
No Free Lunch in Linguistics or Machine Learning

Jonathan Rawski & Jeffrey Heinz
Dept. of Linguistics

Institute for Advanced Computational Science
Stony Brook University

To Appear in Language

Abstract

Pater’s target article proposes that neural networks will provide theories of learning
that generative grammar lacks. We argue that his enthusiasm is premature since the
biases of neural networks are largely unknown, and he disregards decades of work on
machine learning and learnability. Learning biases form a two-way street: all learners
have biases, and those biases constrain the space of learnable grammars in mathemat-
ically measurable ways. Analytical methods from the related fields of computational
learning theory and grammatical inference allow one to study language learning, neural
networks, and linguistics at an appropriate level of abstraction. The only way to sat-
isfy our hunger and to make progress on the science of language learning is to confront
these core issues directly.

1 Introduction

Pater (2018:1) claims that “generative linguistics is unlikely to fulfill its promise of accounting
for language learning if it continues to maintain its distance from neural and statistical
approaches to learning.” It is a crucial time to address this issue, given the recent splash
of machine learning success in various engineering domains and the renewed interest in
generative structure in natural language processing (NLP). At the same time, there is a sense
that the Machine Learning Revolution has morphed more into engineering than science (one
recent machine learning plenary talk called it “alchemy” and longed for “the rigor police” to
return (Rahimi & Recht 2017)). Far from discouraging us, this presents a unique challenge
for linguistics. How can linguistics inform the theory of what is learnable within any system,
and how can insights from learning aid the theoretical goals of linguistics, and by extension,
cognitive science?

Pater is right that interactions between these two fields presents a unique opportunity,
but his enthusiasm for neural networks is premature. The real opportunity is to, as Mark
Steedman (2008:144) says, “pull ourselves together as a discipline, lift our eyes above our
rivalries, and take a longer view of where we are going (and where we have come from) than
seems to be the current style.” In this case, that means engaging the real and hard problems
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which underlie making linguistic generalizations from data. This involves understanding the
biases of learning systems, which is not only about how rules and constraints are determined
in the face of recalcitrant data, but also understanding how such biases can be ascertained
and studied. Pater not only conflates ignorance of bias with absence of bias, but his narrative
that neural networks solve the problem of “how systems that adequately represent linguistic
knowledge can be learned” (p.26) disregards an extensive amount of research that addresses
these hard problems directly.

2 Bias is a Two-way Street.

The main idea of this response is stated in the “Key Ideas in Machine Learning” chapter of
the forthcoming second edition of (Mitchell 2017:4) (see also Wolpert & Macready 1997):

When we consider it carefully, it is clear that no system - computer program
or human - has any basis to reliably classify new examples that go beyond those
it has already seen during training, unless that system has some additional prior
knowledge or assumptions that go beyond the training examples. In short, there
is no free lunch—no way to generalize beyond the specific training examples,
unless the learner commits to some additional assumptions.

Furthermore, even in the presence of strong biases, the data is typically recalcitrant.
Charles Yang (2013) notes, for instance, that for n-gram models, which are a strongly biased
sequence model embedded in many modern NLP systems, the space of word combinations
grows exponentially with n-gram size (m words yields mn n-grams, so n2 bigrams, n3 tri-
grams, etc.). Despite the enormity of this space, if these combinations are uniformly dis-
tributed then learning is a breeze, since all admissible word combinations will sooner or later
show up. However, Yang (2013:2) points out that “In the actual world, we are undercut
by Zipf’s long tail, which grows longer as the space of word combination gets larger” so
that “in a million-word collection of English, 45% of words, 80% of word pairs, and a full
95% of word triples appear exactly once.” Zipf’s Law shows that most information about
the language system as a whole resides in the long tail. For a learner, this means data is
drastically underspecified: most things are rare, what data exists is unhelpful, and more data
exacerbates the problem, rather than easing it. Despite Pater’s enthusiasm, neural networks
are not immune from these statistical realities. When examining natural language corpora,
you may never get to see events that are rare but matter for accurately characterizing the
system under observation.

Problems of this sort are known in linguistics as Poverty of the Stimulus, and in
computer science as instances of the Data Sparsity Problem, and they are frequently
used to necessitate strong learning biases. It is uncontroversial that human language ac-
quisition must have some type of bias or innate component, often referred to as Universal
Grammar (Nowak et al. 2001; Nowak et al. 2002). This is true even for data-driven statistical
learning, since children often learn language in ways that defy adult distributions. In fact,
without some learning priors, even the input distribution cannot be recovered, simply be-
cause distributions are based on the structure of their parameters (Lappin & Shieber 2007).
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The non-trivial open question central to all modern linguistic research instead concerns the
nature of this “additional prior knowledge” or bias—where it lies on the scale from weak
to strong, and how complex, uniform, and task-specific it is.

Despite these well-known challenges, Pater repeatedly dismisses Chomsky’s arguments
“in the absence of a specified theory of learning.” He says that “the argument is not com-
pletely solid that a rich Universal Grammar (UG). . . is necessary to explain language acqui-
sition” (p.3) and later “it is much less clear that a successful theory will need pre-specified
UG parameters or constraints.” (p.3) Chomsky in fact addressed these sorts of comments in
a famous debate on language and learning (Piattelli-Palmarini 1980:100), so we will let him
speak for himself:

Papert objects, quite incorrectly, that somehow the burden of proof is on me to
go beyond saying that I see no way of doing something. Of course, that’s not the
case: if someone wants to show that some general developmental mechanisms
exist (I don’t know of any), then he has to do exactly what Rosenblatt (who
invented the perceptron) did, namely, he has to propose the mechanism; if you
think that sensorimotor mechanisms are going to play a role, if you can give a
precise characterization of them I will be delighted to study their mathematical
properties and see whether the scope of those mechanisms includes the case in
question.

Pater clearly views neural networks as a counterpoint to “pre-specified UG parameters or
constraints”. He states “with the development of the rich theories of learning represented by
modern neural networks, the learnability argument for a rich UG is particularly threatened”
(p.3), and there are many statements like “From a generative perspective, an RNN is a
very impoverished theory of UG. Not only does it lack parameters or constraints encoding
the substance of possible grammatical systems, the basic structures...are themselves absent,
at least prior to learning.” (p.23) Then later he admits that “a [neural] network needs a
specified structure for it to represent the effects of learning,” (p.13) so he is trying to have
it both ways, when he cannot.

In our view, Pater continually confuses ignorance of biases with absence of biases. The
intrinsic biases of neural network models are almost completely unknown, and are not nec-
essarily weak or impoverished (Chris 2018). Additionally, the utility of a weak-bias learning
method for NLP tasks does not guarantee explanatory adequacy.

So, how does the learner pay for lunch? The other, more important side of the two-
way street is that the nature of particular biases and learning strategies have measurable
effects on the targets of learning. Results of this sort, including Chomsky’s, are claims about
what is learnable, which is the domain of computational learning theory. Learning theory
provides the science behind the engineering by addressing issues of learnability under various
mathematical conditions: in particular, what successful learning means in different scenarios
and what resources it requires in terms of computation and number of training examples.
Results from computational learning theory all echo the “No Free Lunch” principle and
the core of any generative theory of linguistic competence: learning requires a structured
hypothesis space and the structural properties matter.

Computational learning theory is often grounded in the theory of formal languages. The
mathematical nature of the subject is a natural and advantageous perspective, for two rea-
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sons. First, there is the link between formal languages and computation, which is deeply
relevant to neural network research, going back to (McCulloch & Pitts 1943), a landmark
work in artificial neural networks. Kleene (1956) developed regular expressions in an effort to
characterize the abilities of these neural nets. As Perrin (1990:3) put it, McCulloch and Pitts
presented “a logical model for the behaviour of nervous systems that turned out to be the
model of a finite-state machine.” Minsky (1967:55) later made the often-quoted statement
“every finite-state machine is equivalent to, and can be simulated by, some neural net.” This
important link is missing in Pater’s narrative.

Second, formal languages and grammars are arguably the core of all generative theories
of language. Chomsky has been very clear on this point. In the same debate, (Piattelli-
Palmarini 1980:101), he states,

that is exactly what generative grammar has been concerned with for twenty-
five years: the whole complicated array of structures beginning, let’s say, with
finite-state automata, various types of context-free or context-sensitive gram-
mars, and various subdivisions of these theories of transformational grammars—
these are all theories of proliferating systems of structures designed for the prob-
lem of trying to locate this particular structure, language, within that system.
So there can’t be any controversy about the legitimacy of that attempt.

A wholesale adoption of neural networks today is premature because it still leaves us
without a “precise characterization” of language acquisition and learnability. In our view,
the insights of computational learning theory provide a concrete way to study the two-way
street of learning biases. Whereas Pater ignores No Free Lunch, we take it as the science of
learning’s natural starting point.

3 The View from Learning Theory.

3.1 Computational Theories of Language.

Let’s quickly look at the menu du jour. The computational nature of language patterns and
the grammars which generate them has been mathematically well-studied. The Chomsky
Hierarchy (Chomsky 1959) divides all logically possible patterns into nested regions of com-
plexity (see Fig. 1). These regions distinguish abstract, structural properties of grammars.
They have multiple, convergent definitions, which distill the necessary properties of any ma-
chine, grammar, or device capable of recognizing or generating the strings comprising the
pattern (Harrison 1978; Hopcroft et al. 1979). For example, to recognize the formal lan-
guages in the regular region, the memory resources required do not grow with the size of the
input past some constant bound. While the Chomsky hierarchy was originally formulated for
strings, modern developments extend such abstractions to characterize ‘languages’ of other
objects, such as trees and graphs.

From a more abstract perspective, every grammar is associated with a function, so the
issue turns to the nature of that function. Such a function may map strings to either 0 or 1.
We may also consider other functions which take strings as input and return various values,
depending on the properties we want the grammar to have. For example, we may choose to
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Figure 1: The Chomsky Hierarchy of string languages

make a grammar stochastic by replacing the binary mapping with a mapping to real values
between 0 and 1, or to represent linguistic transformations by changing one representation
into another. Some example functions are listed in Table 1 below, along with the linguistic
intuition they encode.

Function Description Linguistic Correlate

f : Σ∗ → {0, 1} Binary classification (well-formedness)
f : Σ∗ → [0, 1] Maps strings to real values (gradient well-formedness)
f : Σ∗ → ∆∗ Maps strings to strings (single-valued transformation)
f : Σ∗ → ℘(∆∗) Maps strings to sets of strings (multi-valued transformation)

Table 1: Grammars as functions

Pater argues for a move toward statistical generalization in grammars and learning. There
are stochastic formulations of each region in the Chomsky Hierarchy (Kornai 2011), but the
critical properties of languages are structural. For example, “context-freeness” is in-
dependent of whether that function’s co-domain is real or Boolean. This means that the
addition of probabilities to a grammar formalism doesn’t consequently increase its expres-
sivity in this way. In other words, no amount of statistics can make a regular grammar
context-free. (For more on the Chomsky Hierarchy and its implications to grammar learning
and learning experiments, see Jäger & Rogers (2012).)
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3.2 Learners as Functions to Grammars.

The basic question of whether some form in a language is well-formed according to a given
grammar is called the membership problem. The membership problem allows us to clearly
formulate a definition of learning, shown in Figure 2. In particular, is there a learning
algorithm A which takes as input a finite subset D of the acceptable forms of a language
S (a highly skewed sample, if Zipf’s law holds) and returns a grammar which solves the
membership problem M for that language? It is crucial that learners return a grammar, not
a language. This is simply because, mathematically, grammars are of finite size, while the
functional characterizations of patterns may be infinite in size.

algorithm
learning

A M

S

D

no

Is x in S?

yes

Figure 2: Learning to solve the membership problem from positive data.

Thus learners are best described as functions from experience to grammars. This charac-
terization of learners is very precise, but broad, since any learning procedure can be thought
of as a function from experience to grammars, including connectionist (Rumelhart & McClel-
land 1986), Bayesian (Griffiths et al. 2008), entropy-based learners (Goldwater & Johnson
2003), and learners situated in generative models (Wexler & Culicover 1980; Berwick 1985;
Tesar & Smolensky 2000; Niyogi 2006).

Learning theory is also concerned with “the circumstances under which these hypotheses
stabilize to an accurate representation of the environment from which the evidence is drawn.
Such stability and accuracy are conceived as the hallmarks of learning” (Osherson et al.
1986). Gold (1967) introduced one definition for “successful learning” and showed that no
major classes in the Chomsky hierarchy except the finite languages are learnable “in the
limit” from adversarial presentations1 of positive examples, but the computably enumerable
(and by extension context-free and regular) are learnable from adversarial presentations of
positive and negative examples. The Probably Approximately Correct (PAC) framework
(Valiant 1984; Kearns et al. 1987; Angluin 1988) differs from Gold learning in that the
required training data and computation must be feasible (i.e. polynomial), and is also less
strict, since it loosens the definition of success from exact learning to likely approximate
learning. However, not even the finite languages are PAC-learnable. The important thing
to keep in mind is that mathematical definitions clarify the difficulty of feasibly learning

1This is a technical term. See Heinz (2016) and Clark & Lappin (2011) for details.
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classes of formal languages that resemble natural languages in key respects. However, many
structured classes which cross-cut the Chomsky hierarchy and exclude some finite languages
are feasibly learnable in various senses, as we will discuss below.

In general, the process of inferring the rules of the grammar from samples of data is called
Grammatical Inference (de la Higuera 2010; Heinz et al. 2015; Heinz & Sempere 2016), the
branch of machine learning arguably most relevant for generative linguistics. The clarity
given by the methods developed within the Grammatical Inference tradition is that the
biases are analytically transparent, so beyond beyond eating lunch, we know who paid for
it. There is no debt. Such analysis carries important implications for typological coverage,
which we now discuss.

3.3 Typological Consequences of Learning Theories.

What kind of a lunch can we now afford? Theories of language learning make empirical
typological predictions, which goes to the issue of whether languages vary systematically
or not. We divide these predictions into three types, according to the learning strategy.
The first type of learner assumes no structural variations. A second assumes one unified
learning mechanism. The third has a modular approach which ties the learning strategy to
the grammars being learned. Here we showcase the limitations of each and implications for
learning with neural nets.

The first strategy is simply to go for broke and learn everything. This is the strategy
pursued by Chater & Vitányi (2007), who use Minimum Description Length principles to
prove that in a particular learning setting, any computably enumerable distribution can
be learned from positive evidence. A caveat to this strategy is that while it is possible in
principle, it is very much infeasible in practice. Additionally, it predicts that any pattern is
learnable with enough data, which seems linguistically incorrect since generalizations attested
in the world’s languages are not arbitrary and much more restricted than being computable.
Many people using neural networks for instance believe that they are domain-general in
exactly this way, and no pattern is beyond their reach.
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Figure 3: A universal pattern learner (left) vs. a structured, domain-general learner (center)
vs. multiple modular learners (right).

The second strategy is similarly “domain-general” but constrained: a single learner which
cross-cuts the Chomsky hierarchy but does not exhaust any one class (Figure 3, left). Such
a strategy is pursued by Clark (2010), among others. The caveat with this, noted by (Heinz
& Idsardi 2011; Heinz & Idsardi 2013), is that it predicts that the sorts of dependencies
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seen in syntax at the sentence-level should also be seen at the word level, in phonology and
morphology, while the reality is distinctly the opposite. Supra-regular patterns abound in
syntactic dependencies, while they are conspicuously absent in morphophonology (Figure 4).

Figure 4: Left: Nested embedding in English(top), and crossing dependencies in Dutch
(bottom), both supra-regular syntactic dependencies. Right: Nested embedding (top) and
crossing dependencies (bottom) in phonology, both unattested (adapted from Heinz & Idsardi
2013).

The final strategy is a “modular” learner, with distinct hypothesis spaces for each of
the distinct subclasses of grammars that characterize the patterns found in natural language
(Figure 3, right). Learning algorithms in phonology are successful because the generalization
strategies employed do not consider every finite pattern nor do they extend beyond the
regular boundary, while syntactic learners are successful when the learners’ generalizations
are constrained to the right, non-superfinite classes of nonregular patterns.

Where do neural networks and their learning algorithms fit in this picture? The crucial
error that is regularly made in applying neural networks to structured problems of this kind
is to confuse ignorance of biases with absence of biases. All neural network architectures face
the two-way street of bias, simply because there is No Free Lunch. It is unfortunate that we
have no idea what those biases are, so its practice is bound to resemble “alchemy.” Ignoring
this will be a detriment to the increased interaction Pater proposes since, as this section
showed, learning biases have concrete typological consequences, which extend to theories of
cognition. Any serious scientific application of neural architectures within linguistics must
always strive to make the learner’s biases transparent.

4 Grammatical Inference and Neural Networks.

By clearly knowing how to pay for lunch, we are bound to have many interesting and satis-
fying meals. The equivalence between language and automata classes, and the large variety
of neural architectures used to imitate the behavior of sequential machines, allow us to refine
grammatical inference questions to neural network generalization. Can a neural network of
architecture class A perform the same computation as an automaton of class M? Can a
network of A be a recognizer for languages in class C? Can a network of A be trained to
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perform the same computation as an automaton of M from a training set, or to recognize
a language of C from a training set? Can a grammatical inference algorithm for language
class C unpack the generalization mechanism of a neural architecture trained on C? Here
we highlight two recent studies that explore these questions at the simplest level with
striking results.

One example comes from Avcu et al. 2017. They compared a class of Long Short-
Term Memory (LSTM) architectures’ performance on two well-understood subclasses of the
regular languages — namely, the Strictly Local and Strictly Piecewise languages, which have
been argued to be characteristic of certain local and long-distance dependencies in natural
language (Heinz 2010; Heinz 2018). They report that their LSTMs performed above chance
in all experiments, but surprisingly the LSTMs had particular difficulty in the simplest
Strictly Local language and the most complex Strictly Piecewise language. When learning
fails it is natural to ask whether the data was sufficient. They used the grammatical inference
learning algorithm Regular Positive and Negative Inference (RPNI, (Oncina & Garcia 1992))
to test this, since RPNI essentially solves the problem of efficiently learning regular languages
from positive and negative data. Testing with RPNI, they determined that the data were
in fact mostly sufficient in both Strictly Local and Strictly Piecewise cases because RPNI
mostly returned the exact target grammar with the same data with which the LSTM failed
to generalize correctly. The possibility that formal properties of different kinds of local and
non-local dependencies present in the data affects the behavior of neural networks is exciting,
and shows the fruitfulness of studying neural network and deep learning models in the light
of formal language theory and grammatical inference algorithms.

Weiss et al. (2017) present another striking result combining methods from grammatical
inference with neural network and deep learning architectures. They use Angluin (1987)’s L∗

algorithm to test whether one can extract from a trained recurrent neural network (RNN) a
deterministic finite-state automaton (DFA) that classifies sequences in a manner observably
equivalent to the RNN. They show that in contrast to other extraction methods, they are
able to find smaller, more accurate DFAs which model the RNN in a fraction of the time.

However, what is most interesting and relevant in this study are the generalization errors
in the trained RNNs this method allows them to discover. Weiss et al. (2017:8) note such
cases are “annoyingly frequent: for many RNN-acceptors with 100% train and test accuracy
on large test sets, our method was able to find many simple misclassified examples.” They
state this reveals the “brittleness in generalization” of trained RNNs, and they suggest that
evidence based on test-set performance “should be interpreted with extreme caution.”

These two studies are by no means alone (see Ayache et al. 2018 for another example),
but they drive home the point that has been made throughout this piece: no matter the
domain of learning, and no matter how the architecture of the learner is structured, there
is No Free Lunch. NNs represent a powerful engineering tool, but to understand we require
computational analysis at the abstract level that formal language theory and learning theory
provide. By incorporating these insights, the “black-box” nature of neural networks and
deep learning methods that are the cause of so much of the skepticism surrounding their
application can be opened up and explored in a principled way. This offers a way for the
features of a particular learning domain, say that of language, to inform theories of neural
networks as a whole, by working at the right level of abstraction like Kleene did over sixty
years ago.
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5 Conclusion.

This meal has been short, but hopefully now we are not perplexed when the waiter comes.
Pater’s article continually ignores the hard lesson from computational learning theory: there
is No Free Lunch, and you pay for your lunch with theory. Learning biases form a two-way
street: no learning system is bias-free, and the nature of the biases have measurable effects
on the targets of learning. Neural networks are not immune from the two-way street, and
confusing our ignorance of the nature of their biases with an absence of biases will only
impede the progress made on linguistic learning in the last 60 years. However, taking these
issues seriously will allow linguistics to sharpen its view of learning, and to contribute in a
meaningful way to the larger science of computational and machine learning. Computational
learning theory and grammatical inference have shown some plausible paths forward on this
journey, and we are confident that by paying careful attention to hard problems, we will be
rewarded with a smorgasbord of solutions.
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