A remark on the economics of Quantifier Raising

Jason Overfelt

University of Minnesota

ACCEPTED: Linguistic Inquiry

Abstract: Quantifier Raising is often considered to be a relatively local operation, though it has been argued that non-local applications are licensed by generating new scope interpretations (Fox 2000, Reinhart 2006) or resolving Antecedent-Contained Deletions (Fox 2002, Wilder 2003, Cecchetto 2004). Through an account of the restricted distribution of sloppy pronouns in Antecedent-Contained Deletions we will see evidence that exceptional applications of Quantifier Raising are in fact not licensed purely by virtue of escaping the antecedent for ellipsis.

Keywords: Quantifier Raising; Economy metrics; Ellipsis; Antecedent-contained deletion; sloppy anaphora

Contents

1 Introduction 1

2 Ellipsis-Licensing as Currency in a Semantic Economy 2

3 Sloppy Pronouns in Antecedent-Contained Deletions 5

4 When Binding Bleeds ACD 9
 4.1 Binding and Parallelism Domains 10
 4.2 Bleeding ACD with Binding 12
 4.2.1 Generating the Strict Interpretation 13
 4.2.2 Blocking the Sloppy Interpretation 14
 4.3 Coordination Configurations 16

5 Feeding ACD 17
 5.1 Inverse-Scope .. 21
 5.2 Topicalization .. 22
 5.3 Smuggling ... 23
 5.4 Leapfrogging .. 26

6 Conclusion 32
1 Introduction

A currently influential view of the syntax-semantics interface considers scope-shifting operations like Quantifier Raising (QR) to be subject to both syntactic and semantic Economy constraints. For example, Fox (1995, 2000) and Reinhart (1995, 2006) argue that QR is normally restricted to a position below the surface subject position and further movement must be licensed by meaningfully permuting two quantificational elements (see also Bruening 2001, Takahashi 2006, and Mayr & Spector 2010). Fox (2002), Wilder (2003), and Cecchetto (2004) argue that exceptional applications of QR can also be licensed by resolving Antecedent-Contained Deletion (ACD) configurations.

This paper provides further confirmation for a view of the grammar in which QR can be licensed by virtue of generating new scope interpretations. However, we will be led to the conclusion that QR cannot be licensed purely for the purpose of satisfying an identity condition on ellipsis. The evidence comes from an account of the novel and puzzling observation that sloppy interpretations of elided pronouns are more restricted in ACD configurations than in coordination configurations. The following minimally differing pair of sentences illustrates.

(1) Tom₁ wants his₁ brother to be on the train that you₂ (also) do ∆.

 a. strict : ∆ = want his₁ brother to be on
 b. *sloppy : ∆ = want your₂ brother to be on

(2) Tom₁ wants his₁ brother to be on the train and you₂ also do ∆.

 a. strict : ∆ = want his₁ brother to be on the train
 b. sloppy : ∆ = want your₂ brother to be on the train

I will argue that the restricted distribution of sloppy pronouns in ACD configurations can be accounted for by treating sloppy pronouns as bound-variable interpretations (Sag 1976,
Williams 1977) and adopting the type of ellipsis-licensing constraint found in Rooth (1992) and Heim (1997) that might require seeking out an antecedent for a constituent containing the ellipsis site. Ultimately, we will find that the QR operation that aids in resolving antecedent-containment may be unable to escape the extended antecedent constituent required to generate a sloppy pronoun interpretation. This makes it possible to understand the restriction on sloppy interpretations as a failure to license ellipsis.

Interestingly, sloppy pronouns are not categorically unavailable in ACD. We will see that one way to bring these interpretations out is to provide the host of the ACD site some additional means to take wider scope than would otherwise be expected. This suggests that the relevant application of QR that would license ellipsis, and therefore the sloppy interpretation, is in principle possible. On this basis, we will be led to the conclusion that escaping antecedent-containment is not by itself sufficient motivation for additional applications of QR.

Section 2 will briefly review some of the evidence suggesting that ellipsis resolution could plausibly license applications of QR. In section 3 I will demonstrate the restricted distribution of sloppy pronouns in ACD configurations. I will also present the relevant generalization to be derived. Section 4 will present the analysis sketched above in more detail. Section 5 investigates and discusses the significance of those instances of ACD where sloppy pronouns are available. We will conclude in section 6 by considering some implications and emergent puzzles of this analysis.

2 Ellipsis-Licensing as Currency in a Semantic Economy

The containment relationship between the elided VP_E and the antecedent VP_A in ACD configurations like (3) presents a puzzle for theories of ellipsis resolution. On the face of things there is no clear way to consider the two constituents to be identical in any sense,
making it unclear how ellipsis could be licensed in such structures.\(^1\)

\(\text{(3) a. } \text{Sue } [\text{VP}_A \text{ read } [\text{DP every article that you did } \langle \text{VP}_E \text{ read } x \rangle]] \)

\(\text{b. } [\text{VP}_A \text{ read every article that you read } x] \neq \langle \text{VP}_E \text{ read } x \rangle \)

May (1977, 1985) proposed to employ QR here in the way illustrated in (4). An application of QR that places the DP host of the ACD site (DP\(_{\text{ACD}}\)) outside the matrix VP provides a step towards resolving the licensing issue.\(^2\)

\(\text{(4) a. } \text{Sue } [\text{VP}_A \text{ read } x] [\text{DP every article that you did } \langle \text{VP}_E \text{ read } y \rangle] \)

\(\text{b. } [\text{VP}_A \text{ read } x] \approx \langle \text{VP}_E \text{ read } y \rangle \)

It has also been proposed that exceptional QR is licensed in those cases that it results in the resolution of an ellipsis site that would otherwise remain antecedent-contained. Wilder (2003) refers to examples like (5) as wide scope ACD. They show that the direct object of a finite complement clause can contain an ACD site resolved to the matrix VP.

\(\text{(5) John } [\text{VP}_A \text{ thought that the fire destroyed } x] \)

\([\text{DP every book that Bill did } \langle \text{VP}_E \text{ think the fire destroyed } y \rangle] \)

(adapted from Wilder 2003:93, (49a))

On a QR-based analysis of ACD-resolution, QR of the DP\(_{\text{ACD}}\) in (5) would have to cross a finite-clause boundary, something generally not possible for QR. Seemingly, then, an exceptional application of QR is licensed by the fact that it can resolve the ACD site.\(^3\)

Cecchetto (2004) reaches this same conclusion that resolving ACD in Italian and English can license otherwise unavailable applications of QR. Part of the evidence he presents comes from the observation, contra Wilder (2003), that otherwise unavailable inverse-
scope interpretations with the matrix subject become “possible (although marginal)” in wide scope ACD configurations.

Syrett (2015) reports on quantitative data from English that is intended to support this claim. A truth-value judgment task suggests that undergraduate participants were able to access the relevant inverse-scope interpretation on a matrix-level interpretation of an embedded ACD site. Participants in the experiment were shown a series of images and heard a story presenting a scenario supporting the inverse-scope interpretation. At the end of the story, the narrator delivered the target sentence and asked the participant about the accuracy of the statement. A sample target sentence is provided in (6).

(6) a. Someone$_1$ said he$_1$ could jump over every frog that Jessie did.

 b. $\forall > \exists$: ‘For every frog x such that Jessie said she could jump over x, there was someone who said he could jump over that frog.’

(adapted from Syrett 2015:586)

Syrett (2015) points out that participants’ ability to access the inverse-scope interpretation seems to confirm Cecchetto’s (2004) claim, which is that ellipsis licenses exceptional QR that can in turn feed additional applications of QR.

Despite these results, it cannot be concluded on the basis of data like (6) alone that ellipsis-licensing plays a role in achieving the inverse-scope interpretation. The minimum data required to make this argument would come from a comparison of (6) and the sentence in (7), from which we have removed the ACD site. If resolving the ACD site shared some of the responsibility for allowing the embedded object to take scope over the matrix subject, the inverse-scope interpretation should not be possible in (7).

(7) Someone$_1$ said he$_1$ could jump over every frog. ($\exists > \forall)$, $^{7}(\forall > \exists)$

However, Grano & Lasnik (2018) present data suggesting that the relevant inverse-scope interpretation in examples like (7) is available. They tie this directly to the fact that the
embedded subject is a bound variable. This observation that the embedded object can achieve exceptional scope in the absence of an ACD site in (7) suggests that resolving ACD is not relevant to the exceptionally wide scope of the embedded object in (6). Thus, these data do not provide the evidence to confidently claim that ellipsis-licensing motivates exceptional application of QR.

Regardless, the observation that an embedded object can contain an ACD site that is resolved to the matrix clause in examples like (5) has been taken to suggest that licensing ellipsis is (at least partially) responsible for transporting the embedded object out of the embedded clause (Wilder 2003, Cecchetto 2004, Wurmbrand 2018). The way that Cecchetto (2004) suggest we think about this is that the exceptional application of QR is motivated as a means of removing an ellipsis site from its antecedent.\footnote{More accurately, Cecchetto (2004) assumes that ellipsis involves copying of the antecedent into the ellipsis site. QR is motivated in ACD configurations in order to avoid the infinite regress that would arise from copying into the ellipsis site a constituent that contains the ellipsis site.} The remainder of the paper can be read as a failure to confirm these results. In an investigation of the distribution of sloppy pronouns in ACDs, we will be lead to the opposite conclusion. While QR may facilitate the resolution of ACD, additional or exceptional applications of QR are not licensed despite the fact that they would remove an ellipsis site from a constituent that would serve as a suitable antecedent. We will consider a way to think about these contradictory results in the Conclusion.

3 Sloppy Pronouns in Antecedent-Contained Deletions

VP-ellipsis (VPE) offers the ability to interpret an elided pronoun faithfully, as in (8a), or unfaithfully, as in (8b). Following Ross (1967), we will adopt the term \textit{strict} to refer to the faithful interpretation and \textit{sloppy} to refer to the unfaithful interpretation.
Kim likes her photos and you also do Δ.

a. **strict**: Δ = like her photos

b. **sloppy**: Δ = like your photos

Our basis for the analysis of sloppy pronouns comes from Sag (1976) and Williams (1977) which, following Partee (1973), interprets the elided constituent as a λ-expression. The strict interpretation emerges from treating the elided pronoun as referential, see (9a). Sloppy pronouns arise as a bound-variable interpretation of the elided pronoun, as in (9b).

(9) Kim likes her photos and you also do Δ.

a. **strict**: \[\lambda x . x \text{ like } y \text{'s photos}\]

b. **sloppy**: \[\lambda x . x \text{ likes } x \text{'s photos}\]

As an instance of variable-binding, it is commonly assumed to be a condition on sloppy interpretations that the elided pronoun is c-commanded by its new antecedent (e.g., Reinhart 1983, Tomioka 1999, but cf. Rooth 1992, Hardt 2003). On any analysis of ACD configurations like (10), this requirement would be met. Therefore, it is interesting that, while strict interpretations are easily available, sloppy interpretations are more restricted here than they are in coordinate VPE in (11).5

(10) *Jim wanted his brother to fix each bike

that you (also) did \(\langle \text{VP_E want your brother to fix x} \rangle\)

(11) Jim wanted his brother to fix each bike

and you (also) did \(\langle \text{VP_E want your brother to fix each bike} \rangle\)

5Tomioka (1999) presents an analysis of third person sloppy pronouns that are not c-commanded by their antecedent as E-type pronouns. I have attempted to control for this possibility here by using indexical pronouns in the ellipsis site, which resist an E-type interpretation. Based on the example in (i) below, however, it seems that an E-type strategy is not available to generate sloppy interpretations in ACD environments.

(i) *Kim expects her sister to be in the meeting that Dan does \(\langle \text{expect his sister to be in} \rangle\).

At present I do not have a full explanation for why this should be the case. Although, we might suppose that Grodzinsky & Reinhart’s (1993) Rule I is at play here. Given a choice between direct binding or an E-type pronoun, the grammar may prefer binding in the case that the two generate equivalent interpretations.
The context provided with the examples in (12) is designed to facilitate judgments. The strict interpretation of the elided pronoun is made false by this context and the sloppy interpretation true. Additionally, the target sentences have been adapted from Wilder (2003) in such a way as to force resolution of the ellipsis site to the matrix VP. Even so, the asymmetric pattern persists; the sloppy interpretation is possible in coordinate VPE but is unavailable in the ACD configuration.

(12)
Context: You expect that your sister and absolutely no one else will be in today’s meeting. However, Kim expects that her sister will also be in this meeting. So, . . .

 a. *Kim expects her sister to be in the meeting that you (also) do. (ACD)
 b. Kim expects her sister to be in the meeting and you also do. (VPE)

This asymmetry between ACD and standard VPE with respect to sloppy pronouns can be observed across a range of syntactic constructions. In addition to the raising-to-object constructions above, sloppy interpretations are missing from ACD sites in the second object of the double-object construction (13), the embedded object of a verbal small clause (14), and the embedded object of a finite clause (15). In each case, the sloppy interpretation reappears in the coordination configuration in the (b.) variant.6

(13)
Tim\textsubscript{1} showed his\textsubscript{1} mother each photo . . .

 a. that I\textsubscript{2} (also) did ⟨\textit{VP\textsubscript{E}} show his\textsubscript{1} /*my\textsubscript{2} mother ⟩.
 b. and I\textsubscript{2} also did ⟨\textit{VP\textsubscript{E}} show his\textsubscript{1} /my\textsubscript{2} mother each photo ⟩.

(14)
Sue\textsubscript{1} watched her\textsubscript{1} dog bite the people . . .

 a. that you\textsubscript{2} (also) did ⟨\textit{VP\textsubscript{E}} watch her\textsubscript{1} /*your\textsubscript{2} dog bite ⟩.
 b. and you\textsubscript{2} also did ⟨\textit{VP\textsubscript{E}} watch her\textsubscript{1} /your\textsubscript{2} dog bite the people ⟩.

A number of linguists who have provided judgments of data like in (10)–(15) have observed that adding the adjective *same* to the head of the relative clause helps draw out the sloppy interpretation (i.e., the same meeting). While I share this intuition to an extent, my suspicion is that the peculiar behavior *same*, as discussed by Barker (2007) for instance, means that something extra is going on in these cases. This suspicion must be left for future research.
(15) Bob1 thinks his1 sister was in every meeting …

 a. that you2 (also) do \langle VPE_{\text{think his1/your2 sister was in}} \rangle.

 b. and you2 also do \langle VPE_{\text{think his1/your2 sister was in every meeting}} \rangle.

The generality of this pattern indicates that we are dealing with a configurational issue created by ACD constructions.\(^7\) I propose that the relevant difference between ACD configurations and coordinate VPE is the relationship between the ellipsis site and the binder for the spoken pronoun, as schematized below.

In ACD configurations, the subject binds the spoken pronoun in the antecedent and also c-commands the ellipsis site, as in (16). In VPE configurations, the elided material and the antecedent material are distributed over two conjuncts and cannot be in a c-command relationship; see (17). The generalization to be derived, then, can be stated as follows:

(18) A pronoun \(P_n \) elided with some \(VPE \) will not permit a sloppy interpretation if \(VPE \) is interpreted in the scope of the binder for a corresponding pronoun \(P_m \) in the antecedent \(VPA \).

\(^7\)The puzzle presented here is superficially similar to the previously observed pattern whereby a reflexive pronoun resists a strict interpretation in coordination configurations but allows it in adjunction configurations (See Williams 1977, Partee & Bach 1984, and Hestvik 1995, but cf. Sag 1976, Dalrymple 1991, Kitagawa 1991, Fiengo & May 1994, Büring 2005, and Ahn 2011). In our puzzle, however, the sloppy interpretation is missing in ACD configurations while both interpretations are available in coordination configurations.

With that being said, it has to be acknowledged for full disclosure that for some speakers, including myself, reflexive pronouns permit a sloppy interpretation in an ACD configuration; see (i).

(i) Kim1 expects herself1 to be in the meeting that you2 do \langle expect her/yourself to be in \rangle.

This is not obviously a result we would expect from the generalization in (18) or the analysis to follow.
Section 4 will explain why such a generalization should exist. Although, it is worth clarifying now that the generalization is not that sloppy interpretations are entirely banned from ACD construction. In an ACD construction in which the VP_E manages to be interpreted, for example, above the matrix subject in the examples above, a sloppy interpretation should be able to emerge. We will find this prediction borne out in section 5.8

4 When Binding Bleeds ACD

I will ultimately argue that the generalization in (18) holds because ellipsis cannot be licensed in the structure responsible for generating the sloppy interpretation. We will adopt the insight from Takahashi & Fox (2005) that sloppy interpretations of pronouns require identifying an antecedent for the ellipsis site that is larger than otherwise expected. The effect is that the standard application of QR involved in ACD resolution may fail to escape antecedent-containment under a sloppy interpretation of an elided pronoun. The analysis, therefore, does not seek to constrain the distribution of sloppy pronouns. Instead, the idea is to derive their distribution directly from the conditions on ellipsis-licensing.

8It is because we will find in section 5 that we can modulate the availability of the sloppy interpretation as a function of where the VP_E is interpreted that I do not pursue an analysis that capitalizes on the distribution of focus marking. Consider (i) below, which is intended to demonstrate that the most natural prosody for the unelided variant of (12a) places a pitch accent on the elided pronoun and its binder.

(i) Kim expects her sister to be in the meeting that YOU [VP expect YOUR sister to be in]

Assuming that there is a general tendency to not elide focused material, one might assert that the focused pronoun blocks ellipsis of its containing VP. Left unconstrained, such an analysis would incorrectly predict that a sloppy interpretation is always unavailable.

These same observation from section 5 can also be taken to suggest that the availability of a sloppy interpretation is not purely a function of the discourse-coherence relations evoked by Kehler (2000) to account for the distribution of strict and sloppy interpretations. Looking ahead to (35) and (36), the inferred discourse-coherence relations of an utterance will not vary as a function of the scope of a because-clause. Thank you to Jessica Rett (p.c.) for a helpful discussion of this latter point.
4.1 Binding and Parallelism Domains

Recall our basis for the analysis of sloppy pronouns repeated in (19). Sag (1976) and Williams (1977) treat sloppy pronouns as variables bound within the ellipsis site while strict pronouns are interpreted as referential variables.

(19) Kim\textsubscript{1} likes her\textsubscript{1} photos and you\textsubscript{2} also do Δ.

a. strict : $\semantics{\Delta} = \lambda x. \text{like } y$’s photos

b. sloppy : $\semantics{\Delta} = \lambda x. \text{likes } x$’s photos

For Sag (1976), ellipsis is licensed in (19) because the logical formula derived for either VP_E can be identical to the VP_A, excepting the alphabetic names of the bound variables. Sag (1976:131–132) argues that this mode of capturing sloppy identity in VPE correctly predicts that it should not be possible for a sloppy pronoun in an ellipsis site to have an antecedent other than the DP that saturates the open predicate that is the elided constituent. Indeed, the availability of a sloppy pronoun in (20) correlates with the size of the ellipsis site; it does not appear to be possible to bind a sloppy pronoun from outside the ellipsis site, as seen in (20b).

(20) a. Tim $\lambda_1 \text{ said I kissed him}_1$ and Sue did $\langle \text{VP}_E \lambda_2 \text{ say I kissed her}_2 \rangle$, too.

b. *Tim $\lambda_1 \text{ said I } [\text{VP}_A \text{ kissed him}_1]$ and Sue $\lambda_2 \text{ said I did } \langle \text{VP}_E \text{ kiss her}_2 \rangle$, too.

Subsequent research has shown that it is actually possible under various conditions for variable to be bound from outside a VP_E (e.g., Evans 1988, Jacobson 1992). For instance, in (21), the trace in the elided VP_E is bound from outside the VP_E by the binder index λ_2 under the topicalized DP Sue.

(21) Tim $\lambda_1 \text{ I } [\text{VP}_A \text{ kissed } x_1]$ but Sue $\lambda_2 \text{ I didn’t } \langle \text{VP}_E \text{ kiss } y_2 \rangle$.

The problem is that, from the point of view of licensing ellipsis, it is not obvious that the VP_A and VP_E can produce equivalent logical formulas. These VPs contain variables...
which are free within those constituents and which also carry different indices. As (22) demonstrates, this is not something that ellipsis tolerates.

(22) *Tim \([\mathit{VP}_{\mathit{A}} \text{ kissed him}_{1 \rightarrow \mathit{Dave}}] \) and Sue also did \([\mathit{VP}_{\mathit{E}} \text{ kiss}_2 \text{ him}_{2 \rightarrow \mathit{Steve}}] \)

In response, Takahashi & Fox (2005) maintain the basic assertions of the Sag/Williams analysis but they adopt the idea from Rooth (1992) and Heim (1997) that the identity relationship required for licensing ellipsis is not evaluated directly over the ellipsis site and an antecedent. Instead, the relevant identity relationship is evaluated between some constituent that contains the ellipsis site and an appropriate antecedent. It will be sufficient for our purposes to state this condition as in (23) below.

(23) For ellipsis of some \(\mathit{VP}_E \) to be licensed:

i. there must exist a parallelism domain (PD), which reflexively dominates \(\mathit{VP}_E \),

ii. there must exist an antecedent constituent (AC), and

iii. for any assignment function \(g \), \([\mathit{PD}]^g = [\mathit{AC}]^g \), modulo focus-marked constituents.

(simplified from Takahashi & Fox 2005:229, (20))

Turning back to examples like (22), repeated now in (24), with no bound variables or \(\overline{A} \)-traces, the PD will need to be only as big as the elided constituent. When the spoken and elided pronouns are contra-indexed, as shown now in (24), it will be found that the PD and AC are not semantically equivalent for any assignment function. There could be assignment functions where \(1 \mapsto \mathit{Dave} \) and \(2 \mapsto \mathit{Steve} \), assignment functions where \(1 \mapsto \mathit{Bob} \) and \(2 \mapsto \mathit{Randy} \), and others. For this reason the licensing condition in (23) will determine that ellipsis is not possible.

(24) a. *Tim \([\mathit{AC} \text{ kissed him}_1] \) and Sue also did \([\mathit{PD} \langle \mathit{VP}_E \text{ kiss}_2 \text{ him}_2 \rangle] \)

b. \([\mathit{AC} \text{ kissed him}_1] [\mathit{PD} \text{ kissed him}_2]]^g \neq [\mathit{PD} \text{ kissed him}_2]^g \)
It is when a variable is bound from outside the ellipsis site—the VP_E in the case of topicalization that is provided again in (25)—that a PD larger than the VP_E must be identified. By including within the PD the binder index λ2 for the bound variable y₂, we can identify the bracketed AC with the binder index λ1 as an appropriate antecedent. Because binder indices are interpreted as modifiers of variable assignment functions, this PD and AC will be interpretively equivalent under any assignment function, modulo the focus marked auxiliaries.\(^9\)

(25)
\[\begin{align*}
\text{a. } & \text{Tim } [\text{AC } \lambda 1 \text{ I DID kiss } x_1] \text{ but Sue } [\text{PD } \lambda 2 \text{ I DIDN’T } \langle \text{VP}_E \langle \text{viss } y_2 \rangle \rangle] \\
\text{b. } & \left[[\text{AC } \lambda 1 \text{ I DID kiss } x_1] \right]^g_{[1 \rightarrow 3]} \Rightarrow \left[[\text{PD } \lambda 2 \text{ I DIDN’T kiss } y_2] \right]^g_{[2 \rightarrow 3]}
\end{align*}\]

The benefit of this extended system is the additional degree of freedom provided when choosing which constituent in the phrase marker requires the identification of an appropriate antecedent as part of licensing ellipsis. In the following subsection, we will capitalize on the idea that the AC necessarily enlarges as the PD enlarges in response to bound variables in the ellipsis site.

4.2 **Bleeding ACD with Binding**

Let us continue to analyze ACD as being resolved through an application of QR that covertly moves the DP_{ACD}. For reasons that will become apparent, we will more closely follow Merchant (2000) as well as Fox (2002), who builds on Fox & Nissenbaum (1999), and assume that the relevant application of QR targets the edge of what I will continue to refer to as VP, as in (26).

(26)
[VP [VP_A watched x] [DP the documentary that I did ⟨VP_E watch y⟩]]

\(^9\)To account for the original contrast in (20), Takahashi & Fox (2005:229, (21)) adapt the requirement, which ultimately appeared in Merchant (2008), that ellipsis target the largest deletable constituent, viz. MAX-ELIDE. Basically, their MAXELIDE favors ellipsis of the largest deletable constituent reflexively dominated by the PD. In (20), this is the embedding VP immediately under the DP *Sue*, which serves as the binder for the embedded pronoun.
We will find that applications of QR employed to resolve antecedent-containment may fail to do so if a larger-than-normal AC has been identified. In these cases, semantic equivalence will not be established and ellipsis will not be licensed on the desired sloppy interpretation.

4.2.1 Generating the Strict Interpretation

First consider the grammatical ACD configuration with a strict interpretation of the elided pronoun. A modified version of (12) is provided in (27) below alongside its LF representation in which the DP\textsubscript{ACD} has QR’ed to the edge of VP.

(27) a. Kim expects her\textsubscript{7} sister to be in

\[
\text{[DP the meeting that you do } \langle \text{VP} \text{expect her\textsubscript{7} sister to be in } \rangle \text{].}
\]

b. \begin{center}
\begin{tikzpicture}
 \node (ip) {IP}
 child {node (kim) {Kim}
 child {node (vp) {VP}
 child {node (ac) {AC}
 child {node (vp1) {VP \lambda 1}
 child {node (dp) {DP}
 child {node (meeting) {the meeting CP}}
 child {node (ip) {IP}
 child {node (do) {you do VP meeting PD}}
 child {node (vp2) {\lambda 2 \langle \text{VP} \rangle}}
 child {node (pd) {PD}}
 }
 }
 }
 }
 }
 }
\end{tikzpicture}
\end{center}

Generated the strict interpretation requires that the elided pronoun and its spoken cor-
relate in the VP$_A$ will be referential pronouns. This means that the only bound variable in the VP$_E$ is the trace x_2 of the relative clause head *meeting*. It is only this element for which we need to consider the effects of binding on ellipsis-licensing. I will assert that, for the purpose of defining the PD, this variable is bound by the binder index introduced with an intermediate trace of *meeting* at the edge of the highest VP inside the relative clause domain. With this PD, an AC can be defined by the parallel binder index at the edge of the matrix VP that is introduced by the instance of QR involved in the resolution of the ACD site.

By comparing the logical formulas generated from the LF representations for these constituents we can see in (28) that they do not contain contra-indexed free variables. Since they are otherwise parallel they will be interpretively equivalent under any assignment function, including one where $g(7) = \text{Kim}$.

\[
\llbracket [\text{AC } \lambda 1 \text{ expects her}_7 \text{ sister to be in } x_1] \rrbracket^g = \\
\llbracket [\text{PD } \lambda 2 \text{ expect her}_7 \text{ sister to be in } x_2] \rrbracket^g
\]

The licensing condition on ellipsis is satisfied and ellipsis of the relative clause VP is possible on the intended interpretation.

4.2.2 Blocking the Sloppy Interpretation

The example illustrating the unavailable sloppy interpretation from (12) is provided again in (29) below. It is accompanied by its corresponding LF representation, in which the DP$_{A\text{CD}}$ has undergone QR to the edge of the matrix VP.

The elided pronoun and its correlate in the VP$_A$ are each bound by the subject of their respective containing clause. The VP$_E$, therefore, contains two bound variables: the trace of the relative clause head is still bound by an intermediate trace at the edge of the highest relative clause VP and the pronoun *your* is bound by *you*. To ensure semantic equivalence,
the binding of *your* will require extending the PD outside the highest relative clause VP to contain the binder index $\lambda 2$ under *you*. This in turn means that it will be necessary to extend the AC to find a parallel binder for the pronoun *her*. This makes the AC the constituent that immediately dominates the binder index $\lambda 3$ under *Kim*.\(^{10}\)

(29) a. *Kim\(_3\) expects her\(_3\) sister to be in

\[
[\text{DP the meeting that you\(_2\) do } (\text{VP __ expect your\(_2\) sister to be in __)}.]
\]

b. IP

\[
\text{Kim} \quad \boxed{\text{AC}} \\
\lambda 3 \quad \text{VP}
\]

\[
\text{VP} \quad \lambda 1 \\
\text{DP} \\
\text{the meeting} \quad \text{CP}
\]

\[
\text{expects her\(_3\) sister to be in } x_1
\]

\[
\text{that} \quad \text{IP} \\
\text{you} \quad \boxed{\text{PD}}
\]

\[
\lambda 4 \quad \text{do} \quad \text{VP} \\
\text{meeting} \quad \lambda 2 \quad (\text{VP_E})
\]

\[
\text{expect your\(_4\) sister to be in } x_2
\]

Examining the structure in (29b) one finds that sufficiently extending the AC picks out a constituent that now contains the PD. The logical formulas generated by these LF representations now cannot be interpretively equivalent. Considering (30) below we can see

\(^{10}\)By comparing the treatment of (27) and (29) the reader might note that I am effectively assuming that pronominal binding by the subject necessarily introduces a bound variable within the VP_E while A-movement of the subject does not (cf. Hartman 2011, though see Messick & Thoms 2016).
that, at minimum, the moved element in the AC has a restrictor and will have stronger truth conditions than the PD. Therefore, the licensing condition on ellipsis cannot be satisfied and ellipsis of the relative clause VP is not possible on this interpretation.\footnote{We will eventually adopt the assumption that traces are contentful and contain variables bound by the moved element (e.g., Engdahl 1980, Sauerland 1998, Fox 2002). The intermediate trace in (29) will contain a variable that is free within the PD and has no correlate in the AC. The presence of this bound variable is another reason that ellipsis cannot be licensed in this representation.}

(30) \[
\begin{array}{l}
\llbracket [\text{AC} \lambda_3 \left[\text{the meeting that you } \lambda_4 \text{ meeting } \lambda_2 \text{ expect your}_4 \text{ sister to be in } x_2 \right] \\
\quad \lambda_1 \text{ expects her}_3 \text{ sister to be in } x_1 \rrbracket^g \\
\neq [\llbracket [\text{PD} \lambda_4 \text{ meeting } \lambda_2 \text{ expect your}_4 \text{ sister to be in } x_2] \rrbracket^g
\end{array}
\]

In short, this analysis asserts that the variable binding associated with generating sloppy pronouns requires identifying an antecedent constituent that is too big for standard applications of QR to escape. With respect to the generalization in (18), it is specifically when the binder in the antecedent clause c-commands the ellipsis site that it may not be possible for QR to escape containment within the extended antecedent constituent, which disrupts ellipsis-licensing. To better appreciate this, we can turn briefly to the account of sloppy pronouns in coordinate VPE.

4.3 Coordination Configurations

Recall from section 3 that the distribution of sloppy pronouns is not so constrained in the context of coordination configurations. Simply put, this is because, unlike in ACD configurations, the PD and AC are in separate clausal conjuncts and will not interact. Extending the AC in response to an extended PD will not result in antecedent-containment.

In (31) is the rough LF representation of the strict interpretation in a coordination structure. To generate the strict interpretation, the elided variable and its correlate in the spoken VP will be treated as referential pronouns. The elided VP will not contain any bound variables and the PD will be coextensive with the VP\textsubscript{E}.
Kim [AC expects her₇ sister to be in the meeting] and
you also do [PD ⟨VPₑ expect her₇ sister to be in the meeting ⟩].

The sloppy interpretation, as before, arises when the elided pronoun is interpreted as a bound variable. This will require extending the PD to include the binder index introduced under you, as shown in the rough LF representation in (32). Because the ellipsis site and antecedent are in separate clausal conjuncts in this case, the extended AC will not be extended to the point that it contains the PD. By comparing the AC and PD pulled from this structure, the reader can confirm that they are guaranteed to be semantically equivalent under any variable assignment function.

(32) Kim [AC λ₃ expects her₃ sister to be in the meeting] and
also you [PD λ₂ do ⟨VPₑ expect your₂ sister to be in the meeting ⟩].

In generating either the strict or sloppy interpretation of the elided pronoun in a coordination structure, the LF representation for the PD and AC will not be in a containment relationship and will generate interpretively equivalent logical formulas. Thus, on either interpretation, the licensing condition on ellipsis will be satisfied and ellipsis of the VP will be possible.

5 Feeding ACD

The analysis presented in the previous section crucially relies on the assertion that the hypothetical LF representation in (33) below is generally unavailable. If the DPₐₙₜᵣ could out-scope the matrix subject, the highest copy of the relative clause head could define the PD. This PD would escape the extended AC and semantic equivalence could be established and ellipsis would be licensed on the sloppy interpretation. This is shown in (34), where it can be seen that this AC and PD would be guaranteed to be semantically equivalent,
modulo focus-marked constituents.12

\begin{equation}
(33)
\begin{array}{c}
\text{AC} \\
\text{IP} \\
\text{Kim} \\
\text{VP} \\
\text{expects her sister to be in } x_1
\end{array}
\begin{array}{c}
\text{DP} \\
\text{the meeting} \\
\text{PD} \\
\text{CP} \\
\text{IP} \\
\text{you} \\
\text{do } \langle \text{VP} \rangle \\
\text{expect your sister to be in } x_2
\end{array}
\end{equation}

\begin{equation}
(34)
\left[[\text{AC } \lambda 1 \text{ KIM } \lambda 3 \text{ expects her sister to be in } x_1] \right]^g = \\
\left[[\text{PD } \lambda 2 \text{ YOU } \lambda 4 \text{ expect your sister to be in } x_2] \right]^g
\end{equation}

One way to block this representation is to restrict QR of the DP_{ACD} to the matrix VP. This can be done with at least two assumptions. The first is that QR is subject to a minimality condition that requires it to target the closest node at which it would be semantically interpretable, normally the edge of VP for internal arguments. Second, QR may proceed successive-cyclically beyond this position on the condition that each step is independently licensed and also minimal. This is the basic picture of QR that has emerged from the research by Fox (1995, 2000), Reinhart (1995, 2006), Nissenbaum (2000:ch.5), Cecchetto (2004), Takahashi (2006:ch.4), and others.

These assumptions were partly implicit in the account presented in the previous sec-
tion. By assertion, QR of the DP_{ACD} is licensed to move successive-cyclically out of the embedded clause but only as far as the matrix VP. One of the primary claims of this paper is that, whatever licenses the involved movements, it is not the ability to escape the AC that is evaluated for ellipsis-licensing. If it were, a step of QR that placed the DP_{ACD} beyond the matrix VP and above the matrix subject, as in (33), would be licensed by virtue of licensing ellipsis.

Of course, it is possible that some other, potentially undiscovered factor is blocking (33) or its derivation. We can show this is not the case by investigating a prediction made by the system as it has been laid out so far. If we can provide some alternative motivation for an instance of movement that we expect to simulate (33), ellipsis should be possible with a sloppy interpretation. If this is what we observe, we would be licensed to conclude that the relevant application of movement is in principle capable of generating (33), but is not otherwise provided sufficient motivation. Specifically, QR is not licensed purely to ensure the semantic identity condition on ellipsis that we have adopted. The remainder of this section serves to demonstrate that this prediction is borne out.

Before looking at those data, let us rule out a plausible alternative to how we have characterized this prediction. One could imagine that, instead of moving the DP_{ACD} over the subject to generate a sloppy interpretation, the subject is reconstructed to a position below the DP_{ACD}. The result would still be a configuration like we saw in (17), where the VPE is interpreted above the subject and the generalization in (18) is satisfied. There is empirical evidence suggesting that this is not a possible strategy for generating sloppy interpretations. Reconstruction of the subject fails to account for the distribution of sloppy pronouns in because-clauses, which we will see presently is a function of the scope of the because-clause.

Consider the following sentence in a context that biases toward interpreting the because-clause either under sentential negation (35) or above sentential negation (36).
(35) a. \(\neg > \text{CAUSE} \)

Context: Kim was not aware that you wanted your sister to be in this meeting. She decided that she wanted her sister to be in this meeting only after hearing there would be gifts given out.

b. *Kim\(_1\) doesn’t want her\(_1\) sister to be in this meeting*

 because YOU\(_2\) do \(<\text{VP}_{\text{E}} \quad \text{want your}_{2}\text{ sister to be in this meeting} \>\).*

c. ‘It’s not the case that, because you want your sister to be in this meeting, Kim wants her sister to be in this meeting. (It’s because...)’

(36) a. \(\text{CAUSE} > \neg \)

Context: When Kim heard that you wanted your sister to be in this meeting, she decided, out of spite, that she didn’t want her sister to be in this meeting.

b. Kim\(_1\) doesn’t want her\(_1\) sister to be in this meeting

 because YOU\(_2\) DO \(<\text{VP}_{\text{E}} \quad \text{want your}_{2}\text{ sister to be in this meeting} \>\).*

c. ‘Because you want your sister to be in this meeting, it’s not the case that Kim wants her sister to be in this meeting.’

When the *because*-clause is interpreted under negation in (35), a sloppy interpretation of the elided pronoun is unavailable. On the other hand, when the *because*-clause is interpreted above negation in (36) the sloppy interpretation becomes available. This is not a contrast that is straightforwardly captured as a function of the reconstruction of the subject. In both cases, the subject would supposedly be reconstructed to a position beneath the *because*-clause, which should permit a sloppy interpretation.\(^{13}\)

Instead, we can make sense of this finding if the VP\(_{\text{E}}\) in the *because*-clause must be interpreted in the scope of the surface position of the matrix subject when the *because*-clause.

\(^{13}\)More accurately, the argumentation around examples (35) and (36) suggests that reconstruction to the base-position of the subject is inadequate. These data may be compatible with theories of inverse-scope readings that involve reconstruction of the subject to some intermediate position in the clause, as argued for by Johnson & Tomioka (1998).
clause is interpreted under negation. This would effectively produce a structure like (16) from section 3, which I am claiming blocks a sloppy interpretation of elided pronouns. The structure for (35) essentially results in an antecedent-containment configuration. The availability of a sloppy interpretation when the *because*-clause is interpreted above negation is expected if the VP_E in the *because*-clause at least can be interpreted outside the scope of the surface position of the subject. In other words, a structure like (17), which avoids antecedent-containment, is available when the *because*-clause has scope over negation and a sloppy pronoun should be available according to (18).\footnote{Fox & Nissenbaum (2003) argue that some clausal adjuncts involve QR of the connector element and late-merger of the embedded clause. One might imagine that something similar would generate a structure like (17) for a *because*-clause. In as far as the data and argumentation around (35) and (36) are correct, it serves as evidence that this type of derivation is not available for the purpose of generating the desired sloppy interpretation in these instances.}

We turn now to the prediction that moving the DP_ACD will allow for ellipsis on a sloppy interpretation.

5.1 Inverse-Scope

Fox (1995, 2000) and Reinhart (1995, 2006) both argued that an object can be coerced into QR’ing over the subject on the condition that they are both quantificational and that the movement would meaningfully invert the logical scope of the two elements. To the extent that this is the case, we predict that it should be possible to motivate a structure like the one in (33) by creating the possibility for QR to generate a new scope interpretation.

Observe first that it will in principle be possible for the embedded object to achieve scope over the matrix subject. This is what we see in (37). The inverse-scope interpretation is available with a bound-variable interpretation of a pronoun in the embedded subject position.
(37) a. A guard_1 expects his_1 sister to stand outside every building.

 b. Every building [λ2 a guard λ1 y_1 expects his_1 sister to stand outside x_2]

 c. ∀ > ∃: ‘For every building x, there is a guard y such that y expects y’s sister to stand outside x.’

Next, Koster-Moeller & Hackl (2008) argue that we observe Hirschbühler-Fox Scope Parallelism effects in the domain of ACD. Put simply, the relative scope of two quantifiers in the ellipsis domain must be able to be parallel to the relative scope of their spoken correlates in the antecedent domain. Controlling for these effects gives us a test sentence like we see in (38).

(38) a. A guard_1 expects his_1 sister to stand outside

 [DP every building that a spy_2 does ⟨ VP_E expect her_2 sister to stand outside ⟩]

 b. ∀ > ∃: ‘For every building x such that there is a spy y such that y expects y’s sister to stand outside x, there is a guard z such that z expects z’s sister to stand outside x.’

As predicted, the inverse-scope interpretation and the sloppy interpretation emerge together in (38). This suggests that there is nothing in principle wrong with a representation like (33) or its derivation. Instead, the inability of the DP_{ACD} to achieve the scope necessary to generate the sloppy interpretation must come from the lack of motivation to do so.

5.2 Topicalization

Additional evidence that the structure in (33) can be derived and that it can be derived by moving the DP_{ACD} over the subject comes from the observation that a sloppy interpretation becomes available inside a topicalized DP_{ACD}.

[15] See Fox (2000) for a discussion of these effects, which are attributed to Hirschbühler (1982). For Koster-Moeller & Hackl (2008), this observation calls for a more articulated theory of relative clauses than I have assumed. The details do not affect the analysis presented here.
Correcting for linearization, the instance of topicalization that we see in (39) generates a structure very much like we see in (33). Topicalization places the DP_{ACD} in a position above the matrix subject and outside of an extended AC.

(39) $[\text{DP} \, \text{This meeting}]_1 \text{Kim WOULD expect her sister to be in } x_1.$

As expected from the proposal in section 3 and the account in section 4, an elided pronoun in the ACD site hosted by the topicalized DP now permits a sloppy interpretation; see (40).

(40) $[\text{DP} \, \text{The meeting that you}_2 \text{WOULDN’T } \langle \text{VP} \, \text{expect your}_2 \text{sister to be in } x_1 \rangle]_1 \text{Kim}_3 \text{WOULDN’T expect her}_3 \text{sister to be in } x_1.$

Again, we are seeing evidence that the derivation and representation required for a sloppy interpretation is in principle available. We are able to detect a sloppy interpretation once some motivation for movement, other than ensuring semantic equivalence, is provided.

5.3 Smuggling

Fiengo & May (1994) provide the example in (41) specifically to illustrate that ACD, like standard VPE, permits sloppy pronouns. In this example the DP_{ACD} is contained in the PP-argument of a ditransitive predicate. The example in (42) shows that sloppy pronouns also appear in ACD sites that are contained within a PP-adjunct.\(^{16}\)

(41) Oscar\(_1\) introduced his\(_1\) mother to

$[\text{DP} \, \text{everyone that Max}_2 \text{did } \langle \text{VP} \, \text{introduce his}_2 \text{mother to } \rangle]$

(Fiengo & May 1994:240, (7))

(42) Sue\(_1\) practiced her\(_1\) presentation with

$[\text{DP} \, \text{everyone that you}_2 \text{did } \langle \text{VP} \, \text{practice your}_2 \text{presentation with } \rangle]$

\(^{16}\)Thank you to Jeremy Hartman (p.c.) for bringing such examples to my attention.
These examples appear to be problematic for the generalization and analysis presented in the previous two sections. With respect to the generalization in (18), it is not immediately clear how the DP\text{ACD} manages to be interpreted outside of the scope of the binder for the spoken pronoun in a way that is not available to the examples from section 3. I will suggest here that this is made possible by the fact that each DP\text{ACD} here is contained in an argument or adjunct PP that may be independently be extraposed.

In the discussion surrounding (35) and (36) we saw that reconstruction of the subject is not plausible as the sole source of sloppy pronouns in adjuncts. Furthermore, this strategy could not be generalized to PP-arguments as the modern standard is to treat them as the most embedded argument of the predicate (e.g., Larson 1988, Johnson 1991, Marantz 1993, Harley 1995). For these reasons, I will pursue an alternative. Inspired by an analysis in Fox 2002, when the DP\text{ACD} is contained within a PP that is an argument or adjunct of the predicate—a kind of PP constituent suspected to be able to move—the DP\text{ACD} receives a free ride out of the VP. That is, movement of the PP in each of (41) and (42) allows the DP\text{ACD} to “surf” (Sauerland 1998) or be “smuggled” (Collins 2005) out of the VP and subsequently take exceptional scope over the subject. This derivation is sketched below in (43), where the PP containing the DP\text{ACD} is extraposed to the edge of the VP in (43a) and the DP\text{ACD} is subsequently extracted in (43b).

\[(43) \begin{align*}
 a. & \quad [VP [VP V^0 \text{pro}_1 e_{PP}] [PP P^0 \text{DP}_{ACD}]] \\
 b. & \quad [IP DP \lambda 1 \ldots [VP [VP V^0 \text{pro}_1 e_{PP}] [PP P^0 x]]] \text{DP}_{ACD}]
\end{align*}\]

This derivation can be applied to both the PP-argument and PP-adjunct example above. Focusing on (42), the result is the rough LF representation in (44), in which we would expect a sloppy interpretation to be possible on the basis of the generalization in (18).\footnote{A potential concern with the derivation sketched in (43) could be that PP-extraposition would induce freezing effects (Wexler & Culicover 1980). The following examples are intended to show that, with respect to QR, this is not the case. A DP within an extraposed PP-adjunct (i) or PP-argument (ii) is able to take logical scope over the subject.}
This analysis provides a way to understand the possibility for sloppy pronouns in PP-argument and PP-adjunct constructions like those in (41) and (42). We also expect the following contrast below between the PP-argument and double-object frame of ditransitives. As above, a sloppy interpretation is available for a DP\textsubscript{ACD} in a PP-argument in (45). In the near minimally differing example in (46), where the DP\textsubscript{ACD} is contained in the second object of a double-object construction, a sloppy interpretation is unavailable.

\begin{itemize}
\item[(45)] \textit{Tim\textsubscript{1} showed his\textsubscript{1} photo to [DP each person that I did \textit{show my photo to}]}
\item[(46)] *\textit{Tim\textsubscript{1} showed his\textsubscript{1} mother [DP each photo that I did \textit{show my mother}]}
\end{itemize}

The interpretation-sensitive constraints on QR that we have adopted and the scope freezing properties of the double-object construction investigated by Bruening (2001) conspire to keep the DP\textsubscript{ACD} structurally lower in (46) than is otherwise possible in configurations with PPs. The effect is the inability to license ellipsis on the sloppy interpretation.

As before, a representation that permits the sloppy interpretation can be derived once the means for doing so are provided. The question about this derivation, raised by one of the reviewers, is what licenses the instance of QR that takes the DP\textsubscript{ACD} out of the extraposed PP and above the subject in these examples. If our observations up to this point are correct, it is not the fact that this movement permits ellipsis on a sloppy interpretation of the pronoun.

One alternative is that it is motivated by a semantic type mismatch. Supposing that these

(i) a. \textit{A professor looked at the course catalog \textsubscript{e\textsubscript{1}} today \textit{[\textit{ PP with every new undergraduate student]}\textsubscript{1}}
\quad b. \forall x \exists y : \textit{‘For every new undergraduate student }x\textit{, there is some professor }y\textit{ such that }y\textit{ looked at the course catalog today with }x\textit{.’}

(ii) a. \textit{A professor showed the course catalog \textsubscript{e\textsubscript{1}} today \textit{[\textit{ PP to every new undergraduate student]}\textsubscript{1}}
\quad b. \forall x \exists y : \textit{‘For every new undergraduate student }x\textit{, there is some professor }y\textit{ such that }y\textit{ showed the course catalog today to }x\textit{.’}

Also note that this derivation would not be available for (35). This is a consequence of the fact that QR is not generally possible out of \textit{because}-clauses, which are finite. It is also not available in examples like (12a) where the PP containing the DP\textsubscript{ACD} is predicative and cannot be extraposed.
prepositions are of type \langle et \rangle, then additional movement of a \text{DP}_{ACD} is licensed to ensure composition.

5.4 Leapfrogging

An anonymous reviewer provides the following two additional sentences which further demonstrate that sloppy pronouns are not entirely unavailable in ACD constructions.

(47) a. No student$_1$ practiced her$_1$ presentation with

\[\text{DP everyone that her$_1$ neighbor$_2$ did } \langle \text{VP}_E \, \text{practice his$_2$ presentation with } \rangle \]

b. \(\exists \forall : \text{There is no student } x \text{ such that, for every person } y \text{ such that your neighbor practiced his presentation with } y, x \text{ practiced } x\text{'s presentation with } y. \)

(48) a. Every boy$_1$ loves his$_1$ mother

\[\text{DegP more than his$_1$ neighbor$_2$ does } \langle \text{VP}_E \, \text{love her$_2$ mother d-much } \rangle \]

b. \(\forall > -er : \text{For every boy } x, \text{ the degree } d \text{ such that } x \text{ loves } x\text{'s mother } d\text{-much exceeds the degree } d' \text{ such that } x\text{'s neighbor } y \text{ loves } y\text{'s mother } d'\text{-much.} \)

These examples are interesting for also appearing to be quite problematic for the generalization in (18) and the analysis above. With the modified surfing example in (47), the \text{VP}_E is forced to be interpreted below the matrix subject no student in order to generate the intended bound-variable interpretation of her$_1$ neighbor in the relative clause. This makes it seem that the \text{VP}_E must be interpreted within the scope of the binder for the matrix pronoun, which is prohibited by (18). The example in (48) achieves the same effect with a comparative construction. Generating the bound-variable interpretation for the embedded subject his$_1$ neighbor will require interpreting the \text{VP}_E in the scope of every boy.

Moreover, the anonymous reviewer reminds that a DegP like more cannot take scope over another quantificational DP, as per Kennedy (1999) and Heim (2000). The relevant
generalization can be stated as in (49).

(49) \[\text{The Heim-Kennedy Constraint} \]

If the scope of a quantificational DP contains the trace of a DegP, it also contains
that DegP itself.

(Heim 2000:47, (27))

Similarly, there is some constraint—we will refer to it as the *\[\forall > \neg\] Constraint—that
tends to require interpreting a universal quantifier in the scope of negative elements (see
Beghelli & Stowell 1997 and Mayr & Spector 2010). Whatever is responsible for these
constraints, it could lead us to expect that the DP\textsubscript{ACD} and the VP\textsubscript{E} that it contains will
necessarily be interpreted in the scope of the binder for the pronoun in the matrix clause.
Thus, on the basis of (18), it seems that we might expect for a sloppy interpretation of the
ellipsis site to be unavailable, contrary to fact.

It turns out that these examples are consistent with the stated distribution of sloppy
pronouns. They can even be given the same basic treatment as the examples in the previous
subsection. Consider the modified smuggling example first. Rightward movement of the
PP will smuggle the DP\textsubscript{ACD} out of the VP and above the surface position of the subject, as
shown in (50). Recall from section 5.3 that this is what generally licenses ellipsis on the
sloppy interpretation of these types of constructions.

\begin{equation}
[\text{DP everyone } \lambda 4 \\
\quad \text{that her}_5 \text{ neighbor } \lambda 2 \text{ did } (\text{VP}_E \text{ practice his}_4 \text{ presentation with } x_4)] \\
\quad [\lambda 1 \text{ no student } \lambda 3 \text{ practiced her}_3 \text{ presentation with } x_1]
\end{equation}

Of course, this representation does not produce the desired interpretation in which \emph{no student}
takes widest scope and binds the possessive pronoun inside \emph{her}_5 \emph{neighbor}. I propose
that this is achieved with an additional application of QR whereby \emph{no student} ‘leapfrogs’
the DP\textsubscript{ACD} to a position where it again outscopes the VP\textsubscript{E}. This application of QR is
motivated by the need to satisfy the *\[\forall > \neg\] Constraint (or the Heim-Kennedy Constraint in
the case of (48)) and results in the representation provided in (51).

\[(51)\]

\[
\text{No student} \quad 5
\]

\[
\text{IP} \quad 1 \quad \text{everyone} \quad \text{PD}
\]

\[
x_5 \quad \text{student} \quad 3 \quad \text{VP}
\]

\[
\text{practiced her}_3 \quad \text{presentation with } x_1
\]

\[
x_5 \quad \text{neighbor} \quad 4 \quad \text{did} \quad \langle \text{VP} \rangle
\]

\[
\text{practice his}_4 \quad \text{presentation with } x_2
\]

The first thing to note about this representation is that the generalization in (18) is satisfied. While the VP\(_E\) is interpreted in the scope of \textit{no student}, it is still the binder index \(\lambda 3\) under the trace of \textit{no student} in the surface subject position that serves to bind the antecedent pronoun \(\textit{her}_3\). Recall that it is because of the post-smuggling QR of the DP\(_{ACD}\) illustrated in (50) that the VP\(_E\) is interpreted outside the scope of this binder index.\(^\text{18}\)

This leapfrogging instance of QR serves another important function in this analysis. Assume, as shown in (51), that QR of \textit{no student} leaves behind a contentful trace that contains a variable bound by the higher copy (e.g., Engdahl 1980, Sauerland 1998, Fox 2002). The QR’ed instance of \textit{no student} comes to bind the variable in its trace \((x_5)\) in the matrix subject position as well as the possessive pronoun \((\textit{her}_5)\) in the relative clause subject position. This parallel co-binding relationship makes it possible to bind into the

\(^{18}\)Again, intermediate traces are omitted for exposition. See footnote 11 and 12 for additional comments.
relative clause, and effectively into the PD, without needing to extend the PD and AC in response. The result is ultimately that ellipsis is licensed on the sloppy interpretation.\(^\text{19}\)

Recall that the problem posed by binding configurations in ellipses is the existence of contra-indexed free variables. The remedy, which we have capitalized on to account for the distribution of sloppy pronouns, is to extend the domain for which an antecedent must be identified. In a co-binding configuration, like the one we are entertaining in (51) and the one in (52) below, the problem of contra-indexed free variables does not arise.

(52) a. This is the person \(\lambda_1\) that [Tim said I [\(\text{AC}_1\) kissed \(x_1\)] and

\[
[\text{Sue also said I did} \ [\text{PD} \langle \text{VP} \ \text{E} \ \text{kiss} \ x_1 \rangle]]
\]

b. \[
\llbracket \begin{array}{l}
[\text{AC}_1 \ \text{kiss} \ x_1] \\
[\text{PD}_2 \ \langle \text{VP} \ \text{E} \ \text{kiss} \ x_2 \rangle]
\end{array} \rrbracket^g_{x_1 \mapsto x_2}
\]

Because the bound variable in the ellipsis site shares a binder with the variable in the antecedent constituent, they will be assigned the same binding index. It is not necessary in this type of representation to extend the PD to include the binder index for this variable in order to establish semantic equivalence with an antecedent.

The same is true for the representation in (51). As shown there, the PD is defined by the binder index under the highest copy of the relative clause head. An AC can be defined by the parallel binder index introduced by QR of the DP\(_{\text{ACD}}\). These constituents are provided in (53).

(53) \[
\llbracket \begin{array}{l}
[\text{AC}_1 \ \lambda_1 \ [x_5 \ \text{STUDENT}] \ \lambda_3 \ \text{practiced her}_3 \ \text{presentation with} \ x_1] \\
[\text{PD}_2 \ \lambda_2 \ [\text{ATL}_5 \ \text{NEIGHBOR}] \ \lambda_4 \ \text{practiced his}_4 \ \text{presentation with} \ x_2]
\end{array} \rrbracket^g
\]

The co-bound variables (\(x_5\), \(\text{her}_5\)) carry the same binding index and will be interpreted equivalently under any assignment function. Thus, it is not necessary to extend the PD and AC in (51) to include their binder index.

\(^{19}\)The claim here is not that co-binding is necessary to generate the sloppy interpretation in a leapfrogging representation. The claim is simply that binding into this PD is made possible by the resulting co-binding relationship.
A necessary assumption of this analysis is that, not just the bound variables, but the DPs that contain them (\(x_5\) student, her\(_5\) neighbor) can be considered equivalent for the purpose of ellipsis-licensing. This can potentially be made to follow as an effect of focus marking. Note that the most natural pronunciation of the string in (47) places a pitch accent on both student and neighbor. This means that, according to our adopted condition on ellipsis licensing in (23), these elements will not figure into the calculation of semantic equivalence between the AC and PD. So long as we allow student and neighbor-of to be equivalent types of relations that are exempted from the derived logical formulas, the AC and PD in (53) will otherwise come out as interpretively equivalent.

A similar leapfrogging derivation and representation can be proposed for the comparative construction in (48). The significant difference is that the DegP is not smuggled out of the VP via PP-extraposition. Instead, we can assert that the comparative more is base-generated at the edge of VP. Motivated by semantic type compatibility, the DegP more can QR to some position above the matrix subject every boy, which subsequently QRs to a position above that. The result is sketched in (54). From this representation it is possible to extract the AC and PD shown in (55).

(54) Every boy [\(\lambda x_5\) BOY] \(\lambda3\) loves his\(_3\) mother \(d_1\)-much

(55) \[
\llbracket \llbracket AC \(\lambda1\) [\(x_5\) BOY] \(\lambda3\) loves his\(_3\) mother \(d_1\)-much \rrbracket \rrbracket^g =
\llbracket PD \(\lambda2\) [his\(_5\) NEIGHBOR] \(\lambda4\) love her\(_4\) mother \(d_2\)-much \rrbracket^g
\]

These constituents can be considered semantically equivalent, modulo focus-marked elements, in the same way as above. Ellipsis is licensed in this representation, which generates a sloppy interpretation of the elided pronoun.

A brief remark is in order with regard to the leapfrogging QR being evoked here. We
are committed to the idea that the Heim-Kennedy Constraint and the $^*\forall > -$ Constraint are either representational or post-syntactic constraints that verify specific scopal relations. This makes it possible for everyone and more to QR over the subjects in the derivations above on the condition that the subjects regain widest scope. This is in fact how Heim (2000:54) tentatively suggests we view the Heim-Kennedy Constraint given examples like the following:

(56) a. John saw everyone move more bags than Mary did.
 b. everyone$_1$\[DegP \text{ more bags than Mary did} \langle vP$_E$ see$_1$ move$_1$ d$_2$-many bags \rangle_2\]
 c. $\forall > -$er : ‘For every person x, the degree d_2 such that John saw x move d_2-many bags exceeds the degree d_3 such that Mary saw x move d_3 many bags.’

The quantificational DP everyone intervenes between the DegP headed by more and the edge of the matrix VP where the ellipsis site would avoid antecedent-containment. The grammaticality of this example is expected if everyone can leapfrog the raised DegP, as is roughly shown above. This would result in both ellipsis being licensed and the Heim-Kennedy Constraint being satisfied.\footnote{A second concern could be that the proposed leapfrogging derivation should induce crossover effects. On the assumption that crossover effects arise from representational constraints, we can observe with Reinhart (1998:55, (40a)) that QR does not necessarily induce crossover effects; see (i).}

(i) a. [A copy of his$_1$ speech] was placed in front of [every speaker]$_1$.
 b. $\forall > $ there is a copy of x’s speech y such that y was placed in front of x.

If, on the other hand, we are assuming that crossover effects are derivational effects, the Late Merge approach to ACD that is found in Fox 2002 and Bhatt & Pancheva 2004 could provide a way to deploy all instances of QR before merging in the relative or comparative clause. Either way provides a means for understanding the lack of crossover effects.
6 Conclusion

In this paper we examined a puzzle presented by the restricted distribution of sloppy pronouns in Antecedent-Contained Deletions. The analysis asserted that the variable binding responsible for generating sloppy interpretations requires an antecedent that standard QR of the DP\textsubscript{ACD} is unable to escape, ensuring irreparable antecedent-containment. The restriction on sloppy pronouns, therefore, is accounted for via a general condition on ellipsis-licensing (e.g. Rooth 1992, Takahashi & Fox 2005). This is as opposed to positing additional restrictions on sloppy pronouns themselves (e.g., Kehler 2000, Hardt 2003).

This approach found additional support through an investigation of several ways that the consequences of an extended antecedent can be circumvented. Providing the DP\textsubscript{ACD} with some additional motivation to escape the extended antecedent required to generate a sloppy interpretation resulted in ellipsis being licensed. We saw several ways to accomplish this in section 5. The examples there are important for demonstrating that nothing in principle rules out the types of configurations that would permit sloppy pronouns in ACD constructions. This is what allows us to conclude that the ability to escape an antecedent constituent, and in this way ensure semantic equivalence, is not sufficient for licensing exceptional QR. If it were sufficient, we would not observe the restrictions on sloppy pronouns characterized by the generalization in (18).

These conclusions are surprising in light of the examples of wide scope ACD discussed in section 2. If exceptional QR is not licensed by virtue of escaping an antecedent constituent, one should ask what motivates QR of a DP\textsubscript{ACD} across a finite-clause boundary in cases of vanilla wide scope ACD, like (5). At present I cannot offer a full account of these apparently contradictory results. However, one way to preserve both sets of findings could be to assert with Rooth (1992), Fiengo & May (1994), and Wilder (2003) that there are two separate but parallel licensing conditions on ellipsis.
One of these conditions could be the Rooth-style (1992) antecedence condition employed in the analysis above, which would be thought of as a post-syntactic or semantic identity condition on a PD and AC as defined in (23). The other condition would be a structural or narrow syntactic condition that enforces a specified structural relationship between the material marked for ellipsis and the syntactic domain(s) that could provide the source of an antecedent. This would make it possible to assert that QR can be licensed in the narrow syntactic component by the need to meet the specified structural requirement, but it cannot be driven by the post-syntactic identity condition on logical formulas. With respect to examples like (5), the structural condition on ellipsis-licensing could be enough to drive a DP_{ACD} to the edge of the VP from which the AC could be derived, but not further to a position where it would escape the AC that is actually derived in the semantic component. Although quite vague as it is has been presented here, this basic picture would lead us to expect that wide scope ACD should be bled by the binding involved in generating a sloppy interpretation. This is what would require an AC that extended beyond the matrix VP. We saw in (15) that this is indeed the case.

The picture being sketched here is essentially approaching the idea that syntactic operations including covert movement cannot be licensed by post-syntactic conditions; i.e., there are not look-ahead operations. However, this idea is also apparently at odds with some of the other previous research we have built upon. Recall that for Fox (2000), Reinhart (2006), and others exceptional applications of QR are licensed by virtue of meaningfully permuting the logical scope of two quantificational elements. One should ask, then, why the ability to ensure interpretive equivalence, and consequently satisfy a semantic condition on ellipsis, cannot license an application of QR. Again, I cannot offer a sufficiently articulated answer to this question. Nonetheless, it seems worth emphasizing the nature of the asymmetry

21This idea is loosely inspired by Hardt & Romero (2004) who argue that an ellipsis site and its antecedent must be in a specified structural relationship within a discourse-representation tree.
being uncovered here: exceptional QR is apparently licensed by its ability to create a distinct interpretation, but not by an ability to create an equivalent interpretation. This is the same observation that underlies the literature on interpretation-sensitive semantic Economy conditions.

We will finally wrap up by pointing out that it is equally as interesting that the exceptional instance of QR illustrated in representations like (33) must also be unlicensed despite the fact that it would generate and otherwise unavailable bound-variable interpretation of the elided pronoun (i.e., the sloppy interpretation). This makes bound-variable interpretations markedly different than scope interpretations with respect to licensing QR. This becomes even more puzzling once we consider that it has been argued in accounts of Condition B that generating new bound-variable interpretations license instances of exceptional binding (e.g., Grodzinsky & Reinhart 1993, Heim 1993/1998). The question, then, should be why it is that bound-variable interpretations should license exceptional binding but fail to license exceptional QR. To the extent that the results and conclusions being reached here are accurate, the answer could come from proposing non-overlapping sets of Economy conditions on binding and movement (e.g., Aoun & Li 2003; cf. Fox 2000).

References

ings of NELS 12, ed. James Pustejovsky & Peter Sells, 132–139. Amherst, MA: Graduate Student Linguistic Association, University of Massachusetts Amherst.

MIT, Cambridge, MA.