An overt even operator over covert-based focus alternatives: The case of Hebrew BIXLAL

Yael Greenberg, Bar Ilan University, yaelgree@gmail.com

(Accepted for publication in Journal of Semantics, pre-final version of January 2019)

ABSTRACT

This paper offers an analysis of the Hebrew focus sensitive particle bixdal and its accented version BIXLAL. It argues that both particles are members of the typology of even-like operators in Hebrew, along the unmarked particle afilu, but that BIXLAL is special in that instead of standardly associating with overt focused material, it is constrained to associate with focused material which is covert (and hence prosodically null). BIXLAL is thus constrained to operate over ‘covert-based’ alternatives. To illustrate this suggestion, the paper shows how a range of special readings found when BIXLAL appears in sentences with one dimensional and multi-dimensional adjectives in the positive form (paraphrased as very, -er than, in general, at all etc) can be derived by assuming that BIXLAL denotes the same operation as even, but that it associates with the covert comparison class argument of POS in such sentences, leading to a higher standard with the prejacent of BIXLAL compared to the standard with its alternatives. A general conclusion of the paper, then, is that the (in)ability of scalar focus sensitive particles to associate with covert material and to operate over ‘covert-based’ alternatives should be added to the inventory of parameters along which such particles have been reported to vary, both within and across languages. The paper ends by comparing BIXLAL to other scalar particles which can be analyzed as associating with covert material cross-linguistically, and by examining the behavior of BIXLAL in light theories of even-based NPIs (like ‘at all’) and of the focus-prosody correlation.

0. Introduction

The particle even in English has received much attention in the semantic-pragmatic literature on scalarity and polarity. Following works like Horn 1969, Kartunnen & Peters 1979, Rooth 1985, 1992, Guerzoni 2003, 2004, 2007, Chierchia 2013, Crnič 2011, 2014 we take the core lexical entry of even in English in to be along the lines of (1), where even (C_F) (p) (w) presupposes that p, the prejacent of even, is stronger on a scale \(\succ_{c} \) than all its distinct alternatives q in the C_F (where C_F is the contextually relevant subset of $\|p\|^{c}$, i.e. of the set of focus alternatives to p)\(^2\). If defined, even (C_F) (p) (w) asserts that p is true w:

\[
(1) \quad \|even\|^{c} = \lambda C_F. \lambda p. \lambda w: \forall q \in C_F q \neq p \rightarrow p \succ_{c} q, p(w) = 1
\]

1 I would like to thank many people for helpful discussions and constructive comments while writing this paper: Elitzur Bar-Asher-Siegal, Brian Buccola, Gennaro Chierchia, Micky Daniels, Edit Doron, Mitcho Erlewine, Danny Fox, Andreas Heida, Daniel Hole, Sabine Iatridou, Nirit Kadmon, Lena Miashkur, Dina Orenstein, Moria Ronen, Susan Rothstein, Galit Sassoon, Aldo Sevi and Malte Zimmermann, as well as the audience of Sinn und Bedeutung 21. I want to especially thank Keren Khirzman, with whom I wrote several papers on on bixdal / BIXLAL for her observations and ideas during our long discussions of this particle. Great thanks to four JOS reviewers, and to Benjamin Spector, the editor in chief, for their thorough reading and for their helpful comments. This research was supported by ISF grant 1655/16 to Yael Greenberg.

2 A notational comment: In Rooth’s theory, and in much of the literature on focus sensitive particles, the contextually supplied subset of focus alternatives is symbolized as C. We change this here to C_F to avoid confusion with the comparison class argument, C, in the semantic structure of sentences with adjectives in the positive form, which will be extensively used in the formalizations below.
Where $C_F \subseteq \|[p]^F \land [p]^O \| F \subseteq C_F \land \exists q \quad q \neq p \land q \in C_F$

As is well known, though, several components in this entry have been debated. Many of the discussions of these debated components in the literature involve comparison of English *even* with other *even*-like operators cross linguistically, often in languages where more than one such operator exists (see e.g. Rullmann 1997, Guerzoni 2003, 2004, 2007, Lahiri 1998, 2008, Gast & van der Auwera 2011, Nakanishi 2006, 2007, Schwenter & Vaisisth 2001, Giannakidou 2007, Crnič 2011, Iatridou & Tetevosv 2016, Liu 2017, Charnavel 2017). These studies identified a number of parameters along which such operators vary, like (i) the position of the prejacent p on the scale relative to its alternatives (high vs. low, leading to a strong vs. weak prejacent, respectively) or the scope bearing properties of the operator (ii) the presence / absence of an additive/existential presupposition, or even an exclusive presupposition (iv) the level of context dependency of the operator (v) the ability of the *even*-like operator to operate over whole questions, (vi) the dimension of the scale, (vii) whether or not the alternatives are ‘sum-based’ or ‘atom-based’, etc.

The main goal of this paper is to contribute to this body of research by arguing for the existence of yet another relevant parameter for classifying *even*-like operators, not discussed so far in this typological kind of literature, namely the ability / inability to operate on what we will call ‘covert-based’ alternatives to the prejacent. Unlike standard ‘Roothian’ focus alternatives, derived by substituting an overt, and usually prosodically accented element in p by another element of the same semantic type, we take such alternatives to be derived by letting the operator associate with a covert element in p. In such cases the covert associate is the only source of alternatives, so unlike what usually happens - all overt material in p is kept fixed in the alternatives q.

We base our proposal on examining the standard *even*-like particle in Hebrew, *afilu*, and two other partivles: *bixlal* and its accented version, *BIXLAL*. While *afilu* is always paraphrased in English as *even*, *bixlal* has not been considered a member of the *even*-like family in the traditional linguistic literature. Moreover, its accented version, *BIXLAL*, has been reported to induce a wide range of readings, paraphrasable in English as, e.g. *very, in general, and at all*, but not *even*.

We propose that (a) *bixlal* is part of the *even*-like typology of operators in Hebrew, very similar to *afilu* and *even*, and (b) instead of assuming multiple lexical ambiguity *BIXLAL* we can derive the range of readings it induces by taking this particle to be an *even*-like particle as well, which differs from English *even* and from Hebrew *afilu* and *bixlal* in that it associates with covert focused elements, and hence operates over ‘covert-based’ alternatives.\(^3\)

\(^3\) The analysis developed below is inspired by preliminary suggestions about the semantic contribution of *bixlal* / *BIXLAL* in Migron 2003, Greenberg & Khrizman (2012a, 2012b). Among other things the present paper improves on these suggestions in being much more detailed and precise regarding he compositional semantics of the
The paper is structured as follows: In section 1 we introduce our basic data concerning the Hebrew bixlal / BIXLAL and the range of readings it induces. Section 2 argues that unaccented bixlal can be analyzed as a member of the family of even-like operators in Hebrew along the more standard member of this family, afilu. In sections 3 and 4 we turn to accented bixlal (i.e. BIXLAL) in sentences with one dimensional and with multidimensional adjectives, respectively, and show how the range of readings BIXLAL yields (paraphrasable as, e.g. very, in general, at all, etc.) can be derived by the interaction between (a) the even-like nature of BIXLAL, (b) its operation over ‘covert-based’ alternatives, and (c) independently motivated analyses of sentences with one dimensional and multidimensional adjectives. Section 5 locates the analysis in a wider context by (a) comparing BIXLAL to other potential focus sensitive operators over ‘covert-based’ alternatives (b) discussing BIXLAL in light of even-based theories of NPIs like at all (e.g. Chierchia 2013) and (c) examining ways to capture the prosodic effects of association with covert material with BIXLAL. Section 6 concludes and discusses some directions for further research.

1. Introducing bixlal and BIXLAL: A range of uses

Migron 2003, who is the first to describe and analyze bixlal and BIXLAL in Hebrew, points out that the most standard use of this particle, manifested in its accented version, BIXLAL, is where it is paraphrased as the English Negative Polarity Item (NPI) at all, as in (2), with a negated predicate:

(2) A: dani gavoha?
 Dani tall
 “Is Danny tall?”
B: lo. hu BIXLAL lo gavoha / hu lo gavoha BIXLAL
 No. he BIXLAL not tall / he not tall BIXLAL
 “No. He is not tall at all”

Crucially, however, Migron notes that unlike at all, BIXLAL is not an NPI, since it can felicitously appear in matrix, positive sentences as well, as in (3), where it is paraphrasable as in general. In addition,

constructions involved, in integrating updated claims about the semantics of English even, and in being contextualized within the typological variations of even-like operators and polarity sensitive particles cross linguistically.

4 As can be seen in (2) and (3), BIXLAL can appear before the predicate or in sentence-final position. Korat 2015 suggests that this syntactic difference leads to different interpretations. We leave an examination of this issue to further research.
Greenberg & Khrizman 2012a,b,c observe that in some cases *BIXLAL* in positive sentences can induce readings paraphrasable as *very* or *–er than* as in (4):\(^5\)

\[(3)\]

\(\text{a. A: } \text{dani } \text{nexmad li-veny mishpaxto} \]
\(\text{dani nice to-his-family members} \)
\(\text{“Danny is nice to his family members”}\)
\(\text{B: Hu BIXLAL nexmad / hu nexmad BIXLAL} \)
\(\text{He BIXLAL nice / he nice BIXLAL (following Migron 2003)} \)
\(\text{“He is nice in general”}\)

\(\text{b. ba- mesiba yugshu dgey yam ve-dagim BIXLAL} \)
\(\text{in-the-party will-be-served fish sea and-fish BIXLAL} \)
\(\text{“Sea fish and fish in general will be served in the party”}\)

\[(4)\]

\(\text{A: dani gavoha.} \)
\(\text{Dani tall} \)
\(\text{“Danny is tall”}\)
\(\text{B: ve- axiv yosi BIXLAL gavoha} \)
\(\text{And his-brother yosi BIXLAL tall} \)
\(\text{“And his brother Yosi is very tall / taller”}\)

As for the unaccented version of *bixlal*, Migron 2003 notes that it can be paraphrased as *even* in both positive and negative sentences. In this case another element, presumably the associate of *bixlal*, or part of it, is accented, as can be seen in (5) and (6), close variants of Migron’s examples. Notice the Not only *q, OPERATOR p*” construction, which is typical for using *even* as well:\(^6\)

\[(5)\]

\(\text{Lo rak she-hem makirim, hem bixlal xaverim TOVIM} \)
\(\text{Not only that-they acquainted they bixlal friends good} \)
\(\text{“Not only are they acquainted. They are even good friends”}\)

\(^5\) The ‘very’ use is found in colloquial versions of spoken Hebrew, but is judged as perfectly felicitous in this register.

\(^6\) In addition to this *even*-like use, unaccented *bixlal* can also have ‘discursive’ use, seen in (i), a variant of an example in Migron 2003, which is characterized in Greenberg & Khrizman 2013, Greenberg 2014 and Greenberg & Orenstein 2016 as expressing strong or significant denial speech acts:

\[(i)\]

\(\text{A: Rina carfatiya?} \)
\(\text{Rina French} \)
\(\text{“Is Rina French?”}\)
\(\text{B: lo. Hi bixlal britit} \)
\(\text{No. she bixlal British} \)
\(\text{“No way. She is actually British”}\)

In this paper we will mainly focus on the non-discursive readings of *bixlal* and will leave a thorough investigation of this use to future research (see section 6 for a brief suggestion). To avoid confusion, then, we will mainly refrain from using data in which *bixlal* appears in denial contexts.
(6) Lo rak she-lo ba li le’exol im Danny, bixlal lo ba li LIR’OT oto
Not only that-not feel-me to eat with Danny. bixlal not feel-me to-see him

“Not only do I not feel like eating with Danny. I don’t even feel like seeing him”

Migron 1993 made a preliminary suggestion to account for all these uses of bixlal and BIXLAL by assuming that bixlal indicates that the predicate it combines with is more informative / stronger than alternative predicates, and that the same holds for BIXLAL, besides the fact that the alternatives in these cases involve ‘different interpretations’ of the predicate. In what follows we will adopt this informal suggestion, and make it more precise by taking bixlal and BIXLAL to be even-like operators which associate with overt and covert material, respectively.

2. Unaccented bixlal as a member of the typology of even-like operators in Hebrew

2.1 Even, afilu and bixlal: The same core semantics

Inspired by the informal suggestions in Migron 2003, the main claim we make in this section is that bixlal should be considered part of the cross linguistic typology of even-like operators.

Such a claim is not trivial, since the correlate of even in Hebrew in all dictionaries, traditional grammars etc. is standardly taken to be afilu, and no mention of bixlal has been made in this context. However, in addition to the examples above there are many more cases where bixlal can be used to translate even, alongside afilu. Moreover, in such cases, bixlal seems to be indeed semantically similar to even and afilu in being felicitous when its prejacent is understood as stronger than the salient alternative, and infelicitous when the prejacent is weaker. An example is seen in (7):

(7) (Context: Danny and Yosi had a great success in the competition)

dani kibel medalyat kesef, ve-yosi afilu / bixlal kibel medalyat zahav / #bronz
Danny got medal silver and Yosi afilu / bixlal got medal gold / bronze

“Danny got a silver medal, and Yosi even got a gold / bronze medal

We will suggest, then, that the core entry for afilu and bixlal is the same as that of even in (1) above:

(8) ||even||^e c = ||afilu||^e c = ||bixlal||^e c = \lambda C_F. Ap. \
\forall q \in C_F q \neq p \rightarrow p >_C q. p(w) = 1

Before continuing to argue for this even-like nature of bixlal, two comments about (8) (and (1) above) are in order. First, the nature of ‘stronger than’ relation, expressed by >_C in (8) in (1) is not specified. A popular characterization of this relation in the literature on even (e.g. Karttunen and Peters 1979, Rooth 1992, Lahiri 1998, Chierchia 2013) takes it to be based on unlikelihood, so even p is taken to presuppose that p is the most unlikely (or - least likely) proposition among the alternatives in the set C. This characterization, however, has been subject to much debate, and other characterizations were suggested instead. In section 3.7 below we will make use of one such recent characterization (in Greenberg 2015,
2018a) to account for the sensitivity of both *even* and *BIXLAL* to standards of comparison. In the meantime, though, as well as in most of this paper, using the intuitive and unanalyzed ‘stronger than’ relation, expressed by \succ_c will suffice for our purposes.

A second comment about the entry in (8) concerns the set C_F, of contextually supplied focus alternatives, that *even* (as well as *aflu* and *bixlal*) operates over. Some theories (e.g. Kay 1990, Rullmann 1997) discuss cases which seem to risk the universal quantification over alternatives in the scalar presupposition (requiring p to be stronger than ALL its focus alternatives in C_F):

(9) *Not only did Mary win her first round match, she even made it to the semifinals. (Kay 1990: 89)*

(10) *John won the bronze medal in the competition, and Bill even won the silver medal*

It would be natural to assume that *Mary made it to the finals*, or that *Bill won the gold medal* are members of C_F in (9) and (10), respectively, since they seem to be very ‘relevant’ alternatives to the prejacent of *even* (namely to *Mary made it to the semifinals* and to *Bill won the silver medal*, respectively) in the context. But if this is so then *even* is wrongly predicted to be infelicitous, since p would not be stronger than ALL alternatives in C_F anymore.

If the universal quantification is kept in (8), then, as we believe it should,7 we need to constrain the set of alternatives C_F. This can be done by allowing C_F to have as members only p and alternatives constructed based on salient material in a parallel structure (e.g. a salient parallel VP). In the case of (10), for example, we will not take C_F to be $\{Bill \text{ won bronze, Bill won silver, Bill won gold}\}$, but the smaller $\{Bill \text{ won silver, Bill won gold}\}$, with only one more member besides p. Such a move will allow the scalar presupposition to be met and will account for the felicity of *even* (see Greenberg 2018b, 2019 for further discussion).

More generally, the felicity of *even* in sentences like (9) and (10) indicates that the generation of alternatives for *even* follows the structural algorithm for generating alternatives in Fox & Katzir 2011, Katzir 2014 (where both the lexicon as well as discourse salient material is exploited to construct

7 Indeed, given data similar to (9)-(10), some theories (e.g. Kay 1990), proposed to replace the scalar presupposition in (1) and (8) by a weaker version requiring p to be stronger than a salient alternative, e.g. what Kay (1990) called ‘the context proposition’. Such a proposal, though, would wrongly predict *even* to be felicitous in (i)-(ii) (See Greenberg 2016, 2018b, 2019 for further discussion):

(i) (There were 10 problems in the quiz): Harry solved six problems. John solved seven problems, Susan solved four and Bill (#even) solved six
(ii) (Harry, John and Bill participated in the sports competition). Harry won a gold medal, John won a bronze medal, and Bill (#even) won a silver medal.
alternatives using the ‘substitution source’), but that when certain discourse salient material is available to construct alternatives, alternatives constructed using the lexicon may, or perhaps must be ignored.⁸,⁹

2.2. Further support for the even-like nature of bixlal
Let us turn back now to further supporting the even-like nature of bixlal. First, alongside the constructed examples in (5)-(7) above there are also attested examples where bixlal is easily translated as even or can be substituted by afilu in matrix sentences, associating with a ‘strong’ element. Two examples can be seen in (11) and (12):

(11) (Context: Getting different quotes / estimates for a renovation):

Exad hicia 4-5 elef, sheni 8-9 elef, shlishi 15 elef, ve-ha- revi‘i bixlal
One offered 4-5 thousand, second 8-9 thousand, third 15 thousand and-the-fourth bixlal higi’a - le 20-25 elef⁰
reached to 20-25 thousand
“The first one reached 4-5 thousands, the second 8-9 thousands, the third reached 15 thousands and-the-fourth even reached 20-25 thousands”

(12) cever ha-hazmanot shel ha-xevra me-ha-lako’ax ala le-81 milion ve-cever ha-
Cluster the-orders of the-company of-the-customer rose to-81 million and-cluster the-
zmanot la-shnatayim ha-krovot bixlal ala le-170 milion¹¹
orders to-the- two-years the-close bixlal rose to 170 million
“The company’s orders of the customer rose to 81 million and the orders for the next two years even rose to 170 millions”

More attested examples of bixlal with an even-like interpretation are found in DE contexts, as in the first argument of a universal quantifier (13), the complement of before (14) and that of forbidden (15), associating with ‘weak’ elements:

(13) ani margish she-ani roce le-hitpocec (!!!!!) ve-la-harog kol mi she- bixlal xoshev
I feel that-I want to-explode and-to-kill every who-that bixlal think

⁸ See also Greenberg 2018b, 2019 for a discussion of parallel conclusions regarding the set of alternatives for only.

⁹ In this respect it is interesting to compare this priority of contextually supplied alternatives over lexically supplied ones with even to the priority given to contextual alternatives by children in calculating scalar implicatures (as reported in Barner et al 2011), and in giving some conjunctive readings of disjunctions (cf. Singh et al 2016). Thanks to Roni Katzir (p.c.) for a discussion regarding this point.

¹⁰ http://www.carsforum.co.il/vb/showthread.php?419113-%D7%94%D7%99%D7%9B%D7%9F-
- (%D7%95%D7%94%D7%90%D7%9D)-%D7%A0%D7%99%D7%AA%D7%9F-
-%D7%9C%D7%91%D7%A6%D7%A2-%D7%91%D7%93%D7%99%D7%A7%D7%AA-quot-%D7%A6-
-%D7%A7-%D7%90%D7%A0%D7%92-%D7%99%D7%9F-quot-%D7%9C%D7%9C%D7%90-
-%D7%AA%D7%A9%D7%9C%D7%95%D7%9D/page2, found on Google in 18.5.2016.

alay be-derekh lo tova12
about-me in-way not good

“I feel I really want to explode (!!!!) and kill anyone who even thinks about me in a bad way”

(14) ani mocet et ecmi lo pa’am mexapeset pitronot le-ben ha-zug sheli lifney she-ha \textit{bixlal}
I find acc myself not once look-for solutions to-son the-pair mine before that-he bixlal
bikesh13
asks

“I find myself, from time to time, looking for solutions to my partner before he even asks”

(15) lo rak she-asur li le-faret et pratey ha-mivca ela she- la-oyev
Not only that-forbidden to-me to-detail acc details the-mission but that to-the-enemy
asur \textit{bixlal} lada’at she- asinu et ze14
forbidden bixlal to-know that we-did acc this

“No only can’t I give details about the mission. It is even forbidden that the enemy
knows we did it.”

\textit{Bixlal}, then, can be easily translated as \textit{even} in such cases, though \textit{afilu} still seems the default choice.

Based on these similarities between \textit{afilu} and \textit{bixlal} we conclude that Hebrew has indeed at least two \textit{even}-like particles,15 namely \textit{afilu} and \textit{bixlal}. This makes Hebrew similar to many other languages which, as mentioned above, have been reported to have several \textit{even}-like particles (see e.g. Gast & van der Auwera’s 2011, 2013 examination of 45 European and 16 Transeurasian languages, Giannakidou’s 2007 work on Greek, and Crnič’s 2011 review of Slavic languages). In all of these languages the different members of the \textit{even}-like typology are not (necessarily) synonymous. Rather, they are reported to differ from each other in their distribution and semantic effects, depending on their specification in a number of parameters, while still sharing the core \textit{even}-like semantics.

In a similar way, when proposing that \textit{bixlal} is a member of the \textit{even}-like typology in Hebrew, alongside the default member, \textit{afilu}, we are not committed to the claim that the two are synonymous, or

12 https://www.fxp.co.il/showthread.php?t=3603383, found on Google in 18.5.2016
13 http://xnet.ynet.co.il/laisha/articles/0,14961,L-3108963.00.html, found on Google in 18.5.2016.
15 As proposed in Greenberg and Orenstein 2016, in addition to \textit{afilu} and \textit{bixlal} Hebrew also uses \textit{af}, a high register short version of \textit{afilu} (which seems to also appear in NPIs like \textit{af-exad} (any, lit ‘even one’), and an NPI \textit{even}-like operator, \textit{ve-\textit{lu}} (cf. Sharvit 2008). It also has a standard additive particle \textit{gam}, usually translated as \textit{also}, which seems to get scalar \textit{even}-like features in some environments (e.g. above modal operators). We postpone further investigation of these, as well as potentially other \textit{even}-like particles in Hebrew, to future research.
that they are both synonymous with English *even*. Instead, the claim is that all of these particles share the core scalar *even*-like semantics, though they may differ from each other along various parameters.

One example of such a difference between *bixlal* and *afilu*, which actually supports *even*-like nature of *bixlal*, concerns a specific effects it has in questions.\(^{16}\) To see it consider, first, the effect of *even* in the constituent question (16) and the polar question (17), from Iatridou & Tetevosov 2016:

\[
\begin{align*}
(16) & \quad A: \text{Shall we go to Oleana for dinner?} \\
& \quad B: \text{What do they even serve there? / What do they serve there even?}
\end{align*}
\]

\[
\begin{align*}
(17) & \quad A: \text{Shall we ask Joan to prepare something special for dinner?} \\
& \quad B: \text{Is Joan even here?}
\end{align*}
\]

Iatridou & Tetevosov characterize this use of *even* (referred by them as ‘our *even*’) as operating over the whole question, presupposing that this question is the least likely to ask. The resulting effect, according to them, is that the speaker is ignorant “about the most basic thing about…the Question under Discussion” (p. 3) or that “the speaker does not know if the most basic prerequisite of the topic under discussion holds” (p. 23).

Without going now into the question of whether Iatridou & Tetevosov’s analysis of this use of *even* is the right one,\(^{17}\) we now observe that the only way to translate *even* in such questions to Hebrew is by using *bixlal*: In particular, informants judge the questions in (18) and (19) as perfectly natural with *bixlal* and as infelicitous with *afilu*:\(^{18}\)

\[
\begin{align*}
(18) & \quad A: \text{bo nipageS be-olena le-aruxat erev.} \\
& \quad \text{Come meet at-olena for-dinner.} \\
& \quad \text{“Let’s meet at Olena’s for dinner”} \\
& \quad B: \text{ma hem bixlal / ??afilu magishim? / ma hem magishim bixlal / ??afilu?}
\end{align*}
\]

\(^{16}\) See section 6 for other differences.

\(^{17}\) Elliott et al 2015 and Daniels 2018 point out challenges for this analysis of Iatridou & Tetevosov of ‘out *even*’. Daniels suggests an alternative analysis which integrates Greenberg’s 2015, 018a ‘gradability-based’ semantics for *even* (briefly reviewed in section 3.7 below) and the assumption that here *even* scopes above a question speech act operator.

\(^{18}\) The effects of *bixlal* here seem to also be very similar to the ‘extreme ignorance’ effects of questions with *bixlal* that Greenberg & Khrizman 2012,a,b report, as in (i):

\[
\begin{align*}
(i) & \quad A: \text{ani lo maamina be-refua alternativit} \\
& \quad \text{I don’t believe in medicine alternative} \\
& \quad \text{‘I don’t believe in alternative medicine.’} \\
& \quad B: \text{ma ze refua alternativit} \text{ bixlal?} \\
& \quad \text{what this alternative medicine bixlal} \\
& \quad \text{‘What on earth is alternative medicine?’}
\end{align*}
\]

Notice also that *bixlal* is natural in “double emphatic questions”, as in (ii) (Doron & Wolf 2016):

\[
\begin{align*}
(ii) & \quad \text{lama mi ata bixlal?} \\
& \quad \text{why who you bixlal} \\
& \quad \text{“Who are you, anyway?”}
\end{align*}
\]
What they bixlal / afilu serve / What they serve bixlal / afilu
“What do they even serve?/ What do they serve even?”

(19) A: ulay nazmin et joan le-haxin mashehu meyuxad le-aruxat erev?
Maybe invite acc Joan to-prepare something special for-dinner
“Perhaps we will invite Joan to prepare something special for dinner?”

B: joan bixlal / #afilu kan?
Joan bixlal / afilu here
“Is Joan even here?”

This difference between bixlal and afilu in questions resembles similar variations with even-like operators reported in other languages. For example, Iatridou & Tetevosov 2016 report that the Russian vooobšče, the Greek akome ke and the German überhaupt naturally encode the ‘discourse’ use of even, operating over whole questions19, whereas the more canonical even-like particles, namely daże, kan and sogar, respectively, are only fine in the ‘garden-variety’ structure, operating over more standard focus alternatives. A similar picture seems to emerge now for Hebrew: afilu is the default case for ‘garden variety’ cases, operating only on standard focus alternatives, while bixlal can also operate over whole questions.20 From this perspective, the difference between bixlal and afilu in (18)-(19), then, does not undermine, but actually supports the even-like nature of bixlal.

3. BIXLAL as an even over ‘covert-based’ alternatives: Cases with one dimensional adjectives

3.1 Introduction
We now want to focus on a set of facts which distinguish bixlal from both even and afilu, namely the range of readings this particle induces when it is accented (i.e. as BIXLAL) (e.g. very, in general, or at all). Our main claim is that although in such cases BIXLAL is not directly translated as even, and cannot be substituted by afilu, the range of readings it induces does not undermine, but in fact further supports its analysis as an even-like operator, albeit one which differ from afilu and even along a specific parameter, namely its ability to operate over a special kind of alternatives.

More specifically, as mentioned above, Migron 1993 informally suggested to account for these readings by assuming that, just like bixlal, BIXLAL indicates that the predicate it combines with is more

19 Iatroidou & Tetevosov’s (2016) analysis of überhaupt as an even-based operator thus differs from both Anderssen’s (2006) analysis of this particle as a general domain widener and Rojas-Esponda’s (2014) analysis of this particle as marking a move to a higher QUD. We adopt this kind of analysis for bixlal as well (but further examination of the various effects of überhaupt are still needed. See section 5.4 for a comment).

20 Notice, though, that in Hebrew the division of labor between afilu and bixlal seems less rigid, since although bixlal seems less common in ‘canonical’ even-like structures than afilu, it can still be found in such cases, as seen above.
informative / stronger than its alternative, but that with BIXLAL the alternatives involve ‘different interpretations’ of the predicates. We will now follow this general intuition and some ideas of how to make it more precise in Greenberg & Khrizman 2012a,b,c, and suggest to derive the range of readings of BIXLAL from the interaction of (a) our semantics of BIXLAL as a focus sensitive even-like operator, (b) the assumption that the focused element that BIXLAL associates with is covert, so the alternatives it operates over are ‘covert-based’21 and (c) the semantic properties of the prejacent of BIXLAL, and in particular the nature of the covert material in it that BIXLAL can associate with.

To keep the discussion manageable, we will concentrate on cases where BIXLAL combines with adjectival predicates of different kinds, namely one dimensional (dealt with in this section) and multidimensional adjectives (dealt with in section 4).22

3.2 The intuition

Consider the occurrence of BIXLAL in (20) (a close variant of (4) above):

(20) A: dani gavoha. Ve-ma im yosi?
Danny tall and-what with Yossi
“Danny is tall. And what about Yossi?”

B: hu BIXLAL gavoha
he BIXLAL tall
“He is very tall / really tall / taller”

As observed in Greenberg & Khrizman (2012,a,b,c) (20) leads to several inferences, namely that Danny is tall, that Yosi is very or really tall, and that Yosi is taller than Danny. Below we will attempt to derive these inferences from the even-like semantics of bixlal and the special nature of the alternatives operated over. Again, we do not attempt to argue that BIXLAL is identical to English even (or Hebrew afilu). After all, as seen in (21), there is no simple way to translate BIXLAL in (20) as even, or to substitute it by afilu (no matter whether these are accented or not):

(21) A: dani gavoha. Ve-ma im yosi?
Danny tall and-what with Yossi
“Danny is tall. What about Yossi?”

B: #hu AFILU/ afilu gavoha
he EVEN / even tall

21 An obvious question is why the operation over covert-based alternatives is found with the accented version of bixlal, i.e. with BIXLAL. We suggests some directions for explaining this fact in section 5.4 below. Our main goal in this paper, though, is more modest, namely to show how the assumption about the even-like operation over ‘covert-based’ alternatives can be used to explain the variety of readings found with BIXLAL.

22 But see section 5.2 for an example where BIXLAL appears with non-gradable predicates.
What we will argue, instead, is that in (20) BIXLAL is an even-like operator over ‘covert-based’
alternatives, derived by letting BIXLAL associate with a covert focused element, and specifically with the
covert comparison class argument, C, in the semantic structure of its prejacent (Danny is pos C tall). The
result of such an association will eventually lead to a paraphrase of (20) as in (22):

(22) A: Danny is at least as tall as the contextually salient standard, and what about Yosi?
 B: He is even at least as tall as a higher standard

3.3 BIXLAL is not an intensifier

Before turning to formally capture the idea that BIXLAL is an even-like operator over covert-based
alternatives, we may want to consider first a much simpler hypothesis. After all, BIXLAL seems to have
an intensification effect in such sentences, and can be paraphrased by very or really. Perhaps, then,
BIXLAL is simply some sort of an intensifier?23

We argue that the answer to this question should be negative, and that an analysis of BIXLAL as
an even-based operator is preferable. This is not only because a we prefer a more unified analysis of
BIXLAL as related to its unaccented version, namely the even-like operator bixlal, but also due to two
properties of BIXLAL, which makes it different from intensifiers, namely (a) the interaction of BIXLAL
with surface negation, which makes it similar to afifu and (b) its sensitivity to standards of comparison,
which makes it similar to both afifu and even. Let us examine these properties in turn.

3.3.1 The interaction of afifu and BIXLAL (as opposed to intensifiers) with surface negation

Unlike English even, the Hebrew default even-like particle, afifu can appear either before surface negation
(23a), or after the negated predicate (23c), but crucially not between surface negation and the modified
predicate (23b):

(23) (Context: ha-mofa kvar histayem?)

23 As pointed out by a JOS reviewer, what further potentially supports such a suggestion is the fact that there are
intensifiers which can lead to a ‘noteworthy’ effect, similarly to what has been sometimes claimed for even (cf.
Herburger 2000). An example seems to be fucking, e.g. John fucking won the [gold] medal, which seems to
indicate that compared to winning bronze or silver it’s noteworthy that John won the gold medal.

Since Hebrew does not seem to have a good correlate of intensifying fucking, I compare BIXLAL to the
intensifiers meod (‘very’) and mamaS (‘really’) below. But as far as I can see the sensitivity to standards of
comparison, which as argued below makes BIXLAL similar to even and different from these two intensifiers, makes
it also different from fucking. Two cases exemplifying this difference are seen in (i) and (ii) (see section 3.7 for
further discussion):

(i) A: John didn’t do very well in the competition. And what about Bill?
 B: He ??even / fucking won the gold medal
(ii) A: John is not tall. He is only 1.75m tall. And what about Bill?
 B: He is #even / fucking 1.90m tall.
The show already finished

"Has the show already finished?"

a. hu afilu lo hitxil b. #hu lo afilu hitxil c. hu lo hitxil afilu

it even not started it not even started it not started even

a = c "The show hasn’t even started"

In contrast, the interaction of Hebrew intensifiers like me’od (‘very’) or mamash (‘really’) with surface negation is different. Like afilu, both types of intensifiers can precede negation (24a), but unlike afilu they can also appear between negation and the predicate (24b). They can also follow the negated predicate, as in (24c) (although they are a bit odd in this position):25

(24) a. ze me’od / mamash lo meduyak b. ze lo me’od / mamaS meduyak c. ze lo meduyak

This very really not precise this not very really precise this not precise

(24) a=”It is very / really imprecise”

b= c. It is not very / really precise]

Turning now back to BIXLAL we observe is that its interaction with surface negation is just like that of afilu, and unlike what we saw with the Hebrew intensifiers:

(25) a. hu BIXLAL lo gavoha b. #hu lo BIXLAL gavoha c. hu lo gavoha BIXLAL

He BIXLAL not tall he not BIXLAL tall he not tall BIXLAL

a=c “He is not tall at all”

In addition, while BIXLAL in this case is not directly translated as even, but as at all, (25a,c) can be nonetheless paraphrased with even, as in (26):26

(26) A: Danny does not reach the contextually salient standard of tallness. And what about Yosi?

24 One can take these facts to indicate that the difference between Hebrew afilu (and BIXLAL as seen below) on the one hand, and English even on the other hand, is that the surface position of the former above negation is also its position in LF, whereas for even this is only its position at LF, to which it is raised from surface position, as has been extensively discussed in the literature (e.g. Horn 1971, Kartunnen and Peters 1979, Lahiri 1998, Guerzoni 2003, Crnič 2011). In both cases the scalar presupposition of these even-like particles is met. e.g. in (23) the performance didn’t start is stronger than the performance didn’t end. I leave a more thorough examination of these issues, and a comparison with the competing ‘ambiguity’ approach to even (e.g. Rooth 1985, Giannakidou 2007) to future research.

25 Notice that in this position there is also an interpretational difference between afilu and me’od / mamash: Assuming the ‘scope’ view of even, afilu in (23c) seems to scope above the negated predicate, so the sentence is paraphrased as “It is even the case that the show hasn’t started yet”. In contrast, as the gloss of (24c) shows, the salient reading of me’od and mamaS in this position is where they scope below negation (“It is not very / really precise”) and not above it (“It is very / really imprecise”).

26 See Chierchia 2013 for an even-based analysis of at all. See also section 5.3 for a comparison between Chierchia’s analysis and the present analysis of the at all reading of BIXLAL.
B: He does not even reach a lower standard of tallness (= he is not tall at all) even >not

In the sections below we make the even-based intuitive paraphrases of the sentences with BIXLAL in (22) above and in (26) more precise. At this point we just conclude that at least given its interaction with surface negation, BIXLAL seems indeed similar to the Hebrew afilu, and not to intensifiers.

3.3.2 An evaluative inference triggered by even, afilu and BIXLAL (as opposed to intensifiers)

A second property which makes BIXLAL similar to even, and different from intensifiers has to do with the sensitivity of BIXLAL to standards of comparison. In particular, we observed above that the use of BIXLAL in B’s utterance in (20) (Yosi is BIXLAL tall) strongly leads to the evaluative inference that Danny, mentioned in A’s utterance, is tall as well.

Crucially, this inference indeed results from the presence of BIXLAL in B’s answer, and not only from the fact that A explicitly asserted that Danny is tall. As a support we observe that the presence of BIXLAL in B’s answer in (27) gives rise to the same inference, although in this case speaker A does not explicitly say that Danny is tall. In this case B’s answer with BIXLAL is only felicitous in a situation where 1.75m tall is considered tall relative to the relevant standard (e.g. if we are in a context where we need to choose players for the kids basketball team). Crucially, replacing BIXLAL with the intensifiers me’od (‘very’) and mamash (‘really’) does not lead to any such effect:

(27) A: dani hu 1.75m. ve-ma im yosi?
 “Danny is 1.75m. and what with Yosi?”
B: hu BIXLAL / MEOD / MAMASH gavoha
 “He is very / very / really tall”

Indeed, in a situation where the context makes it clear that Danny is NOT tall given the salient standard, BIXLAL is infelicitous. In contrast, the intensifiers continue to be felicitous:

(28) (Context: The average height in this basketball team is 1.90).
A: dani hu rak 1.75m. hu lo gavoha, ve-ma im yosi?
 “Danny is only 1.75m. he not tall and what with Yosi?”
B: Hu #BIXLAL / MOED / MAMASH gavoha
 Intended: “He is very tall / taller”

27 Cf. a similar observation in Korat 2015.
Importantly, similar patterns have been independently observed in Greenberg 2015, 2018a for English even. Compare B’s answers in (29a) and (29b):

(29)
A: Danny is 1.75m tall.
a. B: and Yosi is taller / and Yosi is \{1.80m\}_F
b. B: and Yosi is even taller / and Yosi is even \{1.80m\}_F

As is well known (e.g. Kennedy & McNally 2005), comparatives based on relative adjectives, like Yosi is taller than Danny do not lead to evaluative inferences, i.e. do not entail the positive form of the adjectives they are based on, for neither the source nor the target of the comparison. Thus, without even, (29a) can be naturally continued with …but both are short or with ……but Danny is short. The same continuation is perfectly felicitous for the even-less and yosi is 1.75m in (29a). As Greenberg 2015, 2018a observes, however, when even is present, as in (29b), the positive form is entailed so such sentences cannot be felicitably continued with …but both are short or by ….but Danny is short.

In other words, the presence of even in B’s utterances in (29b) entails that both Danny and Yosi are considered tall, and more technically, that the degree to which they are tall is at least as high as the contextually supplied standard of tallness (cf. Kennedy & McNally 2005). The same inference is found in Hebrew with afilu.\(^{28}\) Moreover, even and afilu become infelicitous when the inference that Danny is tall is cancelled. This is seen in (30) for even:\(^{29}\)

(30) (Context: The average height in this basketball team is 1.90)
Danny is only 1.75m tall. He is not tall. And what about Yosi?
B: He is (#even) taller / He is (#even) 1.80m tall

Crucially, this was also the effect we got with BIXLAL in (28), above. In section 3.7 below we review Greenberg’s 2015, 2018a, proposal to capture the sensitivity of even to standards, and apply this proposal to the parallel sensitivity of BIXLAL to standards. At this point our goal is more modest, namely to take the data in this section to further strengthen our claims that (a) BIXLAL is not an intensifier and (b) that it is indeed similar in its semantic contribution to even and afilu.

3.4 The proposal: BIXLAL associates with the covert comparison class argument, C, in its prejacent

We are now in a position to explain how the special effects of BIXLAL in (20) (Danny is tall and Yosi is BIXLAL tall) can be derived.

We start by following ideas in e.g. Bartsch & Vennemann 1972, von stechow 1984, who take sentences with adjectives in the ‘positive form’, as in (31), to involve a covert degree modifier, pos, with

\(^{28}\) Cf. Umbach 2012 for similar observations concerning noch groser in German. I believe, though, , that the mechanisms by which this effect is derived with even are different. More research is needed here though.

\(^{29}\) But see footnote #35 for a case where further contextual support allows for cancelling this inference.
16

entry as in (32), which combines with a contextually supplied comparison class argument C, a gradable predicate G and an individual, x, and yields truth when the degree that the individual has along the scale associated with G is at least as high as the standard determined by the comparison class C. Thus (31) has an LF as in (33a) and is interpreted as in (33b):

(31) Yosi is tall
(32) \(\text{pos-} \lambda \text{C.} \lambda \text{G.} \lambda \text{x. } \exists d \ G(x,d) \land d \geq \text{standard } (C,G) \)
(33) a. Yosi is pos C tall b. \(\exists d \ 	ext{tall}(\text{Yosi},d) \land d \geq \text{standard } (C,\text{tall}). \)

Notice that (33a), with its interpretation in (33b), is the prejacent of BIXLAL in (20). Since we take BIXLAL to have the semantics of the focus sensitive operator even, requiring the prejacent p to be stronger than all its focus alternatives q in \(C_F \), the crucial question now is what propositions count as these alternatives q to the prejacent. This, of course, depends on what we take to be focused in (33a).

Following ideas in Greenberg & Khrizman 2012, Greenberg 2014 we now propose that unlike the classical way of deriving focus alternatives (Rooth 1992, 1996), where an overt, and usually prosodically accented focused element, is substituted by another overt element of the same semantic type, in (33a) the focused element that BIXLAL associates with is covert, although being covert it cannot be prosodically marked (e.g. cannot bear accent)\(^\text{30}\). More specifically, we take the focused element in (33a) to be the covert comparison class argument, C:

(34) Yosi is pos \([C]_F\) tall

Since C is focused and is the source of alternatives, the focus alternatives, q differ from p in (34) in the choice of C. As usual, we do not require even to operate over all such focus alternatives, i.e. over alternatives with any comparison class C, but only over those in the contextually supplied subset \(C_F \) (as in (1) and (8) above), constructed based on relevant information and / or salient sub-constituents in the context (cf. Fox & Katzir 2011, Katzir 2014). In our case, the comparison class argument in A’s sentence (“Danny is pos C tall”) which proceeds the sentence with BIXLAL, provides such a salient sub-constituent.

To keep the difference between p and the alternatives q clear we will from now on refer to the comparison class in the relevant alternatives q to be \(C_1 \) and to the focused one, in the prejacent of BIXLAL, as \(C_2 \). This yields the following scalar presupposition and assertion of (20):

(35) A scalar presupposition of BIXLAL in (20) (‘Danny is tall and Yosi is BIXLAL tall’):

\[\text{For all contextually relevant comparison classes } C_1, \text{ distinct from } C_2:\]
\[Yosi \text{ pos } C_2 \text{ tall } >_C \text{ Yosi is pos } C_1 \text{ tall} \]
\[= \exists d \text{ tall}(Yosi, d) \land d \geq \text{ standard } (C_2, \text{ tall}) >_C \exists d \text{ tall}(Yosi, d) \land d \geq \text{ standard } (C_1, \text{ tall}). \]

(36) \quad \text{Assertion of (20): } \exists d \text{ tall}(Yosi, d) \land d \geq \text{ standard } (C_2, \text{ tall}) >_C \exists d \text{ tall}(Yosi, d) \land d \geq \text{ standard } (C_1, \text{ tall}).

In prose, (20) presupposes that for all contextually relevant comparison classes \(C_1 \), the proposition that Yosi’s degree of tallness is at least as high as the standard determined by the comparison class \(C_2 \) is stronger than the proposition that his degree of tallness is at least as high as the standard determined by \(C_1 \). The assertion is that Yosi’s degree of tallness is at least as high as the standard determined by \(C_2 \).

What relation should hold between the comparison classes \(C_1 \) and \(C_2 \) for the presupposition to be satisfied? We suggest that since the comparison class determines the standard, the standard determined by \(C_2 \) in \(p \) has to be higher than the standard determined by all relevant \(C_1 \) in \(q \). The set of the relevant \(C_1 \) arguments in the \(q \) alternatives includes the comparison class argument \(C \) in the proposition denoted by A’s salient sentence \(Danny \text{ pos } C \text{ tall} \). This is, we suggest, how we end up with the paraphrase in (22) above (\(Yosi \text{ is even tall with respect to a higher standard than the one with respect to which Danny is tall} \)).

The fact that the degree to which Yosi is tall is presupposed to be at least as high as a standard which is higher than all relevant / salient standards can now help explaining the inference that he is considered very tall. Another way to look at this inference is to take the comparison class \(C_2 \) to be a subset of \(C_1 \), and in particular the set of tall individuals in all salient comparison classes \(C_1 \) (cf. Kennedy & McNally 2005 on very).\(^{32}\)

\(^{31}\) Given the discussion of the felicity of \textit{even} in cases where \(p \) is compared to only one contextually salient alternative (as in (10) above: \(Danny \text{ won bronze in the competition, and Yosi even won [silver]} \)), one may consider a similar case here, and take the comparison class that Danny is a member of to be the only one which stands for \(C_1 \) in (35), so we end up with only two relevant alternatives, the prejacent, involving \(C_2 \), and another proposition, involving Danny’s comparison class. I leave this option, and more generally the wider implications for how alternatives are constructed in such cases to further research (cf. Greenberg 2018b, 2019 for discussion).

\(^{32}\) Notice that BIXLAL is fine not only with ‘relative’ adjectives like \textit{tall}, but also with ‘absolute’ ones, e.g. \textit{clean}:

(i) \quad A: \quad ha-xeder shel dani naki, ve- shel Yosi?
 the-room of Dany clean and-of Yosi
 “Danny’s room is clean. And Yosi’s?”

B: \quad Hu BIXLAL naki.
 It BIXLAL clean
 “It is very clean / even cleaner”

This fact may seem challenging to the proposal above if we adopt Kennedy & McNally’s 2005, Kennedy’s 2007 claim that with Upper-closed adjectives (like \textit{clean}) the standard is always at the scale maxima. Notice, though, that a similar challenge is posed by \textit{even}, as in the gloss of (iB) and in the attested example in (ii) (from a TripAdvisor review):

(ii) \quad Our room was clean, and the bathroom was even cleaner

Similarly to what we see with BIXLAL, if indeed the standard of cleanness in the first sentence is at the maximal endpoint of the cleanness scale, it is not clear how the bathroom can be cleaner than the writer’s room.

One way to overcome this challenge is to assume that even with such adjectives the standard is not fixed and still varies in context, as independently suggested in e.g. McNally 2011, Sassoon & Toledo 2011 (cf. also Solt 2011 and Burnett (2014) for a discussion). Another possibility is to assume a ‘multidimensional’, part-whole
3.5 Deriving the ‘taller than’ inference using a scalar implicature

Strictly speaking, the analysis of (20) (‘Danny is tall. Yosi is BIXLAL tall’) in (34)-(36) is not enough by itself to derive the inference, mentioned above, that Yosi is taller than Danny. This is because the fact that Danny’s degree of tallness is at least as high as the lower standard, determined by C₁, is compatible with a situation where this degree is, in fact, much higher than this lower standard and is actually higher than Yosi’s degree of tallness. In this situation Yosi will not be taller than Danny.

A direction for explaining this inference is to assume that Danny is pos C tall, denoted by A’s salient utterance, triggers a scalar implicature. More specifically, as argued above, the association of the even-like particle BIXLAL with the comparison class argument C₂ in Yosi is BIXLAL pos [C₂]₇ tall in B’s utterance, leads to interpreting the standard determined by C₂ as higher than the one determined by all relevant comparison classes C₁, including the comparison class C in Danny is pos C tall. We end up, then, with two predicates (is pos C tall), salient in the context, where one is stronger than the other. Similar cases discussed in the literature have been shown to involve scalar implicatures as well. Consider, for example, (37), a variant of an example from Matsamuto (1995), discussed in Katzir (2014, p.50): ³³

(37) Yesterday was warm and today is a little bit more than warm

SI: ¬Yesterday was a little bit more than warm

Katzir argues that salient sub-constituents can be used to form scalar alternatives which are then used when forming the scalar implicature in (37). We suggest that a similar case happens in (20). In particular, given the association of BIXLAL with the comparison class argument we end up with a scalar alternative to p, which is weaker than it, and hence with a scalar implicature, as seen in (38):

(38) Danny is pos C tall and Yosi is BIXLAL pos [C₂]₇ tall

= ∃d tall(Danny,d) ∧ d ≥ standard (C₁, tall) ∧ ∃d tall(Yosi,d) ∧ d ≥ standard (C₂, tall)

Where standard (C₂, tall) > standard (C₁, tall) (given the scalar presupposition of BIXLAL)

SI: ¬Danny is pos C₂ tall

= ¬∃d tall(Danny,d) ∧ d ≥ standard (C₂,tall)

interpretation of (i) and (ii), where the first room is clean to a maximal degree in most parts, and the second is clean to a maximal degree in more parts (thanks to Galit Sassoon (p.c.) for this suggestion). We will leave this issue for further research and in the meantime continue to assume that BIXLAL associates with the comparison class argument.

³³ For Katzir (2014) the important feature of this example is that what substitutes warm in the first sentence is the longer and more complex a little bit more than warm, which seems to constitute an argument against the complexity ban on alternatives Katzir argues that this ban does not hold when contextually salient material is present. This feature is not crucial here, since in our case both predicates are equally complex, differing only in the comparison class.
Assuming, then, the presence this scalar implicature, Yosi is indeed taken to be taller than Danny.

Deriving the scalar implicature in (38), though, requires more understanding as to the obligatoriness of such an implicature34, and as to whether or not it should be grammaticalized (using an \textit{exh} operator, as in Chierchia et al 2011), or derived using Gricean mechanisms. Such questions, however, are not limited to the specific construction with \textit{BIXLAL} we are dealing with here. They are relevant for (37) as well, and for (39) and (40) with overt \textit{even}, where we seem to get the same inference as with \textit{BIXLAL} in (20), namely that Yosi is taller than Danny:

\begin{align*}
(39) & \quad A: \text{Danny is tall, and what about Yosi?} \\
& \quad B: \text{He is even VERY tall (Implicature: Danny is not very tall. So Yosi is taller than him)}
\end{align*}

\begin{align*}
(40) & \quad A: \text{Danny is tall with respect to the local basketball team, and what about Yosi?} \\
& \quad B: \text{He is even tall with respect to the national basketball team (Implicature: Danny is not tall with respect to the national basketball team. So Yosi is taller than him)}
\end{align*}

Thus, we believe that whatever mechanisms necessitate the scalar implicatures in (37), (39) and (40), they are equally operative with (38) with \textit{BIXLAL} as well. The only difference is that the scalar alternatives with \textit{BIXLAL} are based on covert material, and not on overt ones. But this is not a feature which is supposed to affect the presence or absence of scalar implicatures. We leave, then, further examination of these general mechanisms to future research, and continue to concentrate on what is specific to \textit{BIXLAL}, namely its association with covert material, and consequently, its operation over ‘covert-based’ alternatives.

\subsection*{3.6 Support for the proposal}

The proposal above is supported by several observations. First, \textit{BIXLAL} is very natural in conversations like (41), with explicit reference to standards determined by different comparison classes:

\begin{align*}
(41) & \quad (\text{Context: Danny and Yosi are two 10 year old twins}) \\
& \quad A: \text{Danny gavoha yaxasit le-gilo. Ve-ma im Yosi?} \\
& \quad \text{Danny tall relative to his age. And what with Yosi} \\
& \quad “\text{Danny is tall compared to his age. And what about Yosi?}” \\
& \quad B: \text{hu \textit{BIXLAL} gavoha. Hu gavoha, afilu yaxasit le-bney 13.} \\
& \quad \text{He \textit{BIXLAL} tall he tall even relative to-age 13.} \\
& \quad “\text{He is very tall / even taller. He is even tall compared to 13 year old kids}”
\end{align*}

34 Crnič (2012) (2014) argues for cases where the presence of overt \textit{even} triggers obligatory exhaustivity. However, this does not seem to explain the scalar implicature in (38), which is triggered in the previous sentence, namely the sentence without the \textit{even}-like operator \textit{BIXLAL}.
Second, if BIXLAL can only operate on ‘covert-based’ alternatives, then we can predict that in a case where such alternatives are not available, i.e. in case the semantic structure does not contain a covert element, like a comparison class, which can be focused and trigger alternatives, BIXLAL will be infelicitous. The prediction seems to be born out, as seen in (42), with the specific degree modifier 1.80m. Crucially, the infelicity seems indeed to be due to the presence of BIXLAL, as other accented focus sensitive operators, like LO (‘not’), BATU’AX (‘surely’) and KIM’AT (‘almost’) are perfectly felicitous:

(42)
A: Ani xoSev she-dani hu 1.80m. Ve-ma im yosi?
I think that Danny is 1.80m. and what with Yosi?
“ I think that Danny is 1.80m tall. And what about Yosi?”
B: hu LO / BATU’AX / KIM’AT / #BIXLAL 1.80m.
he NOT / SURELY / ALMOST / BIXLAL 1.80m
“He is NOT / SURELY / ALMOST / #BIXLAL 1.80m tall”

Finally, the behavior of BIXLAL with negated predicates, as in (2) above (‘Danny is not tall, and Yosi is not tall BIXLAL), where it is paraphrased as at all, further supports the proposal above. Assuming, as before, that BIXLAL scopes above negation in such cases, the scalar presupposition it triggers is seen in (43) and its assertion is (44):

(43)
Scalar presupposition of (2): For all contextually relevant comparison class C₁:
Yosi is NEG pos [C₂ᵀall] > C Yosi is NEG pos [C₁ᵀall]
= ¬∃d tall(Yosi,d) ∧ d ≥ standard (C₂, tall) > C ¬∃d tall(Yosi,d) ∧ d ≥ standard (C₁, tall).

(44)
Assertion of (2): ¬∃d tall(Yosi,d) ∧ d ≥ standard (C₂, tall)

Crucially, this time the presupposition is satisfied when the standard determined by C₂ in p is LOWER than the standard determined by any other contextually relevant alternative comparison class C₁. This is supported by the naturalness of the conversation in (45):

(45)
A: yaxosit le-yeladim bney gilo, dani lo gavoha. ve-ma im yosi?
relative to-children his-age mates Danny not tall. And what with yosi?
“Relative to his age mates, Danny is not tall. And what about Yosi?”
B: hu BIXLAL lo gavoha / hu lo govoha BIXLAL. Afifu lo yaxasit le-ce’irim yoter.
He BIXLAL not tall / he not tall BIXLAL. Even not relative to-young more
“He is not tall at all. Not even relative to younger individuals”

3.7 A closer look at the evaluativity induced by BIXLAL and even, and their sensitivity to standards
We now want to take a closer look at another inference of Yosi is BIXLAL tall mentioned above, namely the evaluative inference that Danny, mentioned in A’s utterance, is tall as well. As noted above, this inference is indeed contributed by the presence of BIXLAL, as it is found not only in (20) when Danny is
explicitly asserted by A to be tall (Danny is tall and Yosi is BIXLAL tall), but importantly also in conversations like (27) (Danny is 1.75m tall and Yosi is BIXLAL tall). We saw that BIXLAL is infelicitous if the evaluative inference that Danny is tall is cancelled, as in (28) (Danny is not tall / is just 1.75m tall. And yosi is (#BIXLAL) tall).

In section 3.3.2 above we saw that this surprising behavior of BIXLAL makes it similar to even (as shown in (29)-(30) above), and different from intensifiers like very / really. These facts were thus used to support our conclusion that BIXLAL is indeed an even-like particle, and not an intensifier.

But now we also want to understand this tendency of BIXLAL to lead to evaluative inferences. To do so we will first review a suggestion (in Greenberg 2015, 2018a) to explain the parallel evaluative inferences found with even.

3.7.1 The ‘stronger than’ relation in the scalar presupposition of even: Challenges for the ‘likelihood’-based view

Consider again the scalar presupposition of even in the classical entry in (1) above:

\(\text{even}(g,c) = \lambda C. \lambda p. \lambda w. \forall q \in C \ q \neq p \rightarrow p >_C q. \ p(w) = 1 \)

What is the nature of the ‘stronger than’ relation, \(>_c \) between \(p \) and its alternatives in (1)? A popular answer in the literature on even is that \(>_c \) is based on unlikelihood (e.g. Karttunen and Peters 1979, Rooth 1992, Lahiri 1998, Chierchia 2013). (1), then, is usually rewritten as (46), according to which even \((C)(p)(w) \) presupposes that \(p \) is less likely than all relevant focus alternatives \(q \):

\(\text{even}(C)(p)(w) = \lambda F. \lambda p. \lambda w. \forall q \in F \ q \neq p \rightarrow p <_{\text{likely}} q. \ p(w) = 1 \)

This popular characterization of \(>_c \), though, did not remain undebated. First, the felicity of even in examples like (47)-(49) has been brought up to argue that unlikelihood of \(p \) relative to its alternatives is not really a necessary condition for the felicity of even \(p \):

\(\text{even}(g,c) = \lambda C. \lambda p. \lambda w. \forall q \in C \ q \neq p \rightarrow p >_C q. \ p(w) = 1 \)

(47) It is more for aesthetic reasons that leather seats in automobiles are mainly colored dark grey, indeed mostly even black. (Gast and van der Auwera 2011: 6)

(48) Seller to client: Both tools are strong. This one is made of strong aluminum, and that one is even made of [steel] \(F \). (Greenberg 2016: 6)

(49) My hat got stuck on a branch. I wonder whether John or Bill can help me fetch it.

a. The branch is 2.50m high. Neither John nor Bill can fetch the hat. John is 1.70 m. tall. He is definitely too short for that. And Bill is even [shorter] \(F \)

b. The branch is 1.50m high. Both John and Bill can fetch the hat. John is 1.70m tall. He is definitely tall enough for that. And Bill is even [taller] \(F \) (Greenberg, 2015, 2018a)
Gast and van der Auwera 2011 note that *even* is felicitous in (47) although “it is… stated that leather seats in automobiles are MOSTLY black, and there is no reason to assume that black is, in any way, a less likely color for a car seat than dark gray” (p. 6). Greenberg 2016 points out that *even* is felicitous in (48) although, given our knowledge about what working tools are usually made of, ‘The blue tool is made of steel’ is not less likely but rather more likely than its focus alternative ‘The blue tool is made of strong aluminum’. Finally, Greenberg (2015, 2018a) observes that to explain the felicity of *even* in both (49a) and (49b) we will have to take ‘Bill is shorter than 1.70m’ to be less likely than ‘Bill is 1.70m’ in (49a) and ‘Bill is taller than 1.70m’ to be less likely than ‘Bill is 1.70m’ in (49b). These two opposite likelihood judgments seem unmotivated given that they depend on accidental factors, namely the height of the branch. Comparative unlikelihood, then, does not seem necessary for the felicity of *even*.

In addition, Greenberg 2015, 2018a points out that the comparative unlikelihood requirement is not sufficient for a felicitous use of *even* either. For example, the felicity contrast in (50) is unaccounted for by this requirement since both prejacents of *even* (*She gave birth to a boy / She gave birth to a girl*) asymmetrically entail and are less likely than the alternative *q* (*She gave birth*), so *even* is wrongly predicted to be felicitous in both cases:

(50) Context: Any princess who gives birth can stay in the palace. If she gives birth to a boy she also becomes a queen (i.e. on average 50% of those who give birth get to be queens):

A: *What’s happening with Princess Jane?*

B: *She gave birth. She (even) gave birth to [a boy]F / # [a girl]F*

The final challenge for the comparative likelihood approach to *even*, pointed out by Greenberg 2015, 2018a, is most relevant to us. As seen in (29) above (*Danny is 1.75m tall and Yosi is even taller / even 1.80m*), the presence of *even* leads to an evaluative inference for both Danny and Yosi, so both of them are entailed to be tall, i.e. have a degree of tallness which is at least as high as the standard. We saw that if this inference is rejected *even* is infelicitous (see (30) above). This sensitivity of *even* to standards is not accounted for by merely requiring that *p* is less likely than *q*.35

3.7.2 A revised ‘gradability-based’ scalar presupposition for *even* with hardwired sensitivity to standards

Given these challenges for the ‘likelihood-based’ view, Greenberg (2015, 2018a) suggests a revised, ‘gradability-based’ scalar presupposition for *even*. The suggestion is based on an idea in Rullman 2007, that *even* ranks the alternatives by "correlating them with a graded property which is salient in the

35 Nor is this sensitivity to standards accounted for by other suggestions for capturing the ‘stronger than’ relation in the scalar presupposition of *even*, e.g. that *p* is more informative than *q* (Kay 1990), more noteworthy than *q* (Herburger 2000), etc. See Greenberg 2018a for further discussion.
context” (p. 11), and on Beck’s 1997 analysis of comparative correlative like (51) as comparative conditionals, intuitively interpreted as in (52):

\begin{align*}
(51) & \quad \text{The better Otto is prepared, the better his talk is} \\
(52) & \quad \text{In all accessible worlds } w_1, w_2 \text{ where Otto’s maximal degree of preparation in } w_2 > \text{ his maximal degree of preparation in } w_1, \text{ his degree of success in } w_2 > \text{ his degree of success in } w_1
\end{align*}

Inspired by these ideas, Greenberg proposes that even \((C_F) (p) (w)\) is defined iff given a contextually supplied gradable property \(G\), and an entity \(x\), denoted by some non-focused / contrastive topic constituent in \(p\) (e.g. \(\text{that tool}\) in (48), \(\text{Bill}\) in (49)), the following holds:

\begin{align*}
(53) & \quad \text{For all contextually relevant focus alternatives to } p, q \text{ in } C_F \text{ distinct from } p:\nonumber \\
& \quad \forall w_1, w_2 \ [w_1 R w \land w_2 R w \land w_2 \in p \land w_1 \in [q \land \neg p] \rightarrow \\
& \quad \text{the max } (\lambda d_2.G(d_2)(x)(w_2)) > \\
& \quad \text{the max } (\lambda d_1.G(d_1)(x)(w_1)) \geq \text{ standard } G
\end{align*}

In prose, Even \((C_F) (p) (w)\) is defined iff for all distinct alternatives \(q\) in \(C_F\) the following two conjuncts hold: (a) \(x\) is more \(G\) (e.g. physically stronger / suitable for fetching the hat, etc.) in all accessible \(p\) worlds than in all accessible \(q\)-and not-\(p\) worlds (the worlds where the exhaustified alternative holds), and (b) in the \(q\)-and not-\(p\) worlds \(x\) is considered to have \(G\) (i.e. \(x\)’s degree of \(G\) is at least as high the salient standard of \(G\)). To illustrate how this presupposition works, consider first the minimal pair in (54)-(55):

\begin{align*}
(54) & \quad \text{John won the silver medal in the competition. Bill even won [gold]_F} \\
(55) & \quad \text{John won the gold medal in the competition. Bill (??even) won [silver]_F}
\end{align*}

Assume that with the felicitous (54) we are measuring Bill’s degree of success, i.e. \(x=\text{Bill}\) and \(G=\text{successful}\). We then get the presupposition in (56):

\begin{align*}
(56) & \quad \text{For all contextually relevant focus alternatives to } p, q \text{ in } C_F, \text{ distinct from } p:\nonumber \\
& \quad \forall w_1, w_2 \ [w_1 R w \land w_2 R w \land w_2 \in \text{Bill got gold} \land w_1 \in [\text{Bill got silver} \land \neg \text{Bill got gold}] \rightarrow \\
& \quad \text{the max } (\lambda d_2.\text{SUCCESSFUL } d_2)(\text{Bill})(w_2)) > \\
& \quad \text{the max } (\lambda d_1.\text{SUCCESSFUL } d_1)(\text{Bill})(w_1) \geq \text{ standard } \text{SUCCESSFUL}
\end{align*}

In prose: (a) Bill is more successful in the accessible worlds where he got gold, than in those where he got silver-and-not-gold, and (b) his degree of success in the accessible worlds where he won silver-and-not-gold is at least as high as the salient standard of successfulness (i.e. he is still considered successful).

Since both conjuncts are easily met, the felicity of (54) is accounted for.

In contrast, assuming again \(x=\text{Bill}, G=\text{successful}\) as above, the first conjunct in the presupposition of (55), requiring that Bill is more successful in the accessible worlds where he got silver, than in those where he got gold-and-not-silver, is not met, thus correctly predicting the infelicity of even.
One may wonder whether the ability to accommodate any G does not lead to an over generation risk. For example, wouldn’t accommodating G with a reversed scale, measuring degrees of UNsuccessfulness, wrongly predict the infelicitous (55) to become felicitous? The answer seems negative, as can be seen in (57):

\[(57) \forall w1, w2 \ [w1 \wedge w2 \rightarrow \text{Bill got silver} \wedge w1 \in \{\text{Bill got gold} \rightarrow \text{Bill got silver}\} \rightarrow \text{the max } d2(\lambda d2. \text{UNSUCCESSFUL } d2)(\text{Bill})(w2) > \text{the max } d1(\lambda d1. \text{UNSUCCESSFUL } d1)(\text{Bill})(w1) \wedge \text{the max } d1(\lambda d1. \text{UNSUCCESSFUL } d1)(\text{Bill})(w1) \geq \text{standard}_\text{UNSUCCESSFUL} \]

What is crucial here is the sensitivity of even to standards: Although the first conjunct is now true (Bill is indeed more unsuccessful in the accessible worlds where he got silver, than in those where he got gold-and-not-silver), the second one is false. It requires that Bill’s degree of being ‘unsuccessful’ in the accessible worlds where he got gold-and-not-silver is at least as high as the standard of unsuccessfulness. But this cannot be met since winning gold is maximally successful.\(^{36}\)

The gradability-based presupposition can also explain cases, like the ones in (48)-(50) above, where what determines the felicity of even is not the relative likelihood of the alternatives, but the relative degree of the tool’s physical strength or suitability for this work in (48), Bill’s degree of (un)suitability for fetching the hat’ in (49a)-(49b), and princess Jane’s degree of happiness or importance in (50).

Finally, and most relevant for us, the sensitivity of even to standards of comparison can also account for the evaluative inference triggered by even and seen in (29) (John is 1.75m tall. Bill is even 1.80. tall). Assuming that the accommodated gradable property G measures suitability of Bill for the basketball team, the scalar presupposition of even in this case is as (58):

\[(58) \forall w1, w2 \ [w1 \wedge w2 \rightarrow \text{Bill is 1.80m} \wedge w1 \in \{\text{Bill is 1.75m} \wedge \text{Bill is 1.80m}\} \rightarrow \text{the max } d2(\lambda d2. \text{SUITABLE } d2)(\text{Bill})(w2) > \text{the max } d1(\lambda d1. \text{SUITABLE } d1)(\text{Bill})(w1) \wedge \text{the max } d1(\lambda d1. \text{SUITABLE } d1)(\text{Bill})(w1) \geq \text{standard}_\text{SUITABLE} \]

In prose: Bill’s degree of suitability (for the basketball team) is higher in the accessible worlds where he is 1.80m tall than in those where he is 1.75m (and not 1.80m) tall, and in the latter kinds of worlds his degree of suitability for the team is at least as high as the standard of suitability (i.e. being 1.75m tall is still considered suitable for the team).

\(^{36}\) As shown in Greenberg 2018a, this explanation is supported by the fact that (i) is much better than (55):

\[(i) \quad I \text{ don’t think Bill will win the gold medal. He is not that good. It is more probable that he will win the silver or even the [bronze] medal.}\]

Notice that the ‘comparative unlikelihood’ presupposition again makes the wrong predictions in this case: Winning bronze is more likely than winning silver, just as winning silver is more likely than winning gold so the comparative likelihood presupposition fails for (i), just as it does for (55), wrongly predicting both to be equally infelicitous. In contrast, the gradability-based presupposition can be met with (i) (unlike what happens in (55)) if we accommodate a G scale with measures degrees of unsuccessfulness (or disappointment) and a new standard, where getting anything below gold can be considered unsuccessful or disappointing.
Since the degree of suitability for the team in this case depends on height, the presupposition is only met iff being 1.75m tall is considered tall enough for getting into the team, i.e. only if being 1.75m tall reaches the salient standard of tallness in the contexts. In case Bill’s height is explicitly taken to be less than the salient standard of tallness, as in (30), the presupposition fails, thus causing infelicity. This is, then, the reason for the evaluative entailment regarding both John’s and Bill’s tallness.\footnote{As a reviewer points out, given the flexibility of the accommodated G and of the scale associated with it, this semantics of even predicts that we can find cases where John and Bill are both tall, and Bill is taller than John, but even is infelicitous. An example is a case where the salient scale is of suitability to be on a bobsleigh team, for which you have to be tall, but not too tall. Indeed, the prediction seems to be borne out, as can be seen in (i):}

3.7.3 Explaining the sensitivity of BIXLAL to standards using the ‘gradability-based’ presupposition

We now suggest that the gradability-based presupposition developed to capture the ‘stronger than’ relation with even is the right one for BIXLAL as well. Thus, we reformulate the presupposition of (20) \((Danny\ is\ tall\ and\ Yosi\ is\ BIXLAL\ tall)\) in (35) above as in (59), where G measures Yosi’s degree of suitability for the basketball team:

\begin{equation}
(59) \quad \text{For all contextually relevant comparison classes } C_1 \text{ in } C_F, \text { distinct from } C_2:\n\forall w_1, w_2 \ [w_1Rw_0 \land w_2Rw_0 \land w_2 \in \exists d \text{ tall } (Yosi,d) \land d \geq \text{ standard } (C_2, \text{ tall}) \land w_1 \in \exists d \text{ tall } (Yosi,d) \land d \geq \text{ standard } (C_1, \text{ tall})] \rightarrow [
\text{the max } d_2(\lambda d_2. \text{ SUITABLE } (d_2)(Yosi)(w_2)) > \text{ the max } d_1(\lambda d_1. \text{ SUITABLE } (d_1)(Yosi)(w_1)) \geq \text{ standard sui}\text{tatable}
\]
\end{equation}

In prose: (a) Yosi’s degree of suitability for the team is higher in the accessible worlds where he is at least as tall as the standard of tallness determined by \(C_2\), than in those worlds where this standard is determined by \(C_1\) and not by \(C_2\). And (b) in the latter kind of worlds Yosi is suitable for the team (i.e. his degree of suitability for the team is at least as high as the salient standard of suitability).

As in the simpler version of the presupposition of BIXLAL in (35) above, where \(p\) is required to be stronger than \(q\), here the first conjunct is met if the standard of tallness required for getting accepted to the team, determined by \(C_2\), is higher than the one determined by \(C_1\). What is new here is the requirement expressed in the second conjunct in (59), namely that in the accessible worlds where Yosi is at least as tall as the lower standard, determined by \(C_1\), he is still considered tall enough to be suitable for the team.

This, in turn, requires that the salient comparison class \(C\) with respect to which Danny, in A’s utterance, is
evaluated, should make Danny tall enough for the team as well, since this comparison class is included in C_1 by virtue of being salient. Since Danny is indeed explicitly asserted to be tall by A, the presupposition is easily met.

Moreover, we can now also derive the inference that Danny is tall in cases like (27) above ($Danny$ is 1.75m tall, and $Yosi$ is BIXLAL tall). While here too the prejacent of BIXLAL, p, is $Yosi$ is pos C tall, the alternatives q seem to be constructed differently. In particular, given the salient degree modifier in A’s utterance ($Danny$ is 1.75m tall) we will assume that BXLAL associates with the degree modifier pos C in p, so q ends up as $Yosi$ is DEG tall, for all relevant degree modifiers DEG. In this case the gradability-based presupposition makes the following two requirements: First, that for all relevant degree modifiers DEG, Yosi’s degree of suitability for the team is higher in the accessible worlds where he is at least as tall as the standard of tallness determined by C, than in the worlds where he is DEG tall (and not at least as tall as the standard of tallness determined by C). Second, that in the latter kind of worlds Yosi is suitable for the team (i.e. his degree of suitability is at least as high as the salient standard of suitability for the team).

Since 1.75m is a member of the set of relevant degree modifiers DEG, due to being a sub-constituent in A’s salient sentence, then for this presupposition to be met being 1.75m tall must make one suitable for the team, i.e. tall enough relative to the team’s standard of tallness. Hence Danny, who is asserted by A to be 1.75m tall must be considered tall enough as well. This will be felicitous, for example, in a context where we consider a basketball team for kids. If this requirement is not met, i.e. if 1.75m tall is not considered tall enough for the team, as in (28) above, the second conjunct in the presupposition fails and we end up with infelicity.

The potential flexibility of the contextually supplied property G and of the scale associated with it leads to some interesting predictions. For example, if the contextually supplied scale measures suitability to be drafted into the army, for which you don’t have to be tall (you may well be short, though perhaps not too short), a sentence like (27) ($Danny$ is 1.75m tall, and $Yosi$ is BIXLAL tall) is predicted to be felicitous although Danny is NOT considered tall relative to the overall standard in the population. It is enough that he is tall enough for the army (i.e. at least as tall as required by the standard of tallness for the army). This is borne out in reality, as BIXLAL is indeed felicitous in such a case.

3.8 Section summary

38 Or, given the discussion in section 3 above, identical to C_1.
40 Or is the only alternative degree modifier.
41 Thanks to a JOS reviewer for pointing up this prediction.
In this section we looked at the effects of BIXLAL in sentences with one dimensional adjectives (like tall). We saw that although BIXLAL seems to have an intensification effect in such sentences (and is paraphrased as very / -er than), it differs from ‘real’ intensifiers on the one hand, and is instead similar to even on the other hand, in being sensitive to standards of comparison, thus leading to evaluative inferences, and similar to the Hebrew even-like particle afilu in its interaction with surface negation. To explain these observations we proposed that BIXLAL is an even-like operator which differs from other such particles in that it associates with covert elements. In the sentences with gradable adjectives we considered in this section this tends to the be covert comparison class argument of POS (and in some cases POS itself). This association indirectly leads to a situation where p, the prejacent of BIXLAL, is evaluated with respect to a higher standard degree (e.g. of tallness) than its alternatives, q.

To capture the evaluative inferences triggered by BIXLAL we analyzed it using an independently made proposal to account for the parallel behavior of English even (the ‘gradablity-based’ presupposition), with a hardwired requirement that a non-focused element in both the p and the (exhaustified) q worlds has a degree which is at least as high as the standard on a contextually provided scale G.\footnote{The analysis here is based on the gradability-based semantics for even, which although independently motivated, is also, admittedly, rather complex. One may wonder whether it would not be simpler to derive the sensitivity of even and BIXLAL to standards, from some version or other of an additivity presupposition of even/bixlal e.g. from a requirement like (i) (thanks to a reviewer for pointing out this direction):

(i) There is a salient comparison class C such that there is an individual that is \text{pos}(C)(tall).

However, adopting (i) depends on first clarifying the validity of an additive requirement for even, and for its Hebrew correlates, afilu, bixlal and BIXLAL, and supplying some independent motivation for it. This is not a simple matter, as arguments against similar requirements in the semantics of even have been raised in the literature (cf. Rullmann 1997, 2007, Lahiri 2007, Wager 2014, Greenberg 2016), and Greenberg & Orenstein 2016 show that they hold for afilu and bixlal as well. We postpone, then, an in-depth investigation of this direction to future research.}

We now turn to look at the effects of BIXLAL with multidimensional adjectives, which are more varied than with one dimensional ones, and examine whether the proposal can account for these as well.

4. BIXLAL as an even over ‘covert-based’ alternatives: Cases with multidimensional adjectives

4.1 A wider range of readings

In the previous section we looked at the way BIXLAL contributes to the meaning of sentences with adjectives like tall, which in e.g. Sassoon’s (2013, in progress) terminology, are ‘one dimensional’ i.e. they measure the degree of an individual x on a single scale (e.g. height). In this section we will examine the contribution of BIXLAL to sentences with multi-dimensional adjectives. As we will see, BIXLAL yields a wider range of readings with such adjectives, and such sentences can be judged true in more
situations. As a first illustration consider the following attested examples with the multidimensional adjective tov (’good’):

(60) (Context: A discussion of the way to watch movies of a certain brand in the computer;)
Etsli haya tsarix le-hatkin kobets librtem.dll be-axat ha-sifriyot. ze BIXLAL tov
for-me was necessary to-install file librtem.dll in-one the-folders this BIXLAL good
le-adxken oto midey pa’am – meshaper et ha-bitsu’im shel kol ha-tosafey video

to-update him sometimes improves acc the-performance of all the-software video
“In my computer it was necessary to install a librtem.dll file in one of the folders. It is in
general good to update it every now and then – it improves the performance of all the
video softwares.”

(61) (Context: The way to earn money when opening a hamburger stand is the toppings. After
all....)
...Mi lo same’ax le-hosif la-hamburger bacal metugan, kama prusot gvina, beykon ze
Who not happy to-add to-the hamburger onion fried some slices cheese bacon is
BIXLAL tov
BIXLAL good
“Who wouldn’t be happy to add to the hamburger fried onions, a few slices of cheese,
bacon is even better / very good.”

(62) (Context: A discussion of a fashion shop which uses its income for donation”
Ha-xanut nishma’at magniva le-gamrey ve-ha-uvda she-zo truma ze BIXLAL tov
The-shop sounds cool completely and-the-fact that-this donation is BIXLAL good
“The shop sounds completely cool, and the fact that this is a donation is even better /
very good”

As can be seen from the glosses, BIXLAL tov in (61) can be paraphrased as good in general. Intuitively,
(60) is defined if installing ‘librtem.dll’ is good not only for the specific add-on discussed in the forum,
but for all (standard) video add-ons, i.e. for video add-ons in general. This is a reading we cannot get with
one dimensional adjectives as in BIXLAL tall (as in (20) and (27) above

In contrast, in both (61) and (62) BIXLAL tov is paraphrased as even better / very good, which
seems similar to what we found with tall. Notice though, that there is a subtle difference between the two
sentences: In (61) adding bacon is taken as better than cheese and fried onions since we end up with a
higher degree on a single dimension (namely, the one measuring how tasty the hamburger is). In contrast,

in (62) buying in this shop is understood to be good with respect to one additional dimension, namely the fact that it is a donation (besides being cool). Again, this is not a reading we find with BIXLAL tall.

Crucially, then, and similarly to the situation with one dimensional adjectives discussed in the previous sections, none of these uses of BIXLL is necessarily translated as even. Here too, though, we will insist that BIXLAL is an even-like particle associating with covert material. To understand how the interaction of BIXLAL with multidimensional adjectives derives a wider range of readings than with one dimensional adjectives, let us first look at the semantics of these adjectives, mainly following ideas and suggestions in Sassoon (2013, in progress).

4.2 The semantics of multidimensional adjectives
Sassoon (2013, in progress) argues that unlike one dimensional adjectives, multidimensional ones potentially involve measurement along multiple dimensions (or ‘respects’). Thus, for example, Mary can be ill with respect to blood pressure, but not with respect to diabetes, or she can be ill with respect to both, or with respect to other dimensions. Mary can be smart with respect to math, but not with respect to humanities, or with respect to both, etc. Importantly, each such dimension or respect is gradable, i.e. associated with a scale, and the dimensions are integrated using quantification over dimensions, specifying the number of relevant dimensions in which an individual has to reach the standard degree (e.g. the standard degree for smartness at math, the standard degree for health with respect to blood pressure, etc.)

In contrast, one dimensional adjectives are associated with a unique dimension (in the case of tall, for example, this would be height).

To formally capture these intuitions, Sassoon takes adjectives to be ambiguous between a reading which measures the degree of x along a specific dimension, and one which measures the number of dimensions in which the individual reaches the standard degree. Given this view, for example, smart would be ambiguous between e.g. smart-qua-math, as in in (63) and a truly multidimensional entry as in (64), where Dim_{SMART} is the set of degree relations G denoted by relevant dimensions of the adjective smart, i.e. those which are in the domain D of relevant smartness dimensions (including, for example, smart-qua-math, smart-qua-history, smart-with-people, etc.).

46 Sassoon further argues that for some adjectives a default choice of quantification over dimensions is lexically determined. For example, by default, healthy and sick seems to involve universal and existential quantification over dimensions, respectively, so being healthy means being healthy in ALL (relevant) respects, and being sick means sick in SOME relevant respect. For other adjectives, like smart, stupid or optimistic, there is no default number of relevant dimensions, and the standard number is contextually determined. In this paper we will focus on adjectives of this latter type (but see footnote # 47 for a comment concerning BIXLAL healthy).

47 The entry in (64) has been slightly modified to fit the present framework, where standards are determined using comparison classes, and where pos is type <<d, e,t>>, where e,t>. In addition, we explicitly represent Sassoon’s intuition that the dimensions must be ‘relevant’, by requiring them to be members of a domain D.
\begin{align}
(63) & \quad \lambda d. \lambda x. \text{smart}_{\text{qua-math}}(d)(x) \\
(64) & \quad \lambda n. \lambda x. \text{Smart}(n)(x) = \lambda n. \lambda x. | \lambda G. G \in \text{Dim}_{\text{SMART}} \land G \in D \land \exists d [d \geq \text{standard}(G, C) \land G(x,d)] | \geq n
\end{align}

Assuming that type \(n \) is a special case of type \(d \) (numbers are cardinality degrees), \(\text{smart} \) has the same type in both readings, namely \(<d, <e,t>>\). Given (63) \(\text{smart}_{\text{qua-math}} \) parallels one dimensional adjectives like \(\text{tall} \), discussed above. In contrast, given the true multidimensional entry in (64), \(\text{smart} \) denotes a relation between numbers \(n \), namely degrees on a cardinality scale, and individuals \(x \), which holds iff the intersection between the set of properties \(G \) which are relevant dimensions of smartness and the set of degree relations for which \(x \)'s degree exceeds the standard degree for \(G \) (determined the comparison class \(C \)) is of at least the size \(n \).

We will assume, then, that in a sentence like \(\text{Bill is smart} \) the adjective \(\text{smart} \) combines with the null degree modifier \(\text{pos} \). Given the lexical entry for \(\text{pos} \) above and Sassoon's line of thought, we can now define a flexible \(\text{pos} \) operator which denotes a relation between a comparison class \(C \), an adjective \(A \) and an individual \(x \), as in (65), where \(d \) can cover both degrees on scales associated by adjectives like \(\text{tall} \), as well as numbers \(n \), namely cardinality degrees, measuring the number of dimensions in \(A \):

\begin{align}
(65) & \quad ||\text{pos}||^{e_c} = \lambda C. \lambda A. \lambda x \exists d [d \geq \text{standard}(A, C) \land A(x,d)]
\end{align}

\(\text{Bill is pos } (C)(A) \), then, where \(A \) is a multidimensional adjective, is interpreted as in (66). To make the reading more transparent, we mark the standard number of \(G \) properties as \(\text{standard}_n \), as opposed to \(\text{standard}_d \), namely the standard degree of having a property \(G \):

\begin{align}
(66) & \quad \exists n [n \geq \text{standard}_n (A, C) \land \lambda G. G \in \text{Dim}_A \land G \in D \land \exists d [d \geq \text{standard}_d (G, C) \land G(\text{Bill},d)] | \geq n]
\end{align}

For example, \(\text{Bill is pos } C \text{ smart} \) is true iff the number of relevant dimensions of \(\text{smartness} \) (e.g. smart at math, smart at history, smart with people, etc.) such that Bill’s degree exceeds the standard degree, \(\text{standard}_d \), determined by the comparison class \(C \) for each of these dimensions, is at least as high as the standard number of dimensions, \(\text{standard}_n \), for \(\text{smart} \) (determined by \(C \) as well).

Crucially, then, and unlike the situation with one dimensional adjectives like \(\text{tall} \), the comparison class, \(C \), in such sentences, then, can affect two components, namely the standard degree per dimension (\(\text{standard}_d \)) and the standard number of relevant dimensions (\(\text{standard}_n \)). To illustrate, consider sentences of the form \(\text{Bill is pos } C \text{ smart} \), with two comparison classes, that of students in Harvard, \(C_{\text{Harvard}} \), and that of a small and unambitious college \(C_{\text{college}} \). First, the standard degree of smartness with respect to, e.g. math, \(\text{standard}_d \) will be higher given \(C_{\text{Harvard}} \) than given \(C_{\text{college}} \). In addition, the standard number of dimensions, \(\text{standard}_n \), can be affected by the comparison class as well, since given \(C_{\text{Harvard}} \) an individual is likely to be required to be smart with respect to more relevant dimensions than given \(C_{\text{college}} \).
We will now see how this richer semantic structure of multidimensional adjectives relative to one dimensional ones can help explaining the wider range of readings \textit{BIXLAL} induces with such adjectives.

4.3 Accounting for the wider range of readings of \textit{BIXLAL} with multidimensional adjectives.

Consider (67):

\begin{verbatim}
(67) A: Danny xaxam. hu kibel 90 be-matematika. ve-ma im yosi?
 Danny smart. he got 90 at-math and-what with Yosi
 “Danny is smart. He got 90 at math. And what about Yosi?”
B: hu BIXLAL xaxam.
 He BIXLAL smart
 “He is smart in general / very smart”
\end{verbatim}

Similarly to what we assumed above for one dimensional adjectives, here too we assume that \textit{BIXLAL} associates with the covert comparison class argument \text{C} in its prejacent. However, there are differences in the effects of \textit{BIXLAL} between the two cases. Above we saw that the presence of \textit{BIXLAL} with one dimensional adjectives, as in (20) (\textit{Danny is tall. Yosi is BIXLAL tall}) indirectly leads to a higher degree of tallness of Yosi (relative to Danny). In contrast, the presence of \textit{BIXLAL} in (67) has at least three different effects, exemplified by the three felicitous continuations in (68):

\begin{verbatim}
(68) …Yosi is BIXLAL smart
 a. - He got 100 at math
 b. - He is also smart at sciences and history
 c. - He is smart in general, in all fields
\end{verbatim}

Given the first continuation, (68a), Yosi is taken to smart with respect to the same dimension as Danny, i.e. on the \textit{smart-qua-math} dimension. Following Sassoon’s ideas reviewed above then, \textit{smart-qua-math} is treated as a one dimensional adjective, similarly to \textit{tall}, i.e. as in (69):

\begin{verbatim}
(69) \exists d [d \geq \text{standard}_{\text{d}}(\text{smart-qua-math}, \text{C}) \land \text{smart-qua-math (d, Yosi)}]
\end{verbatim}

Similarly to what proposed above for (20), then, (…\textit{and Yosi is BIXLAL tall}), the scalar presupposition of \textit{BIXLAL} here is met iff the standard degree of smartness-qua-math determined by the comparison class \text{C}_2 is higher than the one determined by the contextually salient comparison class \text{C}_1.\footnote{For simplicity we use here the simpler form of the presupposition, as in (1) and (8) above, and not the ‘gradability-based’ one reviewed above.}

But the more interesting cases are those where the adjective is truly interpreted as multidimensional, i.e. where no one dimension is specified, as in (68b,c). In this case, the prejacent is interpreted as in (70), and, given the variation between the comparison classes the scalar presupposition is as in (71):
(70) \[\exists n \left[n \geq \text{standard}_a, \text{(smart, C)} \land \lambda G. G \in \text{Dim}_{\text{SMART}} \land G \in D \land \exists d \left[d \geq \text{standard}_d (G, C) \right) \land G(Yosi, d) \geq n \right] \]

(71) \[\exists n \left[n \geq \text{standard}_a, \text{(smart, C)}_2 \land \lambda G. G \in \text{Dim}_{\text{SMART}} \land G \in D \land \exists d \left[d \geq \text{standard}_d (G, C) \right) \land G(Yosi, d) \geq n > c \right] \]

\[\exists n \left[n \geq \text{standard}_a, \text{(smart, C)}_1 \land \lambda G. G \in \text{Dim}_{\text{SMART}} \land G \in D \land \exists d \left[d \geq \text{standard}_d (G, C) \right) \land G(Yosi, d) \geq n \right] \]

In this case, for \(p \) to be stronger than \(q \), the change in the comparison class between \(p \) and \(q \) can have an effect in two places, namely \(\text{stand}_d \) and \(\text{stand}_a \). This can be met in one of the following situations (or in some combination of these): Yosi can be smart relative to a higher standard degree in the relevant dimensions of smartness (e.g. he can get higher grades in the relevant fields of study). In addition, Yosi can be smart with respect to a higher standard number of relevant dimensions of smartness. For example, while Danny is smart relative to one dimension, Yosi is smart relative to two, or three relevant dimensions. Finally, Yosi can be smart relative to all relevant dimensions of smartness, leading to a ‘smart in general’ paraphrase of (67). 49

49 An interesting pattern is seen with healthy. Consider (i)

(i) Context: All candidates for the trip should be healthy, i.e. should have normal values along important medical parameters (blood pressure, sugar level, heart functioning and normal breathing capacities etc.).

We are discussing whether Danny and Yosi can join the trip:

A: Danny yaxol le-hitsaref. hu bari. B: ve-yosi BIXLAL bari

Danny can to-join. he healthy And-Yosi BIXLAL healthy

“Danny can join. He is healthy” “And Yosi is very healthy”

(iB) can mean that Yosi is healthy with respect to a higher standard degree along one health dimension, e.g. along the hearth functioning parameter. In principle, though, one could also take B’s utterance to mean that Yosi is healthy with respect to more health dimensions than Danny, as seen in the continuation in (ii):

(ii) Danny’s health is fine with respect to all central dimensions. And Yosi is BIXLAL healthy. He doesn’t even have a mild cold!

On the surface, such a continuation seems challenging given Sassoon’s theory, which takes the default standard number of dimensions with adjectives like healthy to be equal to the whole domain \(D \), so one is healthy with respect to all relevant health dimensions. If Danny is considered healthy with respect to all health dimensions, how can the presence of BIXLAL strengthen its prejacent so Yosi is taken to be healthy with respect to more dimensions?

Notice, though, that we CAN end up with a stronger multidimensional interpretation with healthy if we take into consideration the default domain of relevant health dimensions, i.e. if Danny is healthy with respect to all health dimensions in the default domain \(D \), whereas Yosi is healthy with respect to all dimensions in a wider domain of dimensions \(D' \). In this case we can assume that Yosi is also healthy with respect to minor health dimension, e.g. he doesn’t even have a minor cold (cf. Kadmon & Landman on domain widening with any).

There are several potential ways to derive such a domain widening effect in our system. If we continue to assume that BIXLAL associates with the covert comparison class, we can propose that since both comparison classes and domains are keyed to the context, a change of the former can indirectly affect also the latter. For example, a context with a comparison class of professional travelers can lead to considering a wider set of relevant health dimensions than those usually considered relevant (so even having a minor cold counts). An alternative direction is to assume that in such cases BIXLAL does not associate with the comparison class argument anymore, but with a covert domain restriction argument over relevant dimensions. As pointed out by a reviewer, however, such a move will require us to take such domains to be syntactically represented in the semantics of multidimensional adjectives, which is not assumed in Sassoon’s original work, and which requires independent
4.4 Section summary

In this section we examined the wider range of effects $BIXLAL$ yields in sentences with multidimensional adjectives (compared to the situation with one dimensional adjectives). We maintained the idea that $BIXLAL$ is an even-like particle associating with covert material, and specifically with the covert comparison class argument in the positive form of such adjectives. Following ideas in Sassoon (2013, in progress) about the richer semantic structure of such adjectives relative to one dimensional ones, we proposed that taking the comparison argument to be focused and to introduce alternatives, the prejacent of $BIXLAL \ p$ can be considered stronger than its relevant focus alternatives q if we end up with a higher standard degree along a specific dimension, or with a higher standard number of relevant dimension. We used this variability to derive the range of readings induced by $BIXLAL$ in such cases.

5. Other cases of operations over ‘covert-based’ alternatives, NPI-hood and prosody issues

5.1 $BIXLAL$ is not alone: Other scalar operators, over other types of ‘covert-based’ alternatives

The proposal presented in sections 3 and 4 of this paper, according to which $BIXLAL$ is an even-like operator over ‘covert-based’ alternatives, would be less convincing if this turns out to be the only attested operator over such alternatives. Are there other even-like or, more generally, other scalar focus-sensitive operators which have been analyzed, or which can be analyzed in a parallel fashion?

The answer to this question seems positive. Let us start with Chierchia 2013 characterization of the covert operators E and O, which to a large extent inspires the present proposal on $BIXLAL$. Chierchia discusses the way E and O are involved in the semantics of Negative Polarity items (NPIs), and one of his main claims is that NPIs are expressions which obligatorily trigger alternative. Crucially, according to Chierchia, once such alternatives are triggered, they must be operated upon (or ‘exhaustified’) by either a covert operator similar to only, namely O (which correspond to the exh operator discussed in, e.g. Chierchia et al 2011), or one similar to even, namely E. What is interesting for us are cases where Chierchia takes O and E to associate with covert material. In particular, Chierchia suggests that when O is involved the semantics of the NPI any it operates over sub-domain alternatives. For example, a sentence like I don’t have any potatoes has a similar assertion to that of I don’t have potatoes, namely $\neg \exists x \text{Potato} (x) \land D(x) \land \text{Have} (I, x)$, but it obligatorily triggers subdomain alternatives of the form $\neg \exists x \text{Potato} (x) \land D'(x) \land \text{Have} (I, x)$, where $D' \subset D$. These alternatives are then exhaustified by the covert only-like

theoretical and empirical motivation. We leave further examination of these, and possibly other options to future research.
operator O, which rejects all stronger alternatives. This is only licensed in Downward entailing contexts, hence the NPI-hood of any.

The covert even-like E, on the other hand, is claimed to operate over degree-based alternatives with ‘minimizer’ NPIs like $give \ a \ damn$ or $at \ all$. For example, Chierchia takes $give \ a \ damn$ to express the property of caring to the most minimal degree, namely $\lambda x. \exists s \ \text{care} (x,s,d_{\text{min}})$, which obligatorily triggers degree-based alternatives of the form $\lambda x. \exists s \ \text{care} (x,s,d')$, where $d' > d_{\text{min}}$. Similar considerations apply to expressions with $at \ all$. Again, degree based alternatives must be operated upon, this time by the covert even-like operator E, which requires its associate to be stronger (e.g. less likely) than all alternatives. Chierchia, again, shows how such an operation is only licensed in Downward entailing contexts, hence the NPI-hood of $give \ a \ damn$ and $at \ all$.

Are there also overt even-like particles over ‘covert-based’ alternatives reported in the literature? Here again the answer seems to be positive. Chierchia 2013 examines the focus particle $bhii$ in Hindi, originally analyzed in Lahiri’s 1998 work as an overt even-like operator. Lahiri suggested that when $bhii$ combines with the numeral ek (‘one’) it yields numeral-based alternatives (e.g. one, two $three$), whereas when it combines with the indefinite koi it seems to associate with the ‘contextually weakest predicate’. Chierchia reinterpret this by taking $koi \ bhii$ to express an even-like operation over domain-alternatives (which are ordered by probability), resulting from association with a covert domain restriction argument.50

Another relevant overt even-like particle over ‘covert-based’ alternatives is the Russian even-like particle $voobšče$ (Iatridou & Tetevosov 2016, Miashkur 2017, to appear). Iatridou & Tetevosov 2016 point out in a footnote that in addition to its ‘discoursive’ function as operating over whole questions, mentioned in section (2.2) above, $voobšče$ can yield an $at \ all$ reading as well:

(72)
Lev voobšče ne čital "Devida Kopperfil’da"
Lev voobšče NEG read.PST D. C.
"Lev did not read "David Copperfield" at all" (Iatridou & Tetevosov 2016)

Moreover, $voobšče$ can also give rise to a taller / smarter reading in UE contexts, similarly to what we saw with $BIXLAL$ above (Miashkur 2017, to appear, and Keren Khrizman p.c), indicating that it can also associate with covert material and operate over ‘covert-based’ alternatives:

(73)
A: Džon 1.85. A Bill? /Čto nasčet Billa?
John 1.85. But Bill? / What on account of Bill?
John is 1.85. And what about Bill?
B: On voobšče vysokij.

50 Cf. also Erlewine 2013 on overt focus sensitive operators associating with covert traces.
He voobšče tall.

“He is even taller”

(74) A: U Džona diabet. A u Billa?/Čto nasčet Billa?
(At) John diabetes. But(at) Bill?/ What on account of Bill?
“John has diabetes. And what about Bill?”
B: On voobšče bolen.
He voobšče sick.

“He is even more ill”

(75) A: Džon xoroš v matematike. A Bill?/Čto nasčet Billa?
John good at math. But Bull?/ What on account of Bill?
“John is good at math. And what about Bill?”
B: On voobšče umen.
He voobšče smart.

“He is even smarter / smart in general”

These observations may be taken as further indicating that even-like operators over ‘covert-based’ alternatives are attested cross linguistically.51

Finally, the ability / inability to operate over ‘covert-based’ alternatives has been reported with some only-like particles as well. Orenstein & Greenberg, 2012, Orenstein 2016 and Greenberg & Orenstein 2016, for example, use the operation over such alternatives to derive some special readings of the Hebrew only-like particles be-sax ha-kol and STAM, and Wiagend 2016 applies these ideas to the analysis of ‘unexplanatory’ uses of just (as in I was sitting here and the lamp just broke).

Given these proposals, we conclude that the inability vs. ability to associate with covert elements, and to operate over ‘covert-based’ alternatives, is not just found with even / afilu / bixlal vs. BIXLAL, but is found more generally, should be added to the inventory of parameters along which focus sensitive scalar – even-like and only-like - particles vary both within and across languages.

5.2 BIXLAL operating over other types of covert-based alternatives

In the main part of this paper we concentrated on cases involving gradable predicates, where BIXLAL associates with a covert comparison class argument. But if indeed it is the ability of BIXLAL to associate with covert material which distinguishes it from even, afilu and unaccented bixlal, we might expect to also find cases in which BIXLAL associates with other covert elements, and giving rise to other types of

51 Tsirkin-Sadan’s 2015 diachronic study of bixlal points out the similarities between it and voobšče and suggest that they may result from the contact of Hebrew with Yiddish and Slavic languages.
'covert-based' alternatives. For example, in the section above we described Chierchia's 2013 claims about overt and covert scalar operators operating over sub-domain alternatives. Can BIXLAL operate over such alternatives as well?

The answer seems to be positive, as seen in (76a), inspired by examples in Kadmon & Landman’s 1993 paper on any, where BIXLAL gets an at all use, and in (76b) where it gets an in general use:

(76) a. Le-dani ein tapuxey adama tovim. Ve-le-yosi ein BIXLAL tapuxey adama
 To-Danny not-have potatoes good-and-to-Yosi not-have BIXLAL potatoes
 “Danny doesn’t have good potatoes, and Yosi doesn’t have potatoes at all”

b. ba-xanut moxrim dgey yam, ve-dagim BiXLAL
 in-the-shop sell fish sea and-fish BIXLAL
 "In the shop they sell sea fish and fish in general"

Maintaining our main assumption that BIXLAL is an even operator over covert-based alternatives, we can analyze such cases by taking BIXLAL to associate with a covert domain restriction argument of the existential quantifier. In these cases p is stronger than its alternatives since it involves a wider domain (the domain of both good and bad potatoes in (76a), and of both types of fish in (76b)).

Importantly, though, unlike Kadmon & Landman's claims about any, and Anderssen's 2006 claims about German überhaupt, BIXLAL should not be analyzed as an inherent domain-widener, but rather as an even-like operator, which in cases like (76) uses domain widening as just one of the strategies to satisfy the presupposition that p is stronger than its alternatives. Using Kadmon & Landman’s terminology, the main function of bixlal, then, is strengthening, and widening the domain is one of the options which can be used with this particle to induce strengthening.52

5.3 BIXLAL and NPI-hood: Two strategies for deriving at all readings

In addition to understanding how the variety of readings of bixlal and BIXLAL are generated in Hebrew, the proposal above has some potential implications concerning the ways at all readings can be derived.

Above we suggested that it is the even-operation of BIXLAL over ‘covert-based’ alternatives which yields the at all use with negated predicates (as in (45) above). This gives a novel kind of empirical support to existing analyses which take English at all to be based on a covert even-like operator (e.g. Krifka 1995, Chierchia 2013). Novel – since until now existing reports of NPIs based on overt even-like

52 Thanks to Keren Khrizman for a discussion regarding this point. Indeed, as pointed out by two reviewers, the cases discussed in section 3 and 4 above where BIXLAL appears with gradable predicates can be analyzed as involving super-domain alternatives, where p involves a narrower domain, and not as inducing widening. For example, in discussing (20) (Danny is tall, and Yosi is BIXLAL tall), the alternatives to p Yosi is pos C2 tall are propositions q of the form Yosi is pos C1 tall, where C1 is a super-domain of C2 (e.g. the comparison class C2 has the tall people in C1). Cf. Nicolae (2012b. 2012b) on super-domains used with positive polarity items.
operators usually concern even+overt one expressions (cf. Gast & van der Auwera 2011, 2013 for a review). In contrast, as seen above, Hebrew at all is based on an overt operator over ‘covert-based’ alternatives.

On the other hand, it is interesting to note a difference in the way at all type NPIs are generated in English according to Chierchia 2013, and in Hebrew, according to the present proposal. As mentioned above, Chierchia 2013 takes at all to be a kind of degree modifier, which (a) indicates a minimal degree on a certain scale and (b) which obligatorily triggers alternative (higher) degrees on these scale. Then a covert E(ven) operator is triggered by the need to operate over these alternatives.

In contrast, the strategy described above for yielding the at all use of BIXLAL can be seen as the opposite: BIXLAL is not taken as the alternative-triggering expression, which then necessitates a covert even-like operator to operate over these alternatives. Instead, it is the even-like operator itself, which needs alternatives to operate on, and which seems to be specified for ‘covert’-based’ alternatives. This difference in the strategies of deriving the at all reading is supported by the greater flexibility of BIXLAL relative to English at all, namely in the fact that it is not an NPI and can appear in both UE and DE contexts, associating with ‘high’ and with ‘low’ alternatives on the scale, respectively.

5.4 Issues of prosody

We saw that BIXLAL is not the only focus sensitive particle which can associate with covert elements and operate on ‘covert-based’ alternatives. Rather it is a member of a family of such operators cross linguistically. On the other hand, BIXLAL does seem to be unique in that the special readings found with it (paraphrased as very, at all, in general) are only found in the accented version of the operator.

How can this accentuation of BIXLAL be explained? Notice, first, that accentuation in this case does not seem to indicate that BIXLAL is focused, i.e. that it itself triggers alternatives. Given the analysis above what is focused, and thus what triggers alternatives, is a covert element that BIXLAL associates with (e.g. a covert comparison class argument). Instead, we will consider here two potential reasons for the accentuation of BIXLAL. One reason, examined in Greenberg & Khrizman (2012a,b,c), Greenberg 2014, is that BIXLAL is accented due giveness and hence deaccentuation of the rest of the material in the sentence (cf. Wagner (2012), Rochemont (2013)). In such a case the accent shifts from the given element

53 Another possible way to understand the distributional difference between English at all and Hebrew BIXLAL, though, is to hypothesize that unlike what is suggested in Chierchia 2013, English at all is similar to Hebrew BIXLAL (and Russian voobšče) in being an overt even-like operator. Given this direction English at all can be taken to differ from BIXLAL in that it can only associate with ‘weak’ alternatives, at the minimal endpoint of the scale, and must scope above DE operators. That there are such even-like operators in a variety of languages is well known (cf. Giannakidou 2007, Crnič 2011, Gast & van der Auwera 2011). We leave a more thorough empirical and theoretical examination of this hypothesis about English at all to future research.
to the operator, similarly to what has been suggested in Egg & Zimmermann (2011) for accented DOCH, and Umbach (2009, 2012) for accented NOCH. Notice, though, that while this direction can be used to explain cases like (20) (*Danny is tall, and Yosi is BIXLAL tall*), where the adjective tall is indeed given in the previous sentence, it is less clear in cases like (27) (*Danny is 1.75m. Yosi is BIXLAL tall*).54

A second potential explanation is that since focus must be prosodically realized somewhere, and since it cannot be realized on the covert associate of the operator (as covert elements are by definition prosodically null), accent lands on bixlal, turning it into BIXLAL.55 Given this direction, though, we still need to explain why accent does not fall on the overt adjective instead (e.g. on tall in (27)). Moreover, we will have to understand why other operators which were taken to associate with covert material and mentioned in section 5.1 are not accented as well. While accentuation is obviously impossible for the operators E and O examined in Chierchia 2013, which are themselves covert and hence cannot be prosodically marked, we will have to understand why the assumed association of the overt Hindi bhii, Russian voobšče, Hebrew be-sax ha-kol and English ‘unexplanatory’ just, mentioned above, does not result in accentuation.

An interesting particle to examine in this sense is German überhaupt and its accented version, UBERHAUPT, which has several parallel readings to bixlal and BIXLAL. Until now though, this particle has not been analyzed as an even-like operator overt covert-based alternatives (cf. Anderssen (2006), Rojas Esponda (2014)).56

More research, then, is needed for a better understanding of the correlation between association-with-covert-material and accentuation of the operator, with BIXLAL, as well as with other particles cross linguistically.57

54 The direction is also challenged by cases like (45) above (*Danny is not tall, and Yosi is BIXLAL tall*), where tall is given, but BIXLAL is infelicitous (though this infelicity may be due to the sensitivity of BIXLAL to standards, as explained in section 3.7).

55 Thanks to a JOS reviewer for pointing out this direction.

56 Notice that the Hebrew STAM, which has been analyzed as associating with covert material in Orenstein & Greenberg 2010, Orenstein 2016, is accented as well, but this was taken to result from the givenness and hence de-accentuation of all other overt material in the sentence. This seems different from what we find with BIXLAL.

57 An interesting question, pointed out by a reviewer, is whether the correlation found with bixlal is bi-conditional, i.e. whether or not we should also assume that whenever bixlal is accented (i.e. occurs as BIXLAL) we necessarily end up with an operation over covert-based alternatives. A potential counterexample for this assumption is (i), inspired by examples in Kadmon & Sevi 2014, Korat 2015. Notice that the unaccented bixlal can occur here as well, in which case it is ga’on (genius) which is accented:

(i) *Dani xaxam, ve-yosi BIXLAL ga’on / bixlal G’AON*
Danny smart and-Yosi BIXLAL genius / bixlal GINIUS
“Danny is smart, and Yosi is even a genius”

Notice, however, that this case involves an extreme adjective correlate (genius) of the adjective (smart), which share the same scale (cf. Morycki 2012). If this is not the case, as in (ii), BIXLAL cannot be accented:

(ii) (Context: contemplating who should we marry):
Dani ashir, ve-yosi #BIXLAL ga’on / bixlal G’AON
6. **Summary and directions for further research**

Most of the discussion in the literature of the scalar, focus sensitive particle *even*, and on its cross-linguistic correlates concentrates on cases where such particles associate with an overt, usually accented focused element in their prejacent, and where they are easily translated as English *even*.

In this paper we looked at a particle which has a more challenging nature, namely *bixlal*. While in its non-accented version this particle is very similar to *even* and to the default *even*-like particle in Hebrew, *afilu*, when it is accented, i.e. occurring as *BIXLAL*, it leads to a variety of readings paraphrased with *very / -er than / in general / at all* etc., which are not reducible to *even* in an obvious way.

Our main claim was that we can derive the full range of data with *bixlal / BIXLAL* from the interaction between the following minimal assumptions:

(a) That both *bixlal* and *BIXLAL* have the same core semantics as *afilu* and *even*, i.e. as scalar, focus sensitive particles, presupposing that their prejacent is stronger than all relevant / salient focus alternatives (where ‘stronger than’ is characterized using Greenberg’s (2015, 2018a) gradability-based scalar presupposition).

(b) That *bixlal* operates over regular focus alternatives, similarly to *afilu* 58

(c) That in contrast, *BIXLAL* operates over ‘covert-based’ alternatives, by associating with a covert focused element in its prejacent. In sentences with gradable adjectives in the positive form this covert focused element tends to be the comparison class argument of *pos, C*.

(d) That with one dimensional adjectives, variation of alternatives along the comparison class argument indirectly leads to interpreting *p* relative to a higher standard degree than the standard used in *q*. Whereas with multidimensional adjectives this can also lead to interpreting *p* relative to a higher number of relevant dimensions.

Beyond understanding the intricate distributional and semantic patterns with *bixlal / BIXLAL* in Hebrew, the paper has some more general contributions. It provides support for the claim that comparison classes arguments should be syntactically represented, and for theories which view (some kinds of) NPIs as involving an *even*-like operator. A more central contribution lies in a better understanding of the typology

Danny rich and-Yosi BIXLAL genius / bixlal GINIUS

“Danny is rich, and Yosi is even a genius”

It may be, then, that the semantics of extreme adjectives involves a covert element that *BIXLAL* can associate with. Further research is needed for clarifying this direction, and more generally, for understanding whether the bi-conditional [association-with-covert-material ↔ accentuation of the particle] indeed holds for *BIXLAL*.

58 Though, as we saw above, it can also operate over whole questions, similarly to several *even*-like particles examined in Iatridou & Tetevosov’s 2016.
of even-like particles in natural languages. As mentioned in the introduction, the typological research has already identified a number of parameters relevant for the characterization of such particles. The present paper adds the (in)ability to associate with covert material, and to operate over ‘covert-based’ alternatives to this existing inventory of parameters along which even-like particles vary, both within and across languages. Finally, the (in)ability to operate over covert-based alternatives is reported for overt and covert only-like particles as well (cf. section 5.1 above). Together with other reports about shared parameters of variation (e.g. Grubic 2012, Tomaszewicz 2012, Charnavel 2017, Greenberg & Orenstein 2016, Liu 2017), the relevance of this parameter to both even-like and only-like particles supports viewing them as members of a wider family of scalar operators in natural language.59

The proposal still leaves several open issues concerning families of even-like operators, like the one in Hebrew, with members such as *afilu* and *bixlal/BIXLAL*. More research is needed to examine and account for other differences between them, besides the (in)ability to operate over ‘covert-based’ alternatives. We would like to end this paper by briefly mentioning several such differences.

First, all of the examples of even translated to Hebrew as *afilu* or *bixlal* above involve adverbials uses. In contrast, when even appears in pre-subject position, *afilu* is the only translation:

(77) *Afifu / #bixlal* Danny higi’a la-mesiba
 Afifu / bixlal Danny arrived to-the-party
 “Even Danny arrived to the party”

This may suggest that whereas *afilu*, like even, can be analyzed as a sentential operator as captured in (1) above, *bixlal* is more restricted an should be only analyzed as a predicate modifier.60

A second difference concerns context dependency. Greenberg 2014 and Greenberg & Orenstein 2016 point out that whereas alternatives for *p* can be easily accommodated with *afilu* (and even), with *bixlal* such alternatives need to be constructed based on salient material in previous discourse. Thus, similarly to *afilu* and even, *bixlal* is felicitous in (78), but unlike them, it is infelicitous in (79), when no salient material exists in the utterance context that can be used for constructing an alternative:

(78) The competition was really successful...
 Daniu kibel medalyat kesef ve-yosi afifu / bixlal kibel MEDALYA
 Daniu got medal silver and Yosi aimi / bixlal got MEDAL
 “Danny got a silver medal and Yosi even got a MEDAL

(79) The competition was really successful....

59 Cf. König 1991, Guerzoni 2003, Greenberg 2018b, 2019 for a mirror imaged semantics for English only and even, which exploits these parallel parameters of variation.
60 Such an analysis has been in fact suggested in a preliminary and informal manner in Migron 2003, and more formally in Greenberg & Khrizman 2012, Greenberg 2014, Korat 2015.
Yosi afilu / #bixlal kibel medalyat zahav
Yosi afilu / bixlal got medal gold
“Yosi even got a gold medal”

This observation does not undermine the even-like nature of bixlal, but in fact supports it, as similar contrasts were reported about even-like particles like -tak and –bhii in Hindi, hasta and incluso in Spanish (Schwenter and Vasishth 2000) and voobšče and daže in Russian (Miashkur 2017).61

The behavior of afilu vs. bixlal in questions and in Downward Entailing contexts (beyond negation) should be also compared in future research. For example, in the antecedent of conditionals (80), or in questions (81), it is clear that afilu can associate with both ‘high’ and ‘low’ elements, similarly to what has been reported for even, but the judgements with bixlal are less clear:

(80) im dani afilu / bixlal yiftor et ha-beaya haxi kala / kasha, hu yitkabel
If Danny afilu / bixlal will-solve acc. the-problem most easy / hard, he will-be accepted
“If Danny will even solve the easiest / hardest problem, he will be accepted”

(81) ha-im dani afilu / bixlal yiftor et ha-be’eya haxi kala / kasha?
The-weather Danny afilu / bixlal will-solve acc. the-problem most easy / hard
Will Danny even solve the easiest / hardest problem?

Finally, an interesting challenge raised by the proposal above concerns a discursive use of unaccented bixlal (cf. footnote #6), seen in (82), which was first discussed in Migron 2003:

(82) A: Rina carfatiya? B: lo. Hi bixlal / ??afilu britt
Rina French No. she bixlal British
“Is Rina French?” “No way. She is actually British”

Here afilu is odd and bixlal is perfectly felicitous. On the surface, and unlike all other cases discussed above, there seems to be no scalar relation between the prejacent of bixlal, Rina is French and the salient alternative Rina is British, which will allow the presupposition that p is stronger on a scale than q to be met. Indeed, Migron 2003 proposes a non-scalar analysis of such cases, where bixlal merely indicates that one alternative is replaced by another. However, Greenberg 2014, Greenberg & Orenstein 2016, Greenberg (in progress) suggest that it is possible to give a scalar analysis of this use of bixlal, as an even-like operation over a denial speech act, presupposing that the prejacent denial is stronger than alternative

61 To capture such contrasts one could rely on Fox & Katzir’s (2011), Katzir’s (2014) algorithm for constructing alternatives, and assume that particles such as –bhii, incluso, daze and bixlal are constrained in that they only operate over alternatives which are constructed using salient sub-constituents, as opposed to standard focus sensitive particles, which can also use the lexicon as a substation source. Clearly more research is needed here. See Greenberg 2018b, 2019 for a discussion.
denials (leading to the ‘No way!’ paraphrase). We leave further examination of this use of bixlal to future research.

References

Breheny, B., Klinedinst, N, Romoli J and Sudo Y (2016) Does the structural approach to alternatives give us just enough alternatives to solve the symmetry problem? Ms.

Charnavel, Isabelle, 2017 How French sheds new light on Scalar Particles. In Romance Languages and Linguistic Theory 11 - Selected papers from the 44th Linguistic Symposium on Romance Languages (LSRL44), London, Ontario, 53-75

Daniels, Micky, 2018. Focus over a speech act operator: A revised semantics for ‘our even’. NELS49.

Elliott, Patrick, McReady, Eric and Sudo, Yasutada. 2015 Discourse even vs. Attitude even, SALT 25.

Francis, Naomi, 2018, Presupposition denying uses of even. SALT 28.

An indirect support for this proposal comes from Daniels 2018 analysis of ‘bixlal’ functioning as ‘our even’ in some questions (cf. section 2.2), as involving an even operatorscoping above a question speech act operator.

Greenberg (in progress) take this kind of proposal to subsume cases where bixlal seems to lead to presupposition cancelations, as in cases discussed in Greenberg & Khrizman 2012c, Kadmon & Sevi 2014 and Francis 2018.

Greenberg, Yael 2018a. A revised, gradability semantics for even. *Natural Language Semantics* 26:51-83

Greenberg, Yael 2018b. Even and Only: Arguing for parallels in scalarity and in constructing focus alternatives. NELS 49.

Greenberg, Yael, 2019 Scalarity / Exclusivity / Evaluativity: What (and what doesn’t) make only a mirror image of even, ms. Bar Ilan University.

Greenberg, Yael (in progress) Even and only like particles scoping over speech act operators, ms. Bar Ilan University.

Grubic, Mira. 2012. *Kapa* as an end of scale marker in Bole and Ngizim (West Chadic). In A. Aguilar et al. (eds.), *Proceedings of Sinn und Bedeutung 16*, Utrecht. MITWPL. 293–306.

Orenstein, Dina. & Greenberg, Yael. 2012, "A Flexible Exclusive Particle: The Case of the Hebrew be-sax ha-kol ("all in all"), proceedings of SuB 17.
Umbach, Carla. 2009. Another additive particle under stress: German additive noch. In LOLA 10, 149 – 156
Umbach, Carla. 2012. Strategies of additivity: German additive noch compared to auch. Lingua 122(15), 1843–1863.