san. dar ‘to snore’
ii sa.ma.di ‘concentration’
iii lak.sa.na ‘quality’

4. Consider the following examples from the Malaccan Creole of Portuguese. What can you say about the stress system of this language?

i ka.za ‘house’
ii sa.ba.na ‘fan’
iii ka.za.min.tu ‘wedding’
iv min.ti.ra ‘lie’
v o.ro. say ‘oration’
vi kar.ba ‘coal’

5. Consider the following examples from the Palestian Arabic. What can you say about the stress system of this language?

i ʃa.pra.tun ‘a tree’
ii ka.ta.bu ‘they wrote’
iii duk.kan ‘shop’
iv ba:. ben ‘two doors’
v ba:. rak ‘he blessed’
vi ba:.ra.ko ‘he blessed him’
vi ka.tab ‘he wrote’
viι ma. ka:.ti.bi ‘my offices’

6. Give OT tableaus for the derivation of stress in three of the TÛbatulabal examples in (243) (you may choose your own words, except that you may not choose both of the first two, since these have the same pattern).
7. In this chapter it has been claimed that there are no languages which have both iambs and trochees. Show that the OT constraints presented here actually predict otherwise. Discuss.

8. Consider the following examples from the Indo-Iranian language Pashto. What can you say about the stress system of this language?
 i. "gu.ta" ‘knot’
 ii. "gu.ta" ‘pochard’
 iii. "vu.lam.be.da" ‘he took a bath’
 iv. "tfor.gu.ca" ‘baby chick’
 v. "sto.man.ti.a" ‘fatigue’

Give a constraint ranking within OT, and draw tableaux for the first two examples.

9. Reformulate the following constraints as special instances of the schema \((240) \) on page 29 on page 129:
 - ONSET
 - NOCODA

10. Consider the following examples from Hixkaryana (Carbib); try to place the language inside the typology of moraic vs. syllabic trochees and iambs:
 i. "ow.to. ho:na" ‘to the village’
 ii. "kha.na. nih.no" ‘I taught you’
 iii. "toh.ku. re:ho. na:ha. sa:ka" ‘finally to Tohkurye’

11. Consider the following examples from Fijian (Austronesian); try to place the language inside the typology of moraic vs. syllabic trochees and iambs:
 i. "a.to.mi" ‘atom’
 ii. "ndai.re:ki.ta" ‘bazaar’
 iii. "ndi.ko. ne.si" ‘deaconess’
 iv. "mbi. le.ti" ‘belt’
 v. "ta. rau. se.se" ‘trousers’
 vi. "mba. sa" ‘bazaar’

12. Consider the following examples from Cahuila (Uto-Aztecan); try to place the language inside the typology of moraic vs. syllabic trochees and iambs:
 i. "ta.ca. likem" ‘one-eyed ones’
 ii. "tux.mu." ‘song’
 iii. "qen. ki.cem" ‘palo verde (pl)’

13. Try to give an analysis of Cahuila not in terms of mora’s, but in terms of the typology at the beginning of section 7.6. Where does the analysis fail? Can you solve this by using ranked constraints?

14. StressTyp2 is a typological database collecting information about stress patterns in hundreds of languages. The database uses a way to encode stress which is slightly different from the one used in this book, but you should be able to understand it. Try to find example languages for the following patterns:
• A language with iambs and main stress on the last foot.
• A language with quantity-sensitive trochees.
• A language with lexicalized stress within a three-syllable window at the end of the word.

7.8 Sources and further reading

Section 7.2 (Hayes, 1995) is a classical text on metrical stress theory; the Pintupi, MalakMalak, Creek and Weri data are also from that text. (Topintzi, 2006)
Chapter 8

Prosodic structure

8.1 The phonological tree

We have seen in previous chapters that phonological words can be represented by a tree structure: segments are organized into syllables (with some internal structure), syllables into feet and feet into words. We can draw this as follows:

\[
\omega \quad \text{HHH} \quad \text{F F} \quad \text{QQQ} \quad \text{QQQ} \quad \sigma \quad \sigma \quad \sigma \quad \sigma \\
\]

This tree structure is usually called \textit{prosodic structure} in phonological theory. It is also usually believed that prosodic structure does not end at the level of the phonological word, and that trees reach higher than this. There is variation in the literature as to which higher-order levels are actually present, but it is usually assumed that these involve at least the \textit{phonological phrase} (\(\phi\)), corresponding roughly to major syntactic constituents such as (large) NPs or the main predicate VP, the \textit{Intonational Phrase} (IP), corresponding roughly to sentences, and the \textit{Utterance} (Utt), corresponding, well, to a whole utterance of a single speaker.

We thus get a tree structure such as the following:

\[
\text{Utt} \quad \text{QQQ} \quad \text{IP} \quad \text{IP} \quad \text{QQQ} \quad \phi \quad \phi \quad \omega \quad \omega \quad \frac{\omega}{\text{F}} \quad \frac{\sigma}{\sigma} \\
\]

143
The hypothesis that linguistic utterances are organized in this way gets support from various different types of evidence, as we will see in this chapter: these structures play a role in our understanding both of phonological and of morphological phenomena which seem to refer to them. For instance, we will see that certain types of phonological processes only work within certain prosodic categories: they cannot cross the boundaries of such categories. On the other hand, there are also processes which function only across the boundaries of phonological structures.

Notice that the tree structures depicted in (276) mimic those which are used within syntactic theory, but they are simpler in a number of ways: there is a fewer number of different labels — especially given that the only constituents that roughly correspond to syntax are the word, the phonological phrase and the Intonational Phrase —, and secondly, they are not recursive in the same way as syntactic structures. In syntax, we can have for instance, a sentence containing another sentence ("John admits that [he likes milk]"). Such recursion according to most scholars is not found in phonological representations: a phonological phrase always directly dominates phonological words, not other phonological phrases.

8.2 The Phonological Word

In the previous chapter, we have already seen one type of evidence for the existence of a phonological word: the existence of primary stress. In some languages, there is one syllable which is clearly more prominent than all other syllables within some domain. That domain does not correspond to the whole string of syllables spoken by the speaker (that would be the Utterance), or a longer stretch of it (that might be for instance the phonological phrase), but to something roughly corresponding to what we might also call a word by other criteria (for instance morphosyntactic ones).

But there is evidence for the existence of such a constituent also from other points of view. A well-known example of this is so-called /s/ voicing, which we find in northern Italian dialects. Consider for instance the following cases:

(277) a. *isola* 'island' /isola/ [izola]
 b. *case* 'houses' /kas+e/ [kaze]
 c. *amo Sandra* 'I love Sandra' /amo+sandra/ [amosandra]
 d. *asoziale* 'asocial' /a+sotsiale/ [asotsiale]
 e. *toccasana* 'cure-all' /tokta+sana/ [tok:asana]

Underlying /s/ changes into [z] when it occurs intervocally, as you can see in (277a). From data like that in (277b), we know that this also sometimes happens when one of the vowels belongs to a different morpheme — in this case a plural ending.

The domain on which the process is defined is thus bigger than the morpheme. However, it does not apply just anywhere as the following examples demonstrate. In (277c), the first vowel belongs to a different word than the s. This means that it is somehow 'too far away' for it to be visible. The /s/ is between two vowels, but it does not voice to a [z].
The domain is thus bigger than a morpheme and smaller than a (syntactic) phrase. This leads us to suspect that it applies within a word. However, the forms in (277d) (a prefixed word) and (277e) (a compound) show that this ‘word’ does not conform exactly to our understanding of a morphosyntactic word. Both of these are definitely simple words from this perspective, but s voicing applies in neither of them.

This is where the notion of a phonological word comes in, a constituent that is similar to that of a morphosyntactic word, but not always exactly congruent with it. In this case, we have to posit that the separate parts of a compound each form a separate ‘phonological word’, as do prefixes. Otherwise, the boundaries of morphosyntactic words correspond with those of phonological words. The phonological structures for the forms in (277) are thus as follows, where brackets indicate phonological word boundaries:

\[
\begin{array}{l}
(278) \quad a. \quad [(izola)] \\
 b. \quad [(kaze)] \\
 c. \quad [(amo)(sandra)] \\
 d. \quad [(a)(sotsiale)] \\
 e. \quad [(tok:a)(sana)]
\end{array}
\]

The phonological analysis can now refer to these phonological constituents. For instance, we may imagine that the constraint responsible for s voicing has the following shape:

\[
(279) \quad \text{*(...V SV...): Avoid voiceless coronal fricatives between two vowels within the same phonological word.}
\]

It is understood that markedness constraints always are defined on a certain domain, maybe not universally but on a language-specific basis. It is also understood that such domains are always phonological, i.e. that phonological markedness constraints do not refer to morphosyntactic words or phrases.

Of course the way in which a phonological word is constructed itself can be the result of some constraints. These constraints are called alignment constraints: they make sure that the edges of morphosyntactic words correspond to the edges of phonological ones. For instance in our case, we have constraints such as this one:

\[
(280) \quad \text{ALIGN(X0, L, } \omega, \text{ L): The left edge (L) of a morphosyntactic word (X0) should correspond with the right edge (L) of a phonological word (} \omega). \\
\text{ALIGN(X0, R, } \omega, \text{ R): The right edge (R) of a morphosyntactic word (X0) should correspond with the right edge (R) of a phonological word (} \omega). \\
\text{ALIGN(} \omega, \text{ L, X0, L): The left edge of a phonological word should correspond with the left edge of a morphosyntactic word (} \omega). \\
\text{ALIGN(} \omega, \text{ R, X0, R): The right edge of a phonological word should correspond with the right edge of a morphosyntactic word (} \omega).
\]
8.2. The Phonological Word

- **ALIGN(Prefix, R, ω, R):** The right edge (R) of a morphosyntactic word (X⁰) should correspond with the right edge (R) of a phonological word (ω).
- **ALIGN(Suffix, L, ω, L):** The left edge (L) of a morphosyntactic word (X⁰) should correspond with the right edge (L) of a phonological word (ω).

By ranking some of these constraints, we can get the right results in (278). I leave this as an exercise to the reader (exercise 6 on page 145).

In the case of northern Italian dialects, the phonological words are always smaller than morphosyntactic words or they have the same size. It has been argued that we can also have phonological words that are (slightly) bigger than morphosyntactic words. Examples of this we similarly find on the Italian peninsula, but more to the south, for instance in Lucanian dialect.

The relevant elements in this dialect are so-called clitics, small pronoun-like elements that behave morphosyntactically as if they are (more or less) independent words, but that phonologically seem to get integrated with the verbal stem.

The crucial evidence comes from stress. Lucanian has trochaic feet and assigns stress by default on the antepenultimate syllable. The same is actually true for Standard Italian:

(281) ['viuna] ‘sell!’ (IMP) (Lucanian)
(282) ['pɔrtə] ‘carry!’ (IMP) (Standard Italian)

However, if we add (clitic) pronouns to these forms, the stress in Lucanian shifts onto the clitics, whereas in Italian it stays on the verb:

(283) ['viuna- ‘mi-la] ‘sell it to me!’ (Lucanian)
(284) ['pɔrtə - me - lo] ‘carry it for me!’ (Standard Italian)

The difference is that clitics get integrated into the same phonological word as the verb, and then stress gets assigned to the antepenultimate position within that word. In Standard Italian, on the other hand, the phonological word keeps the size of just the verb, and the clitics stay outside (they may form a phonological word in their own right).

One can of course wonder what the explanatory value of the phonological word is precisely. If we set apart prefixes and clitics, we can describe Northern Italian s Voicing by referring to the remaining material. But saying that this remainder actually is a constituent called the phonological word and using this s voicing as evidence for its existence is circular. We might just as well say that s voicing in Italian applies in a morphosyntactic word, but not across the boundary with clitics.

This is indeed a criticism that has sometimes been raised against phonological constituency across the word. A typical answer to this is to show that different kinds of evidence converge on this particular solution. If there are many phonological processes which have a similar restriction, we can see that as an indication that we are onto something.
It is well-known, for instance, that Italian is not alone in keeping prefixes outside of the phonological word. In this respect, prefixes seem to be typologically different from suffixes; we know quite a number of languages in which the former are more separate from the stem than suffixes than we know languages in which this is the other way around, if the former can be convincingly shown to exist at all.

Another example of the relative independence of prefixes we find in German. In this language, we consonants can form the onset of a following vowel across a stem-suffix boundary, but not across the boundary between a prefix and the stem.

For instance, from the noun Ehr ‘honour’ [e:r] one can derive a verb by adding the negative verbalizing prefix ent. The resulting word is entehr ‘dishonour’ [ent.e: r]. The syllabification of this word is [ent.e: r]: the [e] does not get syllabified with the following [e]; since every German syllable needs to have an onset, this vowel gets a default glottal stop instead.

If we inflect this verb further, for instance with the infinitival ending -en, we get entehren ‘to dishonour’ [ent.e: ren], which is syllabified as [ent.e: re.n].

Notice that in this case, the [r] does skip the boundary between stem and affix to syllabify with the initial schwa of the infinitival ending. There thus is indeed a prefix-suffix asymmetry, and it is of the sort we are looking for: the prefix is more independent from the stem than the suffix. This difference is not due to a difference in morphological structure: if anything, the suffix is morphologically ‘further away’ from the stem than the prefix. Morphologically, we would first derive entehr from Ehr, and add en after this.

As far as we know, there are no languages which work in the opposite way, so that suffixes behave as more independent than prefixes from a phonological point of view even if the arguable are morphosyntactically closer. In itself this is not a complete argument in favour of the prosodic word, if only because prosodic theory does not predict the asymmetry – the opposite could be described as well. But using the notion of a phonological word — similar to but not necessarily always congruent with the morphosyntactic word — at least definitely helps us give a good description of these facts.

Vowel harmony

An important kind of evidence we need to discuss is vowel harmony: in quite a lot of languages, we can divide the set of all vowels into at least two subsets, for instance front vowels and back vowels. All vowels in a word are then taken from the same subset. We can describe this in autosegmental terms as saying that the feature [front] spreads within the word, as described in section 3.2.

The question, obviously is how to describe this ‘word’, and it is often assumed that the relevant notion of the word (at least in many languages) is indeed prosodic rather than morphological or syntactic.

One concrete example comes from Hungarian. In this language, the suffix meaning ‘with’ takes on the form -val when the preceding stem ends in a back vowel, but the form -vel when it ends in a front vowel:

(285) a. Front vowel: egérrel ‘with mouse’, Ágnessel ‘with Ágnes’
 b. Back vowel: fogóval ‘with pincers’
8.2. The Phonological Word

(There is also some kind of assimilation of the first consonant of -val going on, which we ignore.) Notice that stems themselves are not necessarily harmonic: the name Ágnes contains a back vowel followed by a front vowel. Furthermore, in cases such as this, there is actually variation with respect to the choice of the vowel in the suffix. It can also adapt to the first vowel rather than to the second (the second vowel in Ágnes can be ‘transparent’):

(286) *egérral ‘with mouse’, Ágnessal ‘with Ágnes’

However, things work differently for compounds. If we suffix a compound, the affix can harmonize only to the second part, never to the first part:

(287) *madárlessal ‘with birdwatching’, madárlessel ‘with birdwatching’ (from madar ‘bird’ and less ‘peek’)

The morphosyntactic structure of this form is something like [[[madár][les]]sel], but the phonology rather behaves as if it is [madár][[les]sel]. The required phonological structure thus is not precisely congruent with the morphological structure: there are two separate phonological words, but there is one, complex, morphosyntactic word. This is a classical argument for prosodic wordhood.

A final piece of evidence for phonological words come from the phenomenon of stuttering, which most people do sometimes; and some people do so often that it becomes problematic for them. We typically assume that in English functions words (such as determiners the, a or the preposition to) are grouped in one phonological word together with adjacent lexical words (such as nouns and verbs).

It turns out that people for some reason stutter more on function words than on lexical words, and furthermore that they tend to stutter most if the function word is the first within a phonological word group, as the

![Graph showing standardized stuttering rate vs. function word position in phonological word (utterance initial).](image-url)
The data are given for different groups of patients; as you can see, for this particular phenomenon it does not really matter whether they are ('young', 'middle' or 'old') children, teenagers or adults: they all show a stronger 'standardized stuttering rate' on a function word when it is on the first position than when it is in the 2nd, 3d or 4th position of the phonological word.

We suspect that the reason for this is planning speech. One does not stumble on a function word because that word is itself problematic, but because one is then planning the next (lexical) word. The graph above confirms this idea, but it also shows that apparently the phonological word is a unit of planning: typically, function words at the end of a phonological word may still be followed by a lexical word. But since that lexical word is not in the same phonological word, this apparently does not matter.

8.3 The Phonological Phrase

If we move one level higher up in the prosodic hierarchy, we arrive at the level of the phonological phrase. Like in the case of the phonological word, this constituent has a clear syntactic counterpart: the syntactic phrase (XP, in many theories of syntax). Like in the case of the word, the phonological phrase and the syntactic phrase do not always exactly coincide; otherwise there would of course be no reason to distinguish the two.

A classical argument for non-matching prosodic and syntactic structure comes from English, where arguments have been provided for phonological phrasing of the following type:

\[(\phi this\ is\ the\ cat)(\phi that\ chased\ the\ rat)(\phi that\ stole\ the\ cheese)\]

The \(\phi\) here is the Greek letter Phi, and is the conventional way of abbreviation phonological phrase. Phonologically, this sentence consists of three phrases: the positions where I put the dashes are the positions where a speaker could pause, and furthermore there is typically some emphasis on the last word of every phrase.

Yet these three constituents do not necessarily correspond to syntactic constituents. The syntactic structure would be something like this:

\[
[this\ is\ the\ cat\][that\ chased\ the\ rat\][that\ stole\ the\ cheese]
\]

Only the last phrase, that stole the cheese, therefore corresponds precisely to a syntactic constituent, but for instance that chased the rat does not in any way.

This does not mean, on the other hand, that prosodic and syntactic constituency are completely independent from each other. In particular, every left syntactic boundary corresponds to a boundary also in the phonology. However, within the phonology it corresponds both to a left and to a right boundary. The reason for this is that phonological constituents do not have recursion (embedding) in the way in which syntactic constituents do. In the syntactic constituent one sentence ('that stole the cheese') forms an integral part of another sentence ('that chased the rat that stole the cheese').

Phonological phrases do not contain other phonological phrases in the same way. Instead, phonological constituents are usually thought to be restricted by the so called Strict Layer Hypothesis:
Strict Layer Hypothesis: Every foot is dominated by a phonological word, every word is dominated by a phonological phrase, every phonological phrase is dominated by an intonational phrase (etc.)

One cannot ‘skip layers’: feet are never dominated by a phonological phrase directly, and one can also not go back: a word is not dominated by a foot, and not even by a phrase. The phonological structure is organized into layers, which look more or less like autosegmental structure.

Phonological constituents are thus derived from syntactic constituents: typically, given a syntactic structure one can construct the phonological structure reflecting it, but not the other way around: from the fact that (289) has three phrases we cannot conclude which one is contained in which other one in the syntax.

In several Bantu languages, vowel lengthening is an indication for phonological phrases: the penultimate syllable in every phonological phrase lengthens. The following example is from Chichewa, a language which has received a lot of attention in the phrasing literature:

(292) a. mléendo ‘visitor’
 b. mlendó uuyu ‘this visitor’

The antepenultimate vowel of mlendó is long at the end of a phrase, but not when some word follows it in the same phrase. (Another process that is sensitive to phrase boundaries is tone retraction, moving a tone from a final to a penultimate syllable, but we will ignore this here.)

The verb phrase is (usually) phrased together in Chichewa, as is the subject:

(293) a. (mwánda)anaményá nyuúmba
 child SM-hit house
 ‘The child hit the house’
 b. (mwánda)anaményá nyumbá ya bwiino)
 child SM-hit house of good
 ‘The child hit the good house’

As you can see, the word nymba has a different tonal distribution and different syllable length whether it occurs at the complete end of the sentence (or phrase) or whether some other word follows it.

Another kind of phenomenon that is often taken as evidence in favour of phonological phrases is that some process is restricted to happen within a word. For instance, in Bengali a word-final r assimilates (completely) to the first consonant of the next word, but only if this word occurs in exactly the same phonological phrase:

(294) a. (øLmorH)(tfaL dorH)(taL rakeH)(dieL tfoH)
 ‘Amor gave the scarf to Tara’
 b. (øLmotS: aL dot:a rakeH)(dieL tfoH)
 ‘Amor gave the scarf to Tara’ (fast speech)
One important thing to notice here is that the prosodic structure is not just dependent on the syntactic structure, as the two examples in (294) are exactly the same in this respect. The only difference is speech rate, the number of syllables which are uttered per minute. Prosodic structure can be determined by this: the faster one speaks, the stronger the tendency to put a lot of phonological material in one constituent. This is true most often for prosodic structure above the level of the word.

That invoking prosodic phrasing is not just some complicated way of expressing that r assimilation affects fast speech more than slow speech is shown by the fact that we can detect phrases also in some other way in Bengali: every phrase starts with a low tone and ends in a high tone. The assimilation and the tone pattern thus converge on exactly the same constituency.

The tones themselves are also worth noticing. Where do they come from? So far, tones had a lexical origin, they were features of a certain word, sometimes floating and at other times lexically prelinked to a certain syllable. But this cannot be the case here, as any phonological phrase has the same tonal structure, regardless of the words which are used in it.

This means that the tones belong to the prosodic constituents rather than to the individual words: they are boundary tones, linked inherently to the edges of phonological phrases. Boundary tones are one type of intonation tones, tones which do not have the function of expressing lexical contrast but rather of making up the tonal melody, helping the listener to parse the stream of sounds in some initial kind of syntactic structure. This may in general be a function of prosodic structure: to guide the listener in figuring out what the syntactic structure is of the sentence he is trying to hear.

8.4 The Intonational Phrase

The highest levels of phonological structure is the Intonational Phrase. (In theory, there is one level that is even higher, that of the Utterance, which combines everything a speaker says within one conversational turn. In practice, very little phonological work has been done on this constituent, and we will ignore it here.)

As the name suggests, the Intonational Phrase is typically the domain of intonational phenomena, i.e. those that have to do with sentence melody. The size of the Intonational Phrase is typically that of the full sentence (a main clause with all dependent clauses).

One function of intonation in many languages is to denote sentence types, such as the difference between declarative sentences and questions. Take for instance the following two sentences from Turkish:

(295)

we yesterday cinema-LOC film watch-AUX-AOR-ADV Ayla Ali-
ACC see-PERF

‘Ayla saw Ali yesterday while we were watching a film at the cinema.’

b. Biz dün sinema-da film seyr-ed-er-ken Ayla kim-yi gör-mus

we yesterday cinema-LOC film watch-AUX-AOR-ADV Ayla wbho-
ACC see-PERF
‘Who did Ayla see yesterday while we were watching a film at the cinema?’

The two sentences have exactly the same word order and almost exactly the same words. Yet one is a question and the other one is not. The way in which this difference is expressed is by intonation: like in many languages, questions end in a relatively high pitch, as you can see in the following pictures:
This is a so-called wh-question containing a question (‘wh’) word, in this case who. Yes/no-questions show the same high tone:

(297) a. Aynur’un Almanya-dan dön-düğ-ün-ü bil-iyor mu-ydu?

 Aynur-GEN Germany-ABL return-COMP-3SG-POSS-ACC know-IMPF Q.PART-F.COP

 Did s/he know that Aynur had returned from Germany?
You can also see here that the tone is actually not necessarily attached to the very last syllable, but to the last syllable carrying emphasis or stress. The scholarly literature has converged on assuming that this high pitch is an autosegmental tone which gets linked to the edge of an intonational phrase. This is usually notated as H% — the % marks that this is a so-called boundary tone. Thus the *wh*-question above could be represented as follows:

\[(298) \quad (IP \text{ Biz dün sinema-da film seyr-ed-er-ken Ayla kim-yi gör-mus H%})_{IP}\]

The boundary tone should be seen as floating, and attaching to the closest vowel, in this case that of the suffix -mus. Obviously, English does not have any lexical tones which distinguish words from each other the way e.g. the Bantu languages in section 3.1 (p. 41) do. But like Turkish, English does have intonational tones, such as a High boundary tone to indicate questions.

Although intonational patterns are typically the main realisation of intonational phrases, it has sometimes been claimed that also other kinds of phonology are sensitive to the edges of these constituents. For instance, the Tuscan variety of Italian has a process which turns plosives such as /k/ into fricatives such as [h]; however it does so only inside intonational phrases, not at the edges:

\[(299) \quad (IP \text{ Hanno } [h]\text{atturato } [h]\text{anguri appena nati})_{IP} \quad \text{‘They have captured seven newly born kangaroos.’}\]

\[(IP \text{ Almeri}[h]lo}_{IP} (IP [k]uando dorme solo)_{IP} (IP [k]ade spesso dall’ama[h]a)_{IP} \quad \text{‘Almerico, when he sleeps alone, often falls out of the hammock.’}\]

In the latter example, the comma’s of the written sentence correspond to intonational boundaries when pronounced — also when reading aloud the English translation you will notice that there are tonal things going on at the edges. But the precise (left) edges of those constituents also seem to prevent /k/ from leniting. This kind of data can be taken as an indication that also fairly ‘low level’ segmental phonology, referring to individual features such as [continuant], can be sensitive to these ‘higher-order’ constituents.
8.5 Morphological evidence for the prosodic hierarchy

In the preceding sections, we have seen some ‘purely’ phonological evidence in favour of the prosodic hierarchy. As pointed out already several times, this evidence is of two types: some phonological process happens only within a phonological constituent of a certain type, or it happens at the boundaries of such a constituent. This is interesting evidence, but it has been pointed out as well that it is mostly evidence for the boundaries: processes either require those to be absent (the first type) or present (the second type).

We can find more direct evidence for the constituency of phonological objects we have to turn to the interaction of phonology with word formation processes, morphology. In previous chapters we have largely discussed phonology as a world on its own, but there are many indications that phonology interacts with the way in which words are formed in a number of ways.

We will discuss this interaction in more detail in the next chapter, but here we concentrate on the specific phenomenon of Prosodic Morphology, types of word formation which refers to elements of prosodic structure, such as morae, syllables, feet and phonological words. (Higher-order prosodic constituents play less of a role, because phonological and intonational phrases are typically too big to match morphosyntactic words.) Examples of prosodic morphology are inflexion and reduplication; these processes are rather rare in English, but in some other languages they abound. One basic claim of the theory of prosodic morphology is (McCarthy and Prince, 1998):

(300) Morphological processes that refer to phonological structure use the same prosodic structures as ordinary phonology: morae (μ), syllables (σ), feet (Ft) and phonological words (ω).

Although English does not have a lot of prosodic phonology, it does have one process: so-called *expletive infixation*. In some varieties, one can insert an expletive such as *bloody* — or forms which are even more taboo — within a word to give some special effect. However, famously, it is not possible to do this at just any position in the word:

(301)

- a. **fan-bloody-tastic**
- b. **fu-bloody-ntastic**
- c. **fantas-bloody-tic**

Speakers have quite clear intuitions about what is and what is not possible. In tests where they are asked to apply expletive infixation to new terms, they will do so without a lot of variation:

(302)

- a. **amalga-bloody-mated**
- b. **amalgam-bloody-ated**
- c. **amal-bloody-gamated**

We can understand these judgements as a wish to keep the prosodic constituency of the original word intact as much as possible. In **(301)** and **(302)**, we have inserted the expletive within a syllable (**fan** and **mat**), and the result of...
this is bad. In (301c) and (302c), we did a similar thing to a phonological foot, which in English is always a trochee (tastic and malga respectively), which apparently is also wrong.

We have to break open at least the phonological word in expletive infixation, because otherwise there would be no infix; but speakers of English intuitively seem to feel that other prosodic constituents should be respected. This in itself is evidence that these constituents somehow are part of their knowledge of language.

This is the kind of intuitions we find attested in prosodic morphology: speakers show knowledge of the prosodic hierarchy in creating new words. One process which is quite widespread and in which this happens is reduplication. In this process, part of a word is doubled to reveal some special meaning. The following is an example from Ilokano. As in many languages, reduplication expresses plurality on nouns in this language:

(303) káldí 'goat' kál-káldí 'goats'
púsa 'cat' pús-pusa 'cats'
kláse 'class' klas-kláse 'classes'
ǰánitor 'janitor' jyan-ǰý'anjitor 'janitors'
ró'ot 'litter' ro:ró'ot 'litter (pl.)'
trák 'truck' trá- trák 'trucks'

In these examples, the copied part (the reduplicant) has been italicized. It is easy to see that this reduplicant is a heavy syllable σµµ in all cases. The idea is that the plural suffix in Ilokano takes this shape: it is an ‘empty’ heavy syllable which has to be materially filled with segments from the base. Note, by the way, that the mora theory is a convenient way to express this.

We do not just copy the first syllable of the stem. The first syllable of pusá presumably is pu. In order to fill the heavy syllable template, however, we have to add the s which is part of the second syllable. The reason why the vowel is lengthened in ro:ró'ot and trá-trák has something to do with preferences of syllable structure, which we will not discuss here.

We thus imagine the derivation of a reduplicated plural in Ilokano in the following way:

\[
\begin{array}{c|c|c|c|c|c}
\text{Input} & \sigma & \sigma & \sigma \\
\sigma µµ 'plural' + kláse 'class' & k \ 1 \ a \ s & k \ 1 \ a \ s \ e \\
\end{array}
\]

Languages can also choose to specify light syllables (σµ) as the reduplicant, and as a matter of fact Ilokano provides an instance of this as well, in a suffix which means ‘covered with’:

(305) buné 'buneng' si-bu-buné 'carrying a buneng'
jyaket 'jacket' si-jya-jyaket 'wearing a jacket'
pandili 'skirt' si-pa-pandili 'wearing a skirt'
Again, this is not just a process of copying a syllable, witness the last example: we do not copy all material from the heavy syllable pan in the stem, but only just enough to fill the light syllable template. Higher-order structure can also function as a template for reduplication. In Diyari we copy a Foot to derive various morphological effects:

\[(306)\] wiła \(\rightarrow\) wila-wiła ‘woman’
 kąnku \(\rightarrow\) kąnku-kąnku ‘boy’
 kulkuña \(\rightarrow\) kulku-kulkuña ‘to jump’
 t\(ı\)iplarku \(\rightarrow\) t\(ı\)lpa-t\(ı\)iplarku ‘bird species’
 ınankaññı \(\rightarrow\) ınanka-ınankaññı ‘catfish’

Again, we see that it is not just the first two syllables (or the first foot) of the word which are copied: the final syllable of the reduplicant is always open, even if the second syllable of the base is not.

Reduplication can also sometimes be total: we then copy the whole phonological word. Indonesian plural formation is a case in point:

\[(307)\] wanita woman wanita-wanita women
 mašakarat society mašakarat-mašakarat societies

It will come as no surprise that the phonological word is not always exactly the same as the morphosyntactic word, and in particular that prefixes are not always copied together with the stem. In the Bantu language Kihehe, we find a reduplication process that has an *inchoative meaning* – it denotes the start of an event:

\[(308)\] kú-haáta ‘to ferment’ kú-haáta-haáta ‘to start fermenting’
 kú-goňomóla ‘to cough’ kú-goňomóla-goňomóla ‘to start coughing’

Everything is copied, including the stem and the ending -\(a\) in these words; but the prefix is not. We can thus say that Kihehe reduplicates the phonological word; and that such words are formed in a way which is parallel to that of Italian.

Axininca Campa gives another example of a language in which we copy a phonological word, but with a certain restriction. In this language, we find the following pattern:

\[(309)\] kawosi-kawosi ‘bathe’
 koma-koma ‘paddle’
 osampi-sampi ‘ask’
 osaŋkina-saŋkina ‘write’

If the stem starts with a consonant, it is completely reduplicated; if it starts with a vowel, it is reduplicated except for the initial vowel. The reason for this presumably is syllable structure: by not copying the initial vowel, we avoid ‘unnecessary’ violations of the constraint ONSET, requiring every syllable to start with an onset consonant.

\[(310)\] REDUPLICATE MAX (RM): Reduplicate all material from the stem.
8.5. Morphological evidence for the prosodic hierarchy

Emergence of the Unmarked

We see a very important effect here, which distinguishes OT in a favourable way from parametric theories. In a theory of the latter type, we would need to say that the ONSET parameter is set ‘on’ in Axininca Campa: witness words such as osampi, the language allows onsetless syllables. But then we cannot explain why we all of a sudden find a restriction on them in reduplicated forms.

In OT, the situation is different: the constraint ONSET is sufficiently low-ranked — below the relevant faithfulness constraint — to make its effect invisible in ordinary words. But in reduplicated words, faithfulness is no longer important (the first vowel of o is present anyway), so that now all of a sudden we can see the universal constraint ONSET can be seen at work. This is called an effect of the emergence of the unmarked (TETU), and it is at present the strongest argument in favour of OT over parametric theories.

TETU effects abound in reduplicative systems. For instance, Sanskrit usually allows complex onsets, but when these onsets are reduplicated (in the perfective forms of verbs), they are simplified. Reduplication in this case is to a word.

(312)

<table>
<thead>
<tr>
<th>(311) a.</th>
</tr>
</thead>
<tbody>
<tr>
<td>/osampi/+RED</td>
</tr>
<tr>
<td>o.sam.pi.o.sam.pi</td>
</tr>
<tr>
<td>o.sam.pi.sam.pi</td>
</tr>
<tr>
<td>sam.pi.sam.pi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(311) b.</th>
</tr>
</thead>
<tbody>
<tr>
<td>/kawosi/+RED</td>
</tr>
<tr>
<td>ka.wo.si.ka.wo.si</td>
</tr>
<tr>
<td>ka.wo.si.wo.si</td>
</tr>
</tbody>
</table>

The constraint which shows up here in the reduplicated form is the one against complex onsets:

(313)

<table>
<thead>
<tr>
<th>(313) a.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RED=σμ: The reduplicative suffix is a monomoraic syllable.</td>
</tr>
</tbody>
</table>

b.

<table>
<thead>
<tr>
<th>RED + /prat^h/</th>
<th>NODELETION</th>
<th>*COMPLEX</th>
<th>RED=σμ</th>
<th>RM</th>
</tr>
</thead>
<tbody>
<tr>
<td>pra.pra.t^h.a</td>
<td>**!</td>
<td></td>
<td>t^h.a</td>
<td></td>
</tr>
<tr>
<td>pa.pra.pra.t^h.a</td>
<td>*</td>
<td></td>
<td>rt^h.a</td>
<td></td>
</tr>
<tr>
<td>pa.pra.t^h.a</td>
<td>*!</td>
<td></td>
<td>t^h.a</td>
<td></td>
</tr>
<tr>
<td>pa.pra.t^h.a</td>
<td>*</td>
<td>*!</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I introduced a small piece of new notation in this tableau: in the last column, I list the segments which violate the constraint. I could just as well have given
one asterisk for every segment, but this notation gives slightly more insight into what is actually going on.

We also find TETU effects at the level of segmental structure, for instance in Akan (the facts have been slightly simplified):

(314)
\begin{align*}
\text{a. } \text{si?} & \rightarrow \text{si.si?} \text{ ‘stand’} \\
\text{b. } \text{se?} & \rightarrow \text{si.se?} \text{ ‘say’} \\
\text{c. } \text{bu?} & \rightarrow \text{bu.bu?} \text{ ‘bend’} \\
\text{d. } \text{so?} & \rightarrow \text{su.so?} \text{ ‘seize’}
\end{align*}

This pattern looks very much from what we have seen for reduction. In terms of Element Theory we could state the following markedness and faithfulness constraints:

(315)
\begin{align*}
\text{a. } \text{NoComplexVowel:} & \text{ Only allow primary vowels (markedness)} \\
\text{b. } \text{KeepA:} & \text{ Don’t delete the element A}
\end{align*}

These constraints again interact to get a TETU effect:

(316)
\begin{tabular}{|c|c|c|c|}
\hline
\text{RED + } /\text{se?}/ & \text{KEEPA} & \text{NoComplexVowel} & \text{RM} \\
\hline
\text{so.so?} & & & \\
\text{se?si.se?} & & *! & \\
\text{si.si?} & & & |A|
\hline
\end{tabular}

\textbf{Infixed and shape restrictions}

A second well-known example of a prosodic morphological process next to reduplication is \textit{infixed}, the positioning of an affix not at the left (prefix) or right (suffix) edge. Consider the placement of the third person singular masculine possessive suffix -\textit{ka} in Ulwa (a language from Nicaragua):

(317)
\begin{align*}
\text{bas} & \text{ ‘hair’} & \text{bás-ka} & \text{ ‘his hair’} \\
\text{ki} & \text{ ‘stone’} & \text{kí-ka} & \text{ ‘his stone’} \\
\text{sudu} & \text{ ‘dog’} & \text{sú:ka-\text{-lu}} & \text{ ‘his dog’} \\
\text{asua} & \text{ ‘clothes’} & \text{as-\text{-ka}-na} & \text{ ‘his clothes’} \\
\text{sana} & \text{ ‘deer’} & \text{sana-ka} & \text{ ‘his deer’} \\
\text{amak} & \text{ ‘bee’} & \text{amak-na} & \text{ ‘his bee’} \\
\text{sapa} & \text{ ‘forehead’} & \text{sapa:ka} & \text{ ‘his forehead’} \\
\text{siwana} & \text{ ‘root’} & \text{siwana-\text{-ka}-\text{-nak}} & \text{ ‘his root’} \\
\text{anadaka} & \text{ ‘chin’} & \text{anadaka-l} & \text{ ‘his chin’}
\end{align*}

At first sight, it looks as if -\textit{ka} sometimes behaves as a suffix, but sometimes it is also inserted inside the word. On closer inspection, the generalisation is that -\textit{ka} comes after the first syllable of the word, if that syllable is heavy, and otherwise it comes after the second syllable. An insightful way to see this, is to say that the possessive behaves as a suffix to the first (iambic) foot of the word.
The hypothesis of Prosodic Morphology is that infixation is always of this type: it never means putting an affix just in some random position inside the stem: it is always prefixed or suffixed to a prosodic constituent. This type of analysis is also often used to show the advantages of Optimality Theory. Look at the following examples from Tagalog with the infix -um:

\[(318) \quad \text{um-alis} \quad \text{‘leave’} \]
\[t-\text{um-awag} \quad \text{‘call PERF. ACTOR TRIGGER} \]
\[gr-\text{um-advet} \quad \text{‘graduate’} \]

In this case, \textit{um} sometimes looks like a genuine prefix, and sometimes it looks like an infix; the generalisation is that it is prefixed if the word starts with a vowel and infixed otherwise. Within OT, we can give an elegant description of these facts: by infixing, we prevent an unnecessary violation of the constraint NOCODA. We do this at the cost of violating a (new) instance of an Alignment constraint, one forcing the left edge of the affix to be aligned to the left edge of the word; in other words, making the affix to behave like a real prefix.

\[(319) \quad \text{a. ALIGN(}-\text{um-}, \text{ L, } \omega, \text{ L)}: \text{The left edge of } -\text{um-} \text{ should correspond to the left edge of the word (count violations in segments).} \]
\[\text{b.} \quad /\text{um+tawag}/ \quad \text{NODELETION} \quad \text{NOCODA} \quad \text{ALIGN} \]
\[
\begin{array}{|c|c|c|c|}
\hline
\text{um.ta.wag} & \star & \star & \\
\text{ta.wu.mag} & \star & \star & \\
\text{u.ta.wa} & \star & \star & \\
\text{tu.ma.wag} & \star & \star & \\
\hline
\end{array}
\]
\[\text{c.} \quad /\text{um+alis}/ \quad \text{NODELETION} \quad \text{NOCODA} \quad \text{ALIGN} \]
\[
\begin{array}{|c|c|c|c|}
\hline
\text{a.um.lis} & \star & \star & \\
\text{a.lu.mis} & \star & \star & \\
\text{u.ma.li} & \star & \star & \\
\hline
\end{array}
\]

Notice that it follows from the principles of the theory that there is a relation between the shape of the infix — \(VC\) — and its infixal behaviour. We predict that there could not be a language where an affix \(mu\) could display the same behaviour:

\[(320) \quad \text{Non-existing language:} \]
\[\text{a. } \text{mu+alis} \rightarrow \text{a.mu.lis} \]
\[\text{b. } \text{mu+tawag} \rightarrow \text{mu.ta.wag} \]

The reason is that infixation in this case does not help:

\[(321) \quad /\text{mu+alis}/ \quad \text{NOINSERTION} \quad \text{ONSET} \quad \text{ALIGN} \]
\[
\begin{array}{|c|c|c|c|}
\hline
\text{a.mu.lis} & \star & \star & \\
\text{a.mu.lis} & \star & \star & \\
\hline
\end{array}
\]
No matter where we place the infix, there will always be a violation of the constraint ONSET; and this hypothetical language will allow onsetless violations, since it has hypothetical words of the shape *alis.*

Infexion and reduplication are sometimes combined. For instance, in Samoan the $\sigma\mu$ reduplicant is prefixed to the stress foot:

\[(322) \]
\[
\begin{array}{l}
\text{a. fa.náu} \rightarrow \text{fa.na.náu} \text{‘be born’} \\
\text{b. a.lófa} \rightarrow \text{a.ló.lófa} \text{‘love’}
\end{array}
\]

The following paradigm (from Timugon Murut) is also of interest in this connection:

\[(323) \]
\[
\begin{array}{l}
\text{a. bulud} \rightarrow \text{bu-bulud} \text{‘hill/ridge’} \\
\text{b. dondo} \rightarrow \text{do-dondo} \text{‘one’} \\
\text{c. indimo} \rightarrow \text{in-di-dimo} \text{‘five times’} \\
\text{d. ompod} \rightarrow \text{om-po-pod} \text{‘flatter’}
\end{array}
\]

This combines the two types of prosodic morphology we have seen so far: infexion and reduplication. The affix clearly reduplicates a light syllable of the stem; but in some cases (if the stem starts with a vowel) it also is infixed inside the stem, so that it does not reduplicate the first syllable, but the second one.

This example is of interest, since it seems to violate a generalisation we just made: that there are no phonological infixes of the shape CV. The reason is that in cases of infixed reduplication we do avoid unnecessary violations of the constraint ONSET. If we would copy the first syllable, we would create an ‘unnecessary’ onsetless syllable, which can be avoided if we copy the second one instead. Still, we would like the infix to be as much to the left — as much as a prefix — as possible:

\[(324) \]
\[
\begin{array}{|c|c|c|c|}
\hline
\text{om.om.pod} & \text{NOINSERTION} & \text{ONSET} & \text{ALIGN} \\
\hline
\text{om.om.pod} & & & **! \\
\hline
\text{om.p.o.pod} & & * & \text{om} \\
\hline
\end{array}
\]

\[(324) \]
\[
\begin{array}{|c|c|c|c|}
\hline
\text{bu.bu.lud} & \text{NOINSERTION} & \text{ONSET} & \text{ALIGN} \\
\hline
\text{bu.bu.lud} & & & \text{bu!} \\
\hline
\end{array}
\]

Hypercocistics formation

A third process of prosodic morphology next to reduplication and infixation is nick-name (hypococistics) formation. In many languages, shorter versions can be used of personal names, for instance to express affection. In these cases, the hypococistics assume the shape of some well-described prosodic constituent.
8.5. Morphological evidence for the prosodic hierarchy

The Japanese hypocoristic consists of a shortened version of the original name plus the suffix -čan. These examples show is that not just any shortening will do; we can observe that all the correct hypocoristics consist of an even number of morae, whereas the wrong versions all have an odd number of morae. In terms of the typology of stress feet from the previous class, this implies that the base to which -čan is attached will consist of a number of moraic trochees.

We can observe the restriction to bases of a certain shape also outside the domain of hypocoristic formation or prosodic morphology proper. For instance, Dutch has two productive plural suffixes, -en and -s. The first one is generally chosen after stems ending in an unstressed syllable, and the second one after a stressed syllable (underlining marks stress):

\[(326)\]

a. genie ‘genius’ genieën ‘geniuses’
 fabriek ‘factory’ fabrieken ‘factories’

b. familie ‘family’ families ‘families’
 p\[\underline{i}\]ger ‘potato’ p\[\underline{i}\]gers ‘potatoes’

Why do we observe this distributional paradigm? Notice that because of this effect, plural words tend to end in a (syllabic) trochee: a stressed syllable followed by an unstressed syllable.

\[(327)\]

Ft \[\underline{\sigma}\] Ft \[\underline{\sigma}\]
\[\underline{\sigma}\] \[\underline{\sigma}\]
\[\underline{p}\]gers \[\underline{p}\]ers \[\underline{s}\] ni \[\underline{an}\]

There is an importance difference between the Japanese hypocoristics suffix -čan and the Dutch plural suffix: the former requires its input to take a specific trochaic shape, whereas the latter makes sure that the output has this particular shape. Both of them are in support of the claim — which typological study seems to have confirmed — is that when morphology requires morphemes or words to have refer some specific shape, such shapes are always taken from the stock of prosodic phonology. To some extent, this is of course not surprising: phonological
8.6 Exercises

1. ‘Prosodic structure is derived from syntactic structure, but not the other way around.’ Explain.
2. ‘The phonological structure is organized into layers, which look more or less like autosegmental structure.’ (p. ??) Explain.
3. The Australian language Yidiŋ has a process lengthening the antepenultimate syllable of words with an odd number of syllables. This process also applies to suffixed words:

(328)
 a. **gudagagu** ‘dog-PURP’
 b. **muqam** ‘mother-ABS’
 c. **muqamana** ‘mother-PURP’

However, some clusters of suffixes behave like independent units for this process:

(329) **gumari: daga:mu** ‘to have become red’ (from **gumari**/ ‘red’, **/daga/** (INCHOATIVE) and **/mu/** (PAST))

 a. Construct an argument in favour of the phonological word from this example.
 b. Forms which behave like [329], typically include bisyllabic suffixes. Can you think of a reason why?
4. Korean has a process of intersonorant of obstruents (so a voiceless obstruent becomes voiced between two vowels or sonorants). Study the following examples, and decide what is the prosodic domain of voicing, and how this (roughly) corresponds to morphosyntactic structure.

(330)
 a. **/apaci/ [abaji]** ‘father’
 b. **/ki cip/ [kujip]** ‘that house’
 c. **/motin krim/ [modin girim]** ‘every picture’
 d. **/jun-i-j cip/ [junoi jip]** ‘Suni’s house’
 e. **/krim-il pota/ [krim-il boda]** ‘look at the picture’
 f. **/kæka canta/ [kæga canda]** ‘de dog is sleeping’ (lit. ‘dog sleeps’)
 g. **/horigi-wa kojaji/ [horaqi-wa kojaqi]** ‘the tiger and the cat’

5. In Kinande, verbs can be reduplicated to mean (for instance) that the action that is described is done little by little. In the following, you see how the reduplication works for stems of different shapes:

(331)
 a. **Consonant-initial** huma huma-huma ‘beat’
 humira huma-humira ‘beat for’
 humirana huma-humirana ‘
 b. **Vowel-initial** esa eses-esa ‘play’
 oha ohoh-oha ‘pick’
6. Order the constraints in (280) in such a way that you can derive the different phonological forms of (278). You may need a special constraint for the compound. Can you think of a form for this constraint?

7. Here are a few examples of reduplication in Mokilese. What is the size of the reduplicant?

(332) reduplicated

<table>
<thead>
<tr>
<th>pOdOk</th>
<th>pOdOdOk</th>
<th>"plant"</th>
</tr>
</thead>
<tbody>
<tr>
<td>mwiNe</td>
<td>mwiNmwiNe</td>
<td>"eat"</td>
</tr>
<tr>
<td>kaso</td>
<td>kaskaso</td>
<td>"throw"</td>
</tr>
<tr>
<td>pokí</td>
<td>pokpoki</td>
<td>"beat"</td>
</tr>
</tbody>
</table>

8. Look at the following examples of Spanish names and corresponding hypocoristics.

(333) Name	Hypocoristic
alejandro | ale
asunci ón | asun
isabel | isa
jeronimo | jero
rodrigo | rodi

What is the template for this process of hypocoristic formation?

9. Example (308) shows a few instances of reduplication in Kihehe. Here is a further example:

(334) /kí-it/ [kwí:ta] ‘to pour’ kwí:ta-kwí:ta ‘to pour a little’

As you can see, in this case the prefix is copied with the stem. What could be the reason? Give a simple OT analysis; you can freely make up the relevant constraints.

10. Try to reanalyse the examples from English and Bengali in section 8.3 without referring to phonological phrases, but only to syntactic constituents. Does the difference give you a reason to prefer one analysis over the other?

11. The examples below give the beginning and the end for a sign meaning ‘shop’ in Israeli Sign language and for the beginning and the end for a sign meaning ‘shop there’ in the same language. Discuss how such data could be used to study phonological word structure in (Israeli) sign language.

(335) a.
12. In English, clusters of obstruents tend to assimilate in voicing, either progressively (336a) or regressively (336b). However, this happens only to obstruents within the same word, not across word boundaries (336c).

(336)

a. twelve [twɛlv] + th [θ] → twelfth twElf\θ

b. cat [kæt] + s [z] → cats [kæts]

c. The cat zooms [kæt] + zooms [zʊms] → [t\ts], *[dz]}

If you find a sequence of two obstruents of which one is voiced and the other voiceless in English, you can be sure there is a word boundary between them. Is there any reason to think this is a phonological word boundary?

13. Example (288) (p. 145) shows a graph of the distribution of stuttering in function words in different positions within the first phonological word of the utterance. The following shows a graph from the same study on the same distribution but now in later phonological words.

As you can see, the two patterns are not very different. What does this mean for our evidence with respect to planning and prosodic structure?
8.7 Sources and further reading

Section 1.1. The classical book about prosodic phonology is In recent years, the idea that phonological structures are not recursive has come under attack; see

The paper on stuttering and phonological words from which the figures in (308) and (308) are taken is
Chapter 9

Phonology and morphosyntax

9.1 The difference between word phonology and phrasal phonology

A natural-language utterance obviously consists of more than a string of segmental slots, organized in prosody and autosegmental structure. There are also other types of structure: morphological, syntactic and semantic. These are not studied by phonologists, but on the other hand the different dimensions of linguistic structure clearly interact; and the interaction of phonology with these other modules is the topic of study. We have already seen so in the previous chapter: the higher levels of the prosodic hierarchy clearly have some relation to morphology and syntax.

It is usually assumed that these are the only two levels with which phonology interacts. In particular semantics does not seem visible for the phonology: there are very few attested cases in which phonology responds differently to words or phrasing having one class of meaning than to another (this would be the case, for instance, if the OCP would only apply in sentences with a universal quantifier). Although there are cases of, e.g., sound symbolism and onomatopoeia in which the sounds in the word correspond in some way to some aspects of the meaning of the word, there has been very little phonological study on such aspects, and the literature that exists does not seem very well-integrated into the rest of the field so far. This may obviously be an oversight of the field, but at present there is no reason to assume that semantics and phonology are directly connected.

Syntax and morphology in turn seem to interact with phonology in different ways. For all intents and purposes, the relation of syntax to phonology is unidirectional: phonological structure — in particular at the level of the phonological phrase and higher — is determined by syntactic structure, but not vice versa. There are no syntactic processes which refer to phonological shape: no rules which would demand, for instance, that all words beginning with a nasal should move to the beginning of the sentence. Syntax is in this sense phonology-blind.

The relation between phonology and morphology seems to be a more intimate one. We have already seen in the previous chapter that allomorphs can be selected based on the phonological shape of the stem. In this way, thus the phonology can influence the morphology. But we have also seen that the
phonological word in many cases is a reflex of a morphological structure, and in this way morphology influences phonology.

It is usually assumed that the consequence for the grammatical model is that syntax precedes phonology, whereas phonology and morphology interact. Furthermore, it seems quite clear that there are two types of phonology, having slightly different properties: one applying at the word level and another one applying at the sentence level.

9.2 Two layers of phonology

Consider the following facts of Dutch phonology:

(338) /Ik hEb @t/ [Ik.hE.p@t] ‘I have it’
 /hEi hAd @t/ [hEi.hA.t@t] ‘He had it’
 /Ik hEb @r/ [ik.hE.p@r] ‘I have her’

The question which raises about these examples is: why are the final obstruents of heb and had devoiced? We know from section 3.4 that Dutch has a process of syllable-final devoicing: the feature [voice] is not allowed to appear in the syllable coda. But the strange thing is that in cases such as this, the obstruents in question do not appear in the coda: they are in the onset of the next syllable, since Dutch syllables cannot begin with a schwa.

The point about these forms of course is that the obstruents are at the end of a syllable if we syllabify these words disregarding their syntactic context. One of the ideas of the theory of Lexical Phonology is that this idea is essentially correct: there are (at least) two phonologies — each an Optimality Theoretic system — which are serialised: first we apply phonology to words (lexical phonology) and the output of this is then, after the operation of syntax, applied to phrases (postlexical phonology):

(339) input ↓
 Lexical Phonology (Gen + Eval) ↓
 output of LP = input of P-LP ↓
 Post-Lexical Phonology (Gen + Eval) ↓
 output

In the Dutch case at hand, this works as follows. The input form is { /heb/, /at/, /ik/ } (the order is arbitrary). The output of the Lexical Phonology will be { [arp], [at], [ik] }, with still an arbitrary order. This will also be the input of the Post-Lexical component, except that the syntax will determine word-order at some point. The output of this component will be [ik.he.pat]. The [p] will be in the onset, but there is no reason why it should turn into a [b]; as far as the Post-Lexical phonology is concerned, [p] is completely faithful.

Given this serialisation, there are still two possibilities: the Lexical and the Postlexical grammar could be internally exactly the same (be composed of the
same ranking of the same constraints) or they could be completely different. The empirical facts seem to point in the second direction in many languages. For instance, in French, the surface syllable structure seems much more complex than what is allowed at the word level. Although there are no French words which start with the cluster *[dvr], we do find such clusters postlexically:

(340) Henri devrait partir ‘H. would have to leave’ [āidvrepartir]

It thus seems that the restrictions on syllable structure at the postlexical level are more relaxed than at the lexical level: whatever the constraints against complex clusters are, they are more highly ranked lexically than they are postlexically. For example:

(341) a. Lexical ranking: COMPLEX≫FAITHFULNESS
 b. Postlexical ranking: FAITHFULNESS≫COMPLEX

Another type of evidence is that there are phonological processes which only happen in the lexicon. An example of this is so-called compound voicing or rendaku in Japanese. In compounds, initial voiceless consonants of the second member get voiced (under certain conditions which do not need to concern us here):

(342) tama ‘ball’ teppoo dama ‘bullet’
 sono ‘garden’ hana zono ‘flower garden’

However, rendaku does not apply within phrases: if tama or sono occur somewhere else in the sentence, it does not voice. We can obviously describe this process by assuming that this voicing only applies within a smaller domain such as the phonological word and not in larger domains; however, phonologists have compiled a list of general differences between lexical and postlexical processes:

(343) a. Lexical processes are usually sensitive to lexical information (lexical exceptions etc.), postlexical are not sensitive to such information.
 b. Lexical processes change one phoneme into another, postlexical rules are typically about allophonic changes.
 c. The phonetic motivation for postlexical processes is often completely transparent, whereas this is not the case for lexical rules.
 d. Lexical processes are absolute, postlexical processes are gradient: they can apply more or less, corresponding to the sociolinguistic situation.

It turns out that Rendaku satisfies most of these conditions. There are for instance exceptions to it, it deals with phonemes, and it is not entirely clear from a phonetic point of view why an initial consonant would sometimes have to be voiced. Since processes often converge along these lines, it seems reasonable to assume that natural language really has two different components: one for objects of the size of words or smaller, and one for objects of larger size.
By way of further illustration, two processes in English phonology are sometimes used: the lexical process of trisyllabic shortening, and the postlexical process of flapping.

Trisyllabic shortening is the name for a process which shortens a vowel when it is followed by two other vowels:

(344) a. *div/aʃ/n + ɪtɪ → div[ɪʃ]nɪtɪ*
 b. *gr/ə/de + uəl → gr[ɛ]dual*
 c. *cl/ə/r + ɪʃ → cl[æ]rɪʃy*

Note that the quality of the vowel also changes, but that is something which is usually abstracted away from. We can describe this by the following constraint:

(345) **TROCHAIC MAXIMUM**: A long vowel cannot be followed by two short vowels.

According to all three criteria in (343), **trisyllabic lengthening (TSL)**, as a response to TROCHAIC MAXIMUM, is a lexical process because it satisfies the criteria for such a process:

a. It is subject to lexical factors. There are many words to which it does not apply, such as *nightingale* and *ivory*: in each of those words we have a long vowel followed by two short vowels. In particular, TSL can only be seen at work with certain Latinate suffixes, such as -*ity*, -*ual* and -*ify*. Other suffixes do not trigger the process at all:

(346) *brɛ:verɪ, mɛlɪ,tɪlɪ, plajrɪʃɪng*

And even if a suffix will normally trigger TSL, it might not do so in certain individual cases: *ob[iʃ]sɪtɪ* does not turn into *ob[ɛ]sɪtɪ*. The process thus is not (fully) productive.

b. Any change for which TSL is responsible will turn one phoneme of the language into another phoneme. All the sounds we have mentioned so far {aʃ, iʃ, ə, ə, e, e, ...} represent (distinct) phonemes of the language.

It is said that lexical processes are **structure preserving**: they never create sounds which do not already exist underlyingly and in this way they preserve the structure of the sound inventory of the language, in a way in which postlexical processes don’t always do: they may add new sounds.

c. It is not very easy to describe the process of TSL in a ‘natural’ way. As a matter of course, the formulation in (345) is hardly satisfactory; we would like to reduce it to what we already know about e.g. trochaic feet. But has proven to be not very easy to find a good formulation of the process in question in these terms. Why would it be bad to have a long vowel and then two short syllables? Those conditions seem to be rather specific. Of course, one does not want to have structures that are longer than binary, but why would such structures be particularly bad if they contain a long vowel? We can also observe that a long vowel followed by a short vowel is an unattested trochee (see section 7.6). But then the question is, why is such a structure bad when it is followed by another short syllable?
9.2. Two layers of phonology

It is also not easy to find evidence for TSL in other languages of the world, which is another indication that (345) is a rather suspicious constraint from a typological perspective.

d. The process is absolute: you do not shorten the vowel just a little bit, or more or less, or more when you talk to your boss then when you talk to your mother. The vowel of *divinity* is always shortened in exactly the same way.

TSL contrasts in all these respects from another process of (American) English phonology — so-called flapping, whereby an intervocalic coronal stop /t/ or /d/ turns into a sonorant flap, which we will write as [D], between a stressed vowel and a following unstressed vowel:

\[(347)\]
\[
a./a/om → a[D]om (cf. a/v/omic)
\]
\[
b. mee/t/ + ing → mee[D]ing
\]
\[
c. what/t/ + is wrong → wha[D] is wrong
\]

Since we assume that English has trochaic feet, the relevant context seems to be that the coronal stop is foot internal. We can formulate the following constraint that could be responsible for flapping:

\[(348) \text{FLAP: (Coronal) sonorants are preferred over (coronal) stops in the middle of a foot.}\]

Let us check how this constraint, and therefore this process fares with respect to the three criteria in (343):

a. The process is not subject to any lexical factors, it does not care what word we are talking about: all relevant underlying coronal stops in all words will flap if they occur in the right context. There are no lexical exceptions. As the examples in (347) show, the process furthermore occurs both within morphemes as well as across morpheme and even word boundaries. Whenever we have a stressed vowel on the left, an unstressed vowel on the right and a coronal stop in the middle, that stop can flap.

b. The output [D] is not an independently occurring phoneme of English; there are no minimal pairs distinguishing /t/ (or /d/) from a hypothetical /D/. If we set up an inventory of underlying consonants of English, we will thus not include a /D/. In that sense flapping is thus not structure preserving. We actually only find this sound as a result of flapping, and untrained speakers are typically unaware of the fact that they say a different consonant in *atom* than in *atomic*.

c. Also, FlAP has a natural phonetic explanation: onsets of stressless syllables tend to ‘assimilate’ in sonority to the surrounding vowels. This type of process — *lenition* — is also something which is well attested in the world’s languages.

d. The process is gradient in two ways. First, one can flap more or less: the sound /D/ is not completely stable, and is sometimes more like the original /t/ or /d/, and at other times more sonorant. Furthermore, speakers may vary what kind of flap they produce under different circumstances, for instances depending on the formality of the situation.
It thus looks as if the Lexical Phonology is a different type of grammar from the Post-Lexical Phonology; while the former is much closer to the lexicon, i.e. the way in words are stored — which explains the sensitivity to exceptions and to morphological structure, and the structure preservation — the latter is much closer to the phonetics — hence the naturalness, and the gradience. Especially for the extreme cases of both, some scholars have argued that they are ‘not real phonology’, and the boundaries are definitely difficult to determine:

- For lexical phenomena, some say that they are really lexical, hence listed in the lexicon, and not the result of some grammar. A speaker of English has *clear* *clarity* in her head, and she does not produce this on line from *clear* and *-ity*. A less favourable result of this line of thinking is that many regularities cannot be accounted for.
- For postlexical phenomena, some say that they are really phonetic: flapping is just an automatic consequence of the way the human speech organs work. A potential problem with this is that it cannot account for the fact that languages may differ (also) with respect to post-lexical phenomena, and this is not something we want to account for in ‘universal’ phonetics.

Obviously, if we divide up the whole domain of phonology in this way, there is nothing for a module of phonology proper to do: everything is either just stored in the lexicon, or it is the consequence of phonetic processes. Somebody who wants to defend such a position, and there are some respectable people who do, has the burden to show for a whole literature of phonology how things can be carved up again. Notice that the whole work still needs to be done, so even if you do not call it phonology, it is still is worthwhile studying it, albeit under a different label.

It is a consequence of the organisation of the grammar in (339) that lexical processes should precede the post-lexical processes. The English phenomena we have just considered do not provide us with a lot of evidence about this, simply because the two processes do not interact. They happen independently from each other, independent of which comes first.

But in cases where there is evidence that there should be ordering of the two processes, it basically always goes in the right direction and the lexical process comes first. For instance, two things happen in the following Polish examples:

(349) bup bob-u ‘bean’
xut xod-u ‘pace’
kot kot-a ‘cat’
vus voz-u ‘cart’

In the first place, Polish is subject to syllable-final devoicing, a process we have already seen operative in many other languages. This process is thus ‘natural’ at least from the typological point of view. It is also exceptionless in Polish and it replaces phonemes by other phonemes and is therefore structure-preserving. It thus is a paradigm case of a postlexical process (although it does not seem to be gradient).

In the second place, there is a process raising underlying /o/ to [u] when it occurs before a word-final voiced consonant, explaining the alternation in
e.g. *bup* from underlying */bob/*. A form such as *kot* illustrates that raising never happens if the form underlyingly has a voiceless obstruent.

Raising is a classic case of a lexical process. It has lexical exceptions: for instance the words *mob* [mop] and *snob* [snop] do not undergo it. It talks about two phonemes, [u] and [o]. Finally, there seems no phonetic motivation for this type of raising in this particular context, and the process is also not gradient in any way.

We have a clear indication that these processes must be ordered in the sense that they do not happen at the same time, but one after the other. In particular, when raising applies, it is as if devoicing is not there yet, since raising distinguishes between */xod/* and */kot/*. If we would have only one grammar, we cannot formulate the right constraint for raising to apply. Such a constraint would need to say ‘do not have a mid vowel before a voiced consonant’, but if devoicing applies at the same time the underlyingly voiced consonant will be devoiced and the constraint will not apply.

This only works well if we have to grammars, and raising applies first and then devoicing:

\[
\begin{array}{lcc}
\text{raising} & /xod/ & /kot/ \\
\text{devoicing} & \text{xud} & \text{n.a.} \\
\text{devoicing} & \text{xut} & \text{n.a.} \\
\hline
\text{devoicing} & \text{xot} & \text{n.a.} \\
\text{raising} & \text{d.n.a.} & \text{n.a.} \\
\hline
\end{array}
\]

The comparison of Dutch and Polish teaches us, by the way, that a process (final devoicing) which is lexical in one language may be postlexical in another one.

The difference between lexical and postlexical phonology has also been observed in languages that do not belong to the Indo-European language family.

9.3 Lexical Levels

Usually, it is assumed that phonological processes start their life in natural language as postlexical processes, only to turn lexical in the course of time.

9.4 The life cycle of phonological processes

Usually, it is assumed that phonological processes start their life in natural language as postlexical processes, only to turn lexical in the course of time.

9.5 Cyclicity

We can thus see that phonology is not monolithic. There are at least two phonological modules. In the architecture of the grammar, it would be logical to say that one precedes the syntactic component, whereas the other follows it.
The former thus interacts with morphology, and the latter with the output of syntax.

We will now concentrate on the lexical phonology. Until now, we have concentrated in this course on words which consist of one or two morphemes. But what happens if there are more than two morphemes in the input, viz. a stem plus more than one affix? In principle, there are two possibilities: we add all the affixes at the same time, or we first add one affix, then we apply phonology, and then we add another affix. It is one of the basic tenets of so-called cyclic phonology — usually incorporated into Lexical Phonology — that the latter is the case. The model is called cyclic, because we go in a circle: we add a suffix, then we apply phonology, then we add another suffix, etc. In this class we will assume that the phonology is the same constraint ranking every time.

A classical example is the difference between the English words *condensation* and *compensation*. (The relevance of the example is not uncontested, but we will use it here for illustrative purposes.) These words have virtually the same segmental makeup, but there stress pattern is different, and so is schwa reduction as a consequence of this: *condensa*-tion versus *còmpensa*-tion. According to this analysis, the reason for this is that the former noun is related to the verb *condense*, whereas the latter is related to *còmpensàte*. These relations are reflected in the stress structure of the verbs.

The cyclic account of this would run along the following lines. We first derive the stress structure of the verbs, then we attach the suffixes and — on the next cycle — we get the stress structure of the nouns.

\[
\begin{array}{c}
\text{underlying} \\
\text{compensate} \quad \text{condense} \\
\downarrow \quad \downarrow \\
\text{còmpensàte} \quad \text{condènse} \\
\downarrow \quad \downarrow \\
\text{còmpensàte+ion} \quad \text{condènse+ation} \\
\downarrow \quad \downarrow \\
\text{stress assignment} \\
\text{nominalisation} \\
\text{stress assignment} \\
\text{surface} \\
\text{còmpensátion} \quad \text{condènsátion}
\end{array}
\]

The working of the cycle is one of the key components of traditional generative phonology. Within generative syntax (minimality) it still survives in the form of derivational phases; it may be considered as one of Chomsky’s most important contributions to our insight into linguistics.

A more complicated — and realistic — example comes from Palestinian Arabic [Brame 1974; Kager 1999b; Kiparsky 2000]. This language has a process deleting unstressed high front vowels /i/ in all syllables of the word except for the last one:

\[
\begin{array}{c}
\text{(352)} \\
a. /fihim/ ‘to understand’ (verb stem) \\
b. /fihim/+φ → [fihim] ‘he understood’ \\
c. /fihim/+/na/ → [fihmana] ‘we understood’ \\
d. /fihim/+/u/ → [fihmu] ‘they understood’
\end{array}
\]

Now consider the following form:
9.5. Cyclicity

(353) /fihim/+φ + /na/ → [fihímna], *[fihímna] ‘he understood us’

/i/ deletion does not take place here, even though its phonological conditioning is met. The reason for this is that structures with object clitics are built on the basis of structures which occur as independent words, and we have the following principle governing derivations:

(354) Natural Bracketing Hypothesis. A substring ψ of a string ϕ is a domain of cyclic rule application in phonology only if it shows up elsewhere as an independent word sequence which enters compositionally into the determination of the meaning of ϕ.

Since fíhim ‘he understood’ occurs independently in Palestinian Arabic (e.g. in the sentence fíhim il-walád ‘he understood the boy’), and since it enters compositionally into the determination of [fihímna] — we have to calculate what the former means in order to understand what the latter means —, we also phonologically determine the structure of ‘he understood’ in order to get the structure of the whole form. On the other hand, fíhim ‘he understood’ itself derives from the verbal stem fihim, but this is not a separately pronounceable word, hence it cannot influence the structure of the stem in any way.

Note that the example looks very much like the English case discussed above, except that in English we were dealing with vowel reduction rather than vowel deletion. There is another difference as well: for the English case we could assume that it would be the stress which is transferred from the base to the extended form and that there would be some secondary stress on the [c] in condensation, blocking its reduction. Yet this is not true for the Palestinian dialect of Arabic. There is no trace of secondary stress in the cliticised form. This becomes apparent in parallel forms with other vowels than /i/. These vowels are not deleted, and words like dárábna are ambiguous between the meaning ‘he hit’ and ‘he hit us’.

A basic assumption of the model is that cyclic phonology is always lexical (because cyclicity involves sensitivity to morphological structure). Is the reverse also the case? The attentive reader who studies the following Dutch facts will notice that this cannot be the case:

(355) a. Derivation: heb/+erd → [heb@rt] (‘greedy person’)

b. Inflection: heb/+en → [heb@n] (‘have’ PLUR)

We have seen above that devoicing crucially applies lexically in Dutch. These facts show, on the other hand, that it cannot apply cyclically, otherwise it would apply in the stem heb. The usual way of thinking about this is that the lexical phonology actually itself consists of two subphonologies: a cyclic component first, which interacts with the morphology in the way we have seen for English and Palestinian Arabic, and a ‘word’ phonology after this, which applies to whole words before they are then inserted into the syntax. All in all, the standard model of Lexical Phonology thus looks as follows:
Exercises

1. On p. 172 it is claimed that the fact that lexical phonology is close to the lexicon explains the sensitivity to exceptions and to morphological structure, and the structure preservation, whereas the nearness of postlexical phonology explains why the latter is more natural and more gradient. Explain both points.

2. There is some overlap in predictive power between prosodic phonology and Lexical Phonology. Discuss.

References

Kenstowicz [1994] gives a nice overview of the literature on differences between lexical and postlexical phonology.
Bibliography

Bibliography

