NPIs, intervention, and collectivity

Brian Buccola
brian.buccola@gmail.com

Luka Crnič
luka.crnic@mail.huji.ac.il

April 7, 2019

Abstract

Negative polarity items are subject to so-called intervention effects (Linebarger, 1980, 1987); specifically, they are unacceptable in the immediate scope of certain non-downward-entailing operators, even if they occur in the scope of a (higher) downward-entailing operator. By studying the behavior of any in configurations with collective predicates, we provide new empirical arguments that the descriptive condition concerning intervention must be stated with reference to the content of the clausal constituents in which NPIs may occur (cf. Chierchia, 2004, 2013). We conclude by discussing how the condition fits in with some recent theories of intervention (esp. Guerzoni, 2006; Chierchia, 2013).

Keywords: negative polarity items, intervention, distributivity, collectivity, conjunction

1 The received view

Negative polarity items (NPIs) like any whisky have a more restricted distribution than other elements of the same syntactic category. An important advancement in our understanding of their behavior consisted in identifying semantic conditions on their acceptability (see, e.g., Ladusaw, 1979; Fauconnier, 1975; von Fintel, 1999, among many others). A variant of Ladusaw’s influential description of the condition is provided in (1).1, 2

(1) NPI Licensing Condition

An NPI is acceptable only if it is c-commanded by an operator that is downward-entailing.

The NPI Licensing Condition in (1) is stated merely as a necessary condition on the acceptability of NPIs due primarily to an observation by Linebarger (1980, 1987) that occurrences of NPIs in the scope of a downward-entailing operator may be unacceptable—in particular, if they occur in the immediate scope of certain operators that are not downward-entailing, such as and.3 These

1An operator is downward-entailing if and only if (iff) it denotes a downward-entailing function. A function \(f \) of type \(\sigma \tau \) is downward-entailing iff for all \(x \) and \(y \) of type \(\sigma \) such that \(x \Rightarrow y \), \(f(y) \Rightarrow f(x) \), where ‘\(\Rightarrow \)’ is cross-categorial entailment. (See von Fintel 1999 for a qualification.)

2Cross-categorial entailment, notated as ‘\(\Rightarrow \)’, is defined recursively as follows. If \(\alpha \) and \(\beta \) are of type \(t \), then \(\alpha \Rightarrow \beta \) iff \(\alpha = F \) or \(\beta = T \). If \(\alpha \) and \(\beta \) are of type \(\sigma \tau \), then \(\alpha \Rightarrow \beta \) iff \(\alpha(x) \Rightarrow \beta(x) \) for all \(x \) of type \(\sigma \).

3\(\beta \) occurs in the immediate scope of a logical operator \(\alpha \) iff \(\alpha \) c-commands (or m-commands) \(\beta \), and there are no other logical operators that c-command (or m-command) \(\beta \) and are c-commanded (or m-commanded) by \(\alpha \).
operators are then said to 'intervene' in the licensing of the NPI and have been dubbed 'interveners'. An intervention configuration is exemplified in (2): in both cases, *any whisky* and *any boy* occur in the scope of a downward-entailing operator—*doubt* and negation—and yet both sentences are unacceptable.

(2) \[\begin{array}{ll}
 a. & *I doubt that Mary and any boy have blue eyes. \\
 b. & *John didn’t drink any whisky and the soda.
\end{array}\]

In order to have a more constrained characterization of the distribution of NPIs, Linebarger (1987, p. 338) suggested an additional restriction on their distribution, provided in (3).

(3) **Additional Restriction**

An NPI is unacceptable if it occurs in the immediate scope of an operator that is not downward-entailing.

This constraint has been further refined. It turns out, namely, that not all operators are interveners. In (4), we see that *or* does not intervene in the licensing of *any*, in contrast to *and*.

(4) \[\begin{array}{ll}
 a. & I doubt that Mary or any boy has blue eyes. \\
 b. & John didn’t drink any whisky or the soda.
\end{array}\]

Chierchia (2004, 2013) notes that the property that appears to distinguish between interveners and non-interveners is the relation the operators stand in with their scalar alternatives: “[i]nterveners are strong members of a scale; non-interveners are the weakest ones” (Chierchia, 2004, p. 84) and “[w]hen a scalar item induces an intervention effect, what seems to be playing a role is not so much its intrinsic nature but rather its position in the scale” (Chierchia, 2013, pp. 378ff). A corresponding refinement of the Additional Restriction would be to restrict the class of intervening operators as stated in (5); the pertinent scales referred to in (5) are provided in (6).

(5) **Revised Additional Restriction**

An NPI is unacceptable if it occurs in the immediate scope of an operator (i) that is not downward-entailing, and (ii) that does not occupy the lowest (logically weakest) position on its scale.

(6) **Some example scales** (e.g. Horn, 1972; Sauerland, 2004)

a. (or, and)
b. (some, every)
c. (one, two, three, ...)

Alternative statements of the Additional Restriction are possible, potentially involving an incorporation into the NPI Licensing Condition (see esp. Gajewski, 2011). Given the intervention data described above, and the extant data in the literature, however, it is not obvious that an alternative statement of (5) would improve on its empirical adequacy.

In the remainder of this squib, we present evidence that casts doubt on (5). We provide new arguments that the descriptive condition on NPI licensing, (1), must be environment-based (rather

4This is a sufficient condition for something to be an intervener; there may be interveners that do not satisfy this condition—for example, certain additive particles (see Homer, 2008; Gajewski, 2011; Chierchia, 2013, for a more extensive discussion).
than operator-based), and must, additionally, reference full sentential alternatives (rather than scalemates), thus replacing (5) (see, e.g., Homer, 2008; Gajewski, 2011; Chierchia, 2013; Crnić, 2014, 2019; Buccola and Spector, 2016, for further arguments). Specifically, we argue that the acceptability of a sentence instantiating an intervention configuration does not depend simply on the position that the relevant operator occupies in its scale, but rather depends on the logical relation that the pertinent constituent dominating the operator (i.e. the pertinent environment) bears to its alternatives. The revised condition is thus in line with recent environment-based approaches to NPI licensing and intervention, which largely build on the pioneering insights of Chierchia, 2004 (e.g., Homer, 2008; Gajewski, 2011; Chierchia, 2013; Crnić, 2014, 2019).

2 The observation

We present a new observation: there are cases where and an NPI stand in an intervention configuration—that is, their configuration violates the condition in (5)—but where the NPI is nevertheless systematically acceptable. This is the case in the following near-minimal pairs: the (a)-sentences are judged to be unacceptable, while the (b)-sentences are judged to be acceptable. In particular, (7b) conveys that I don’t think Mary has ever collaborated with a boy, and (8b) conveys that John didn’t mix the soda with any portion of whisky.

(7) a. *I don’t think that [Mary and any boy here] have ever laughed at my jokes.
 b. I don’t think that [Mary and any boy here] have ever collaborated.

(8) a. *John didn’t drink [the soda and any whisky].
 b. John didn’t mix [the soda and any whisky].

A feature of the acceptable (b)-examples above that distinguishes them from the unacceptable (a)-examples is that the conjoined DPs combine with a collective predicate in the (b)-cases but not the (a)-cases (mix is collective with respect to its object argument). A collective predicate is one that may hold of a plurality without holding of any of the proper parts of that plurality. This observation is generalized in (9), which is stated as a necessary condition on the acceptability of conjunctions formed from any NP.

(9) **Constraint on any NP conjunction**

Any NP conjoined with another DP is acceptable only if the conjunction combines with a collective predicate.

The collectivity of the predicates need not be lexical, but can be derived in syntax. It may spring from using expressions that require a plural argument in the sentence. These include a reciprocal anaphor, as in (10a), a so-called internal same, as in (10b), and a collectivizing adverbial like together, as in (10c).

(10) a. I don’t think that Mary and any boy here have ever laughed at each other’s jokes.
 b. The zookeeper didn’t put any monkey and the lion into the same cage.
 c. John denies that Mary and any student of hers have ever written a paper together.

Relatedly, if a predicate is mixed (can in principle be interpreted either distributively or collectively), then the only interpretation that one may obtain with a conjoined any NP argument
is the one that applies the predicate collectively to the conjoined plurality. For example, (11) can only mean that I doubt that any son of mine is such that my wife and x’s combined weight is exactly 150 kg; it cannot mean that I doubt that my wife’s weight is exactly 150 kg and that, at the same time, some son of mine’s weight is exactly 150 kg. In the absence of an NPI, (12), both interpretations are in principle possible.

(11) I doubt that my wife and any son of mine weigh exactly 150 kg.
 a. Doubt: wife’s weight + x’s weight = 150 kg, for some son x.
 b. #Doubt: wife’s weight = 150 kg and x’s weight = 150 kg, for some son x.

(12) I doubt that my wife and a son of mine weigh exactly 150 kg.
 a. Doubt: wife’s weight + x’s weight = 150 kg, for some son x.
 b. Doubt: wife’s weight = 150 kg and x’s weight = 150 kg, for some son x.

3 The puzzle

The observation summarized in (9) is puzzling on the formulation of the condition on interveners in (5), at least given the common approaches to the syntax and semantics of conjoined DPs. Before revising the condition, we describe how the puzzle surfaces for three families of approaches to and.

3.1 A uniform boolean semantics of DP conjunction

If one assumes that the semantics of DP conjunction is derived from the basic meaning of conjunction in propositional logic by appropriately type-shifting it and its arguments (e.g. Partee and Rooth, 1983; Keenan and Faltz, 1985; Winter, 2001; Champollion, 2015), then one predicts that all occurrences of conjunction should qualify as interveners. Namely, propositional conjunction and its type-shifted counterparts on such an approach entail, respectively, propositional disjunction and its type-shifted counterparts, as illustrated in (13) and (14): for all arguments, the output of conjunction applied to them entails the output of disjunction applied to them.\footnote{More generally, for any boolean type \(\tau \), we have the following, where ‘\(\cap \tau \)’ and ‘\(\cup \tau \)’ denote the meet and join operators, respectively, defined over the domain associated with \(\tau \):}

\[
(13) \quad a. \quad [\text{and}]_{t(\tau)} = \lambda p_t \cdot \lambda q_t \cdot p \land q = T \\
b. \quad [\text{or}]_{t(\tau)} = \lambda p_t \cdot \lambda q_t \cdot p \lor q = T \\
c. \quad \text{For all } p \text{ and } q \text{ of type } t, [\text{and}]_{t(\tau)} (p) (q) \Rightarrow [\text{or}]_{t(\tau)} (p) (q).
\]

\[
(14) \quad a. \quad [\text{and}]_{t(\tau)(\tau\tau)(\tau\tau)} = \lambda f_{\tau\tau} \cdot \lambda g_{\tau\tau} \cdot h_{\tau\tau} \cdot f(h) = T \land g(h) = T \\
b. \quad [\text{or}]_{t(\tau)(\tau\tau)(\tau\tau)} = \lambda f_{\tau\tau} \cdot \lambda g_{\tau\tau} \cdot h_{\tau\tau} \cdot f(h) = T \lor g(h) = T \\
c. \quad \text{For all } f \text{ and } g \text{ of type } \tau, [\text{and}]_{t(\tau)(\tau\tau)(\tau\tau)} (f) (g) \Rightarrow [\text{or}]_{t(\tau)(\tau\tau)(\tau\tau)} (f) (g).
\]
A simplified structure of sentence (15a) is provided in (15b) (the structure is simplified by dropping the attitude predicate). In addition to other operators, negation c-commands and, which in turn c-commands any boy in this representation (see Winter, 2001, though his proposal differs in details). Accordingly, we are clearly dealing with an intervention configuration, as defined in (3)/(5).

(15) a. I don’t think that Mary and any boy collaborated.
 b. $\neg \exists [\text{Min} [[\text{Lift Mary}] \text{ and [any boy]]]} \text{ collaborate}]]$

For concreteness, we provide the computation of the meaning of (15) in (16): Lift lifts the denotation of Mary to a quantifier (Montague, 1970); Min takes a set of predicates that hold of, respectively, Mary and a boy, and returns the set of all the minimal subsets of that set—that is, the set of all subsets consisting of Mary and a boy (Winter, 2001); \exists stands for existential closure over sets of individuals. Accordingly, if we treat pluralities as sets of individuals, which we do for expository reasons, then the meaning of the sentence is that none of these minimal sets consisting of Mary and a boy is in the denotation of collaborate.6

(16) a. $\neg \exists X \exists y [\text{boy}(y) = T \land X = \{\text{Mary}, y\} \land \text{collaborate}(X) = T]$
 b. $\equiv \neg \exists y [\text{boy}(y) = T \land \text{collaborate}(\{\text{Mary}, y\}) = T]$

To summarize, an appropriately type-shifted conjunction counts as an intervener on the condition in (5). Thus, the condition, coupled with this approach to and (and or), undergenerates—it does not admit examples of conjoined NPIs that combine with a collective predicate.

3.2 A uniform non-boolean semantics of DP conjunction

An alternative approach assumes that DP conjunction effectively takes individuals as arguments and returns sets of them—that is, pluralities of them (e.g. Hoeksema, 1988; Krifka, 1990; Lasersohn, 1995). On this kind of approach, the semantics of and that combines quantifiers can be stated as in (17), where it effectively corresponds to pointwise set union.

(17) $[\text{and}]_{\text{ett}}(\text{ett})_{\text{ett}} = \lambda f_{\text{ett}} \cdot \lambda g_{\text{ett}} \cdot \lambda h_{\text{ett}} \cdot \exists i_{\text{ett}} \exists j_{\text{ett}}[f(i) = T \land g(j) = T \land h = i \cup j]$

A simplified structure of sentence (18a) is provided in (18b), and its interpretation is provided in (19). As above, negation c-commands and, which in turn c-commands any boy. Thus, we may again be dealing with an intervention configuration.

(18) a. I don’t think that Mary and any boy collaborated.
 b. $[\neg \exists [\text{Min} [[\text{Lift Mary}] \text{ and [any boy]]]} \text{ collaborate}]]$

(19) a. $\neg \exists X \exists y [\text{boy}(y) = T \land X = \{\text{Mary}\} \cup \{y\} \land \text{collaborate}(X) = T]$
 b. $\equiv \neg \exists y [\text{boy}(y) = T \land \text{collaborate}(\{\text{Mary}, y\}) = T]$

In this case, however, given that no sensible definition of disjunction can be provided that would stand in an entailment relation with (19)—that is, we lack a sensible non-boolean definition

6The reason we need Min is that we want a sentence like Mary and John lifted the piano together to be true only if Mary and John did it as a two-person group; without Min, the sentence would mean merely that a group containing John and Mary (and possibly others) lifted the piano (see Winter, 2001; Champollion, 2015, for discussion).
of disjunction—the conjunction trivially satisfies the condition in (5) (namely, this version of and does not form an entailment scale with or), thus potentially capturing the acceptability of (18).
An unfortunate consequence of this logic, however, is that occurrences of any NP in conjunction would in principle be predicted to be acceptable even when they combine with distributive predicates. This is illustrated in (20), where for simplicity we assume that the distributive predicate is cumulative (which we mark with a *-operator; see Kratzer 2007 for discussion).

\[(20)\]
\[
\begin{align*}
\text{a. } & \text{I don’t think that Mary and any boy laughed at my jokes.} \\
\text{b. } & \neg \exists x \exists y [\text{boy}(y) = T \land x = \{\text{Mary}\} \cup \{y\} \land *\text{laugh}(x) = T]
\end{align*}
\]

Accordingly, the condition in (5), coupled with a non-boolean approach to and, overgenerates—it admits infelicitous examples of conjoined NPIs that combine with a distributive predicate.

3.3 Ambiguity of DP conjunction

An approach that takes DP conjunction to be ambiguous—that is, an approach that assumes that there are boolean and non-boolean lexical entries for and—initially appears to be better off than its alternatives discussed above. Namely, if a non-boolean lexical entry is used, as may be necessary with collective predication, then one would correctly predict no intervention effects. However, an issue of overgeneration still arises: as it stands, nothing would prevent one from using non-boolean conjunction also with distributive predicates (e.g. Hoeksema, 1988; Krifka, 1990; Lasersohn, 1995, carefully demonstrate this), thus incorrectly allowing for obviation of intervention effects in those cases as well. While a theory that would force different derivations with collective vs. distributive predicates can be devised, we refrain from exploring this possibility here, not least because there may be good independent reasons to avoid an ambiguity approach to conjunction (see esp. Winter, 2001; Champollion, 2015). Rather, we take the patterns in §2 to support a revision of the condition in (5). The revision that we end up with is agnostic with respect to the details of the analysis of conjunction (and disjunction).

4 The revision

We concluded that the facts described in §2, and the generalization/constraint stated in (9), contradict the refined characterization of interveners in the Revised Additional Restriction in (5). We propose that the key to understanding the source of (9) in light of (5) involves understanding how the semantic difference between distributive and collective predicates relates to logical operators and their alternatives (e.g. and and or), which (5) makes reference to. We expose this relationship in terms of the semantic property in (22) (focusing here just on subject-collective predicates for simplicity).\(^7\)

\(^7\)This property may need to be qualified for some collective predicates, for which the entailment pattern in (22b) may hold (Križ, 2015; Bar-Lev, 2018). To the extent that such predicates exist, and obligatorily validate the entailment pattern in (22b), we expect them to pattern with distributive predicates in creating intervention effects with conjoined
(22)
a. For distributive VP: \(\neg(A \text{ or } B \text{ VP}) \Rightarrow \neg(A \text{ and } B \text{ VP}) \).
b. For collective VP: \(\neg(A \text{ or } B \text{ VP}) \not\Rightarrow \neg(A \text{ and } B \text{ VP}) \).

For instance, (23a) entails (23b).

(23)
a. It’s not the case that the girls or the boys have blue eyes.
b. \(\Rightarrow \) It’s not the case that the girls and the boys have blue eyes.

However, (24a) does not (necessarily) entail (24b). Consider a scenario in which the girls and the boys all wrote a paper together, but no group of girls wrote a paper together, nor did any group of boys. In this scenario, the or-sentence is true, while the and-sentence (on its collective reading) is false.

(24)
a. It’s not the case that the girls or the boys wrote a paper together.
b. \(\not\Rightarrow \) It’s not the case that the girls and the boys wrote a paper together.

In light of this observation, we suggest that, rather than checking whether a potential intervener cross-categorically entails some alternative operator, one must evaluate whether a pertinent sentence containing the NPI and the operator is entailed by its alternatives (which are induced by the operator). A pertinent sentence is one that is downward-entailing with respect to the NPI—that is, one in which replacing the NPI with a stronger expression results in a weaker meaning overall (see, e.g., Kadmon and Landman, 1993; Gajewski, 2005; Homer, 2008; Chierchia, 2004, 2013; Buccola and Spector, 2016; Crnić, 2014, 2019, for further arguments for such a switch).⁸ ⁹ (A revision of what was previously split off from the NPI Licensing Condition—viz. the Revised Additional Restriction in (5)—is crucially encoded as a part of the licensing condition because recourse to the constituent in which the NPI would be otherwise acceptable is required.)

(25)
Revised NPI Licensing Condition
An NPI is acceptable only if it occurs in a sentence (i) that is downward-entailing with respect to it, and (ii) whose scalar alternatives do not entail it.

The condition in (25) has the generalization in (9) as an immediate consequence. For example, in "I don’t think that the girls and any boys have blue eyes, and is dominated by a sentence S that is downward-entailing with respect to the NPI—to illustrate, me not thinking that the girls and some

any NP. On the other hand, if the validation is only optional (e.g. the predicates allow for multiple construals), then, in the presence of an NPI, we expect a disambiguation to a construal that does not validate (22b).

⁸ A sentence S is downward-entailing with respect to (an occurrence of) \(\alpha \) iff (i) S dominates \(\alpha \), and (ii) for any \(\beta \) such that \(\beta \Rightarrow \alpha \), S \(\Rightarrow S^{\alpha \Rightarrow \beta} \), where \(S^{\alpha \Rightarrow \beta} \) is the result of replacing (the occurrence of) \(\alpha \) with \(\beta \) in S. See Gajewski 2005; Homer 2008 for slightly different formulations.

⁹ Clause (ii) of the constraint needs to be further constrained in order to deal with sentences like (ia), which is only entailed by its alternative in (ib). A proper statement would restrict the pertinent alternatives to those that are induced by the material that is appropriately local to the NPI (see Chierchia, 2013, for a proposal).

(i)
a. Few students read any book.
b. No students read any book.

In addition, clause (i) of the constraint needs to be further revised to deal with acceptable cases of any NP in presuppositional, modal, and non-monotonic environments (Kadmon and Landman, 1993; Gajewski, 2011; Crnić, 2014, 2019).
boys have blue eyes entails me not thinking that the girls and some tall boys have blue eyes—and S is entailed by the or-alternative of S, as was illustrated in (23). Thus, the sentence violates the Revised NPI Licensing Condition, yielding unacceptability.

By contrast, in I don’t think that the girls and any boys have ever written a paper together, and is again dominated by a sentence S that is downward-entailing with respect to the NPI—to illustrate, me not thinking that the girls and some boys wrote a paper together entails me not thinking that the girls and some tall boys wrote a paper together—but S is not entailed by the or-alternative of S, as was illustrated in (24). Thus, the sentence respects the Revised NPI Licensing Condition, yielding acceptability.10

\section{Two predictions}

\subsection{Numeral intervention}

Importantly, the core observation described in (9) holds not just for conjunction, but also for numerals above one, e.g. four, which, like and, are considered “strong”, and hence interveners, in Chierchia 2013. For instance, (26a) and (26b), which both include the distributive predicate read any paper of mine, exhibit an acceptability contrast between one, which is acceptable, vs. four, which is unacceptable. However, when the predicate is collective (write any paper together), four is acceptable.11

\begin{enumerate}
\item[(26)] a. I don’t have one colleague who has ever read any paper of mine.
\item b. *I don’t have four colleagues who have ever read any paper of mine.
\item c. I don’t have four colleagues who have ever written any paper together.
\end{enumerate}

Consider first the matrix sentence in (26b). It is downward-entailing with respect to any paper of mine, as illustrated in (27). However, it also holds that the alternative obtained by replacing four with, say, three entails the sentence, as illustrated in (28): if I do not have (even) three colleagues who have read my paper, then of course I do not have four such colleagues. Accordingly, the sentence violates the Revised NPI Licensing Condition.12

\begin{enumerate}
\item[(27)] a. I don’t have four colleagues who have ever read a paper of mine.
\item b. \Rightarrow I don’t have four colleagues who have ever read a long paper of mine.
\end{enumerate}

10If the alternatives involve singular DPs, then the or-alternative is ill-formed, and thus perhaps does not count as an alternative. The sentence would thus vacuously satisfy the condition.

11Chierchia (2013) notes that the examples with numerals need not always exhibit an intervention effect due to the fact that one can accommodate the pertinent scale beginning with the numeral. This is more difficult with and (and every, always), where this would result in a scale containing a single element.

12Slightly more formal representations of the meanings of the sentences discussed in this subsection are provided in the following. The crucial difference between them pertains to the distributivity of read vs. the non-distributivity of write together. See Buccola and Spector 2016 for evidence for this analysis.

\begin{enumerate}
\item[(i)] a. $\neg\exists X[\# X = 4 \land \forall x \in X[\text{colleague}(x) = T \land \exists y[\text{paper}(y) = T \land \forall x \in X[\text{read}(x, y) = T]]]]$
\item b. $\equiv \neg\exists X[\# X \geq 4 \land \forall x \in X[\text{colleague}(x) = T \land \exists y[\text{paper}(y) = T \land \forall x \in X[\text{read}(x, y) = T]]]]$
\end{enumerate}

\begin{enumerate}
\item[(ii)] a. $\neg\exists X[\# X = 4 \land \forall x \in X[\text{colleague}(x) = T \land \exists y[\text{paper}(y) = T \land \text{write.together}(X, y) = T]]$
\item b. $\# \neg\exists X[\# X \geq 4 \land \forall x \in X[\text{colleague}(x) = T \land \exists y[\text{paper}(y) = T \land \text{write.together}(X, y) = T]]$
\end{enumerate}
(28) a. I don’t have three colleagues who have ever read any paper of mine.
 b. ⇒ I don’t have four colleagues who have ever read any paper of mine.

In contrast, the sentence in (26c) is downward-entailing with respect to the NPI, but it is not entailed by the alternatives obtained by replacing four with other numerals. This is illustrated with three in (30): there may well not be (a group of) three colleagues who wrote a paper together, while there is (a group of) four colleagues who wrote a paper together (see fn. 12 for more details).

(29) a. I don’t have four colleagues who have ever written a paper together.
 b. ⇒ I don’t have four colleagues who have ever written a long paper together.

(30) a. I don’t have three colleagues who have ever written any paper together.
 b. ⇏ I don’t have four colleagues who have ever written any paper together.

The condition in (25) predicts these contrasts: substituting the numeral with a smaller numeral yields a logically stronger sentence in the cases with distributive predicates, hence the intervention effect, whereas in the case of collective predicates, there is no logical relation between the various numerical alternatives, hence the lack of an intervention effect.

5.2 Other interveners

We have shown that conjunction and numerical phrases are not interveners simpliciter; in particular, they do not induce intervention in configurations with collective predicates. Can similar configurations be constructed with other potential interveners? It turns out that conjunction and numerical phrases may be uniquely able to avoid inducing intervention effects in a way that obeys the condition in (25). Consider every, all, and always, which tend to give rise to intervention effects.

(31) a. *Not all students did any homework.
 b. *Mary doesn’t always read any books.

In order not to violate the condition in (25), one would need to find a configuration in which the alternative with some, Not some (= No) NP VP, does not entail the sentence with all, Not all NP VP. But this entailment always holds: to the extent that universal quantifiers are acceptable with collective predicates, the negation of such predication will be entailed by the negation of their counterparts with some. This is exemplified in (32) and stated more generally in (33) (on the assumption that every/all entails existence). (Similar considerations extend to always and sometimes).

(32) a. No students met/collaborated.
 b. ⇒ Not all students met/collaborated.

(33) For collective VP: every/all NP VP ⇒ some NP VP.

Accordingly, configurations in which NPIs occur in the immediate scope of every NP or always cannot satisfy the Revised NPI Licensing Condition, resulting in their unacceptability.
6 Towards an Explanation

We have provided a descriptive condition for what constitutes an intervention configuration as part of the NPI Licensing Condition, as in (25). We conclude this squib by briefly discussing how (25) relates to two families of recent theories of NPI licensing and intervention.

6.1 Feature-movement-based approaches

One family of approaches to intervention with NPIs can be stated as requiring the relation between the NPI and its putative ‘licensing’ operator to involve a syntactic dependency. Guerzoni (2006) fleshes out this dependency as one of covert movement. This means that sentence (34) would be acceptable if the NPI, or its relevant features, could move to its licensing operator (negation). This is not possible in sentence (34): neither any boy nor any of its subcomponents can extract out of the conjoined phrase, which is an island for (covert) movement. This is demonstrated by the unavailability of wh-movement in (35a), and the impossibility of QR of every boy above a different person in (35b).

(34) *I don’t think that Mary and any boy have laughed at my jokes.
(35) a. *Which boy do I think Mary and have laughed at my jokes?
 b. %A different person thinks Mary and every boy have laughed at my jokes.

An obvious issue for such an approach arises with the acceptability of sentences like (36): all else being equal, they should be unacceptable since movement out of the conjoined phrase is constrained precisely as it is in (35), as demonstrated in (37). A maneuver that would allow us to distinguish movement of the NPI/its subcomponents from that of other DPs/their subcomponents, while possible, may end up being unmotivated independently.

(36) I don’t think that Mary and any boy have collaborated.
(37) a. *Which boy do I think Mary and collaborated?
 b. %A different person thinks Mary and every boy collaborated.

6.2 Exhaustification-based approaches

A second family of approaches to intervention, arising from the work of Chierchia (2004), Gajewski (2011), and Chierchia (2013), is better poised to explain (25). On such approaches, the alternatives induced by operators that c-command NPIs and that occur in constituents that are downward-entailing with respect to the NPIs obligatorily enter into determining the acceptability of the NPIs. These alternatives are, then, responsible for the unacceptability of the sentences because their incorporation into subsequent computations results in semantic anomaly—at least if these alternatives are stronger than the sentence.

Chierchia (2004)’s core idea is that intervention effects are the result of implicatures triggered by an exhaustification operator that associates with the NPI—and all the intervening scalar items. For instance, in *John didn’t drink the soda and any whisky, the occurrence of and leads to the implicature that the or-alternative (John didn’t drink the soda or any whisky) is false. Overall, then, the sentence conveys that John didn’t drink both the soda and a portion of whisky, but he did
drink one or the other. The implicature ends up destroying the downward-entailingness of the NPI’s environment, hence is responsible for the unacceptability of the NPI. For example:

\[(38)\]
a. \(\neg(\text{John drank the soda and some whisky}) \land (\text{John drank the soda or some whisky})\)

\(\Rightarrow\) \(\neg(\text{John drank the soda and some Irish whisky}) \land \text{John drank the soda or some Irish whisky}\)

What about acceptable sentences with collective predicates, discussed above, such as *John didn’t mix the soda and any whisky*? The same interference also arises for them, as shown in (39).

\[(39)\]
a. \(\neg(\text{John mixed the soda and some whisky}) \land (\text{John mixed the soda or some whisky})\)

\(\Rightarrow\) \(\neg(\text{John mixed the soda and some Irish whisky}) \land (\text{John mixed the soda or some Irish whisky})\)

However, sentences with collective predicates differ from those with distributive predicates in one important respect, which can be capitalized on in the full system of Chierchia (2013). Specifically, in this system, the sentence with the distributive predicate ends up having the interpretation in (40), which is inconsistent and thus reason for the sentence to be unacceptable (see Chierchia, 2013, ch. 7, for details). On the other hand, the sentence with the collective predicate has the interpretation in (41), which is consistent and should thus be acceptable. The consistency of this meaning is a consequence of the pertinent scalar alternatives (including subdomain alternatives in Chierchia 2013) not entailing the sentence with the NPI.

\[(40)\]
\(\neg(\text{John drank the soda and some whisky in } D)\)

\(\land \text{John drank the soda}\)

\(\land \forall D' \subseteq D: \text{John drank some whisky in } D'\)
(prediction: *John drank the soda and any whisky* is unacceptable)

\[(41)\]
\(\neg(\text{John mixed the soda and some whisky in } D)\)

\(\land \text{John mixed the soda}\)

\(\land \forall D' \subseteq D: \text{John mixed some whisky in } D'\)

(prediction: *John mixed the soda and any whisky* is acceptable)

While it seems that the data we discussed fits with proposals like that of Chierchia, it does raise non-trivial questions. Some questions are empirical in nature: Do the inferences described in (41) indeed obtain? That is, does the sentence *John didn’t mix the soda and any whisky* convey that John mixed the soda and that he mixed (all portions of) the whisky? If not, what is their absence due to? Other questions are more architectural: How must collectivity/distributivity be encoded in the grammar in order to derive ungrammaticality? Specifically, how is it accessed at the level at which grammaticality is determined? We cannot attend to any of these questions in this squib, though we hope that we will eventually pick them up.\(^{13}\)

\(^{13}\) A similar state of affairs with (non-)intervention may obtain also on other alternative-sensitive approaches to NPI licensing, in particular the approach that takes the licensing of *any* to involve a covert *even* operator that associates with *any NP* (see, e.g., Lahiri, 1998; Črnič, 2014, 2019). If we adopt the assumption that *even* must associate with all the alternatives induced in its scope (following Chierchia, 2013), then we obtain the following predictions: (i) in the case of conjoined NPIs with distributive predicates, the pertinent disjunctive alternatives will entail the sentence, and so the sentence will end up having a contradictory presupposition; and (ii) in the case of conjoined
7 Conclusion

NPI intervention effects with conjunction are sensitive to the collectivity of the predicate that combines with the conjunction: an NPI conjoined with another DP is acceptable only if the conjunction combines with a collective predicate. We proposed to capture this distribution by imposing a constraint on the pertinent constituent that is downward-entailing with respect to the NPI: it must not be entailed by its scalar alternatives. This distribution of NPI intervention effects provides further support for an environment-based statement of the condition on NPI licensing (see Gajewski, 2005, 2011; Homer, 2008; Chierchia, 2004, 2013; Crnić, 2014, 2019, for further discussion).

References

NPIs with collective predicates, the disjunctive alternatives will not entail the sentence, and so the presupposition of even will be consistent. As in the case with the exhaustification-based approach, many questions arise and further study is mandated.

Word count (excluding abstract and references): 3,965 (texcount) / 5,155 (Monterey tool)