1. Introduction

Generative Grammar (GG) is the study of linguistic capacity as a component of human cognition. Its point of departure is Descartes’ observation that “there are no men so dull-witted or stupid […] that they are incapable of arranging various words together and forming an utterance from them in order to make their thoughts understood; whereas there is no other animal, however perfect and well endowed it may be, that can do the same” (Discours de la méthode, 1662). Studies in comparative cognition over the last decades vindicate Descartes’ insight: only humans appear to possess a mental grammar—an “I-language,” or internal-individual language system—that permits the composition of infinitely many meaningful expressions from a finite stock of discrete units (Hauser et al. 2002; Anderson 2004; Chomsky 2012a, 2017a).

The term Universal Grammar (UG) is a label for this striking difference in cognitive capacity between “us and them.” As such, UG is the research topic of GG: what is it, and how did it evolve in us? While we may never find a satisfying answer to the latter question, any theory of UG seeking to address the former must meet a criterion of evolvability: any mechanisms and primitives ascribed to UG rather than derived from independent factors must plausibly have emerged in what appears to have been a unique and relatively sudden event on the evolutionary timescale (Bolhuis et al. 2014; Berwick & Chomsky 2016).

* Authors’ names appear in alphabetical order. For feedback and suggestions, we are indebted to Josef Bayer, Chris Collins, Erich Groat, Luigi Rizzi, and Juan Uriagereka. Parts of this paper are based on a Question & Answer session with NC that took place at the Residència d’Investigadors (Barcelona) on Nov. 6, 2016. We would like to thank the students who helped with the transcription of that session: Alba Cerrudo, Elena Ciutescu, Natalia Jardón, Pablo Rico, and Laura Vela. AJG acknowledges support from the Ministerio de Economía y Competitividad (FFI2014-56968-C4-2-P), the Generalitat de Catalunya (2014SGR-1013), and the Institució Catalana de Recerca i Estudis Avançats (ICREA Acadèmia 2015). DO acknowledges support from the Social Sciences and Humanities Research Council (430-2018-00305).
GG’s objectives open up many avenues for interdisciplinary research into the nature of UG. Fifty years ago, Eric Lenneberg published his now-classic work that founded the study of the biology of language, sometimes called “biolinguistics” (Lenneberg 1967). In conjunction with the then-nascent generative-internalist perspective on language (Chomsky 1956[1975], 1957, 1965), this major contribution inspired a wealth of research, and much has been learned about language as a result. The techniques of psychological experimentation have become far more sophisticated in recent years, and work in neurolinguistics is beginning to connect in interesting ways with the concerns of GG (Berwick et al. 2013; Nelson et al. 2017; Friederici et al. 2017).

Important results have emerged from the study of language acquisition, which is concerned with the interaction of UG and learning mechanisms in the development of an I-language (Yang 2002, 2016; Yang et al. in press). Work by Rosalind Thornton and others shows that children spontaneously produce expressions conforming to UG-compliant options realized in languages other than the local “target” language, without any relevant evidence; but they do not systematically produce innovative sentences that violate UG principles. This continuity between children’s seemingly imperfect knowledge and the range of variation in adult grammars suggests that children are following a developmental pathway carved out by UG, exploring the range of possible languages and ultimately converging on a steady state (for review and references, see Crain & Thornton 1998, 2012; Crain et al. 2016; for a theory of the steady state as a probability distribution over I-languages, see Yang 2016). Converging conclusions follow from the spontaneous creation of sign languages by deaf children without linguistic input (Feldman et al. 1978; Kegl. et al. 1999; Sandler & Lillo-Martin 2006).

On the whole, we believe that GG has made significant progress in identifying some of the computational mechanisms distinguishing man from animal in the way recognized by Descartes. In this paper, we offer our view of the current state of the field, highlighting some of its central achievements and some of the many remaining challenges, in the hope of inspiring future research. Section 2 discusses the fundamental, “non-negotiable” properties of human language that any theory of UG has to account for. Section 3 focuses on core computational operations and their properties. Section 4 turns to the interfaces of I-language and systems entering into language use, and how conditions imposed by these systems constrain syntactic computation. Section 5 reviews a number of challenges emerging from recent work, which call for resolution in order to meet minimalist desiderata. Section 6 concludes.
2. Basic Properties of I-language

A traditional characterization of language, going back to Aristotle, defines it as “sound with meaning.” Building on this definition, we can conceive of an I-language as a system that links meaning and sound/sign in a systematic fashion, equipping the speaker with knowledge of these correlations. What kind of system is an I-language? We consider two empirical properties non-negotiable, in the sense that any theory that shares GG’s goal of providing an explanatory model of human linguistic capacity must provide formal means of capturing them: discrete infinity and displacement.\(^1\) Atomic units—lexical items, whose nature remains the subject of much debate\(^2\)—are assembled into syntactic objects, and such objects can occupy more than one position within a larger structure. The first property is the technical statement of the traditional observation that “there is no longest sentence,” the informal notion “sentence” now abandoned in favor of hierarchically structured objects. The second property is illustrated by a plethora of facts across the world’s languages. To pick one random illustration, consider the familiar active/passive alternation:

 teacher-NOM John-ACC scold-PST
 ‘The teacher scolded John.’

 b. John-ga sensei-ni sikar-are-ta.
 John-NOM teacher-by scold-PASS-PST
 ‘John was scolded by the teacher.’

The noun phrase John bears the same thematic relation to the verb sikar in both (1a) and (1b), but appears sentence-initially (displaced from his base position) in the latter. On the assumption that thematic relations are established in a strictly local fashion—a guiding idea of GG since its inception—, this entails that the nominal is displaced from its original position in (1b).

To account for these elementary properties, any theory of GG must assume the existence of a computational system that constructs hierarchically structured expressions with displacement.

1 The latter notion is non-negotiable in its abstract sense: there can be multiple determinants of interpretation for some syntactic object. The mechanisms implementing this basic fact vary dramatically across theoretical frameworks, of course.

The optimal course to follow, we think, is to assume a basic compositional operation MERGE, which applies to two objects X and Y, yielding a new one, K = \{X,Y\}. If X, Y are distinct (taken directly from the lexicon or independently assembled), K is constructed by External MERGE (EM); if Y is a term of X, by Internal MERGE (IM). If K is formed by IM, Y will occur twice in K, otherwise once; but the object generated is \{X,Y\} in either case. IM thus turns Y into a discontinuous object (or chain), which can be understood as a sequence of occurrences of Y in K.³ (2) illustrates for (1b) above (abstracting away from irrelevant details), where MERGE combines K and the internal NP John-ga:

\[
\begin{align*}
(2) \text{a. } & \{\text{sensei-ni, sikarareta, John-ga}\} = K \rightarrow \text{MERGE}(K, \text{John-ga}) \\
\text{b. } & \{\text{John-ga, sensei-ni, sikarareta, John-ga}\} = K'
\end{align*}
\]

MERGE, applying recursively so that any generated object is accessible to further operations,⁴ thus suffices to account for the basic properties of discrete infinity and displacement. Furthermore, it is the computationally simplest operation (as opposed to, say, concatenation, which adds order) that implements the basic properties of an I-language, and as such a conceptually necessary, irreducible component of UG. MERGE(X,Y), yielding K = \{X,Y\}, imposes hierarchical structure (X, Y are terms of K, but not vice versa) but no order (\{X,Y\} = \{Y,X\}). Languages differ in how they ultimately linearize objects constructed by MERGE, an important research topic for the study of the interaction between core syntax and the sensorimotor systems involved in perception and articulation. In (1a) above, the VP is linearized with OV order (John-o sikarta), whereas a corresponding English VP would surface with VO order (scolded John). Interpretation is not affected by this difference, suggesting that the relevant parameter should be a matter of externalization of internally generated expressions alone (see Travis 1984 for original ideas along these lines).

³ We assume that each syntactic object is a (possibly singleton) set of occurrences, where occurrences are individuated by their context (structural sister). This is the definition assumed in Chomsky 2000a:115, going back to Quine (1940:297). See also Nunes 2004:50ff. and Collins & Stabler 2016:sect. 4 for critical discussion and alternative conceptions.

⁴ Recursion is a “deep” property of the generative procedure; to what extent constructions displaying category recursion are used in some particular language (e.g., English but not German permits recursive possessors, as in Maria’s neighbor’s friend’s house vs. Marias (*Nachbars Freundins) Haus) is an orthogonal issue. For related discussion, see Arsenijević & Hinzen 2012; Chomsky 2014.
A corollary of restricting composition to MERGE is the *structure-dependence* of syntactic operations: if order is only established in the morphophonological component, no syntactic operation can make reference to it. This excludes a large class of logically possible languages as not humanly acquirable, namely languages whose rules and operations are defined in linear terms (e.g., “reverse the order of words in the sentence to yield a question”). There is evidence that hypothetical languages of this sort are indeed outside of the range of variation permitted by UG. Neurolinguistic studies conducted by Andrea Moro and associates suggest that invented “languages” whose rules operate over linear order are treated by speakers as a puzzle rather than linguistic data, as indicated by diffuse activity in many parts of the brain as opposed to the pattern of activity observed in ordinary language use (Musso et al. 2003). Similar results had been found in the study of a linguistically gifted but cognitively impaired subject (see section 4 below).

There are many illustrations of structure-dependence from syntax-semantics and morphophonology (Rizzi 2013a; Everaert et al. 2015). AUX-raising was used in the earliest days of GG as a straightforward illustration of the poverty of the stimulus: the fact that the input (linguistic data) vastly under-determines the I-language eventually attained. The argument then and now is that the language-learning child never entertains the hypothesis that yes/no questions are formed by moving the *linearly first* auxiliary in the clause—a hypothesis that would receive ample support from cases such as (3) and requires complex examples of the kind in (4) to be refuted. (The symbol ‘_’ marks the gap left behind by the displaced auxiliary.)

(3) Is the tall man from Italy _ happy?
(4) Is the tall man [who is from Italy] _ happy?

The computation chooses the *structurally* first (highest) auxiliary for inversion, not the one that happens to be embedded in the subject (at arbitrary depth), despite the fact that identification of the linearly first auxiliary is computationally straightforward. No other hypothesis is ever considered by the child, and consequently cases such as (5) are not attested in children’s production (Crain & Nakayama 1987; Crain et al. in press):

(5) *Is the tall man [who _ from Italy] is happy?

The formally innocuous linearity-based “first auxiliary” hypothesis would furthermore mislead children acquiring verb-final German into postulating questions such as (7), deriving from the verb-final structure underlying (6).
(6) dass der dicke Mann [der aus Italien gekommen war] glücklich war
that the fat man who from Italy come was happy was
‘…that the fat man who had come from Italy was happy.’

(7) *War der dicke Mann [der aus Italien gekommen _] glücklich war?
was the fat man who from Italy come happy was

Instead, structure-dependence dictates that the highest auxiliary raise, exactly like in English and, crucially, irrespective of linear order:

(8) War der dicke Mann [der aus Italien gekommen war] glücklich _?
was the fat man who from Italy come was happy
‘Was the fat man who had come from Italy happy?’

Children acquiring German do not simply adopt an alternative “last auxiliary” hypothesis, which would falsely produce the result in (9), where the relative clause has undergone optional rightward extraposition. Instead, learners instinctively know that the correct form is (10)—the only form possible if AUX-raising operates over hierarchical structure.

(9) *War der dicke Mann glücklich war [der aus Italien gekommen _]?
was the fat man happy was who from Italy come

(10) War der dicke Mann glücklich _ [der aus Italien gekommen war]?
was the fat man happy who from Italy come was
‘Was the fat man happy who had come from Italy?’

As before (and always, it seems), structure trumps linear order. The conclusion is as obvious to the language-learning child as it is to the theorist if linearity-based rules are simply not part of the hypothesis space, i.e. not permitted by UG. Children acquiring German have the same understanding of structure-dependence as children acquiring any other grammatical system, since it follows from the hierarchical organization of linguistic objects constructed by MERGE.

The phenomenon of AUX-raising illustrated above, alongside other classical illustrations of structure-dependence, has been the focus of attention of so-called “usage-based” approaches, which assume that basic facts of language are not rooted in UG but rather the emergent result of statistical analysis over vast amounts of data. Approaches of this kind assume that language acquisition is essentially a matter of memorization and minimal generalizations over a large
database. We will not evaluate the specific claims made by these proposals here, as this task has been undertaken elsewhere (Berwick et al. 2011; Crain et al. in press). The approaches fail invariably both at adequately capturing the phenomena they focus on and, more fundamentally, at addressing the only theoretically relevant question: why do languages universally adopt structure-dependent operations while avoiding, in all relevant cases, far simpler computational operations based on linear order? An approach that restricts generation to MERGE provides a principled solution to this long-standing puzzle. In fact, it provides the optimal solution, a straightforward consequence of the simplest computational operation.

In line with a long tradition in linguistics, we take the I-language to derive sound/sign-meaning pairs: objects constructed by MERGE are mapped onto a semantic representation SEM, accessed by conceptual-interpretive systems, and a phonetic representation PHON, accessed by sensorimotor systems, the latter providing instructions to the vocal or gestural articulators. Each derivation thus yields a pair <SEM,PHON>, whose properties enter into complex thought and intentional planning (e.g., discourse organization) and perception/articulation (internal in self-talk, external in oral or gestural production). We return to these interfaces below.

Displacement as illustrated in (1b) above often has effects on both SEM and PHON: displaced objects are interpreted as chains of occurrences, and derived positions are typically privileged in production. Consider a standard example of wh-movement (from Sportiche 2013):

\[(11) \text{Je me demande de quel livre sur elle-même, [cette loi] a entraîné la publication (α).}\]

\[\text{I wonder of which book about she-self this law has triggered the publication}\]

‘I wonder which book about itself this law triggered the publication of.’ (French)

The wh-phrase de quel livre ‘of which book’ is displaced by IM from its original position (α) as the complement of the noun publication to the left edge of the embedded clause, where it surfaces in the externalized form. At SEM, the resulting chain of occurrences is interpreted as an operator-variable dependency: (I wonder) which book x about y is such that this law y has triggered the publication of x. SEM provides access to the original copy of the wh-phrase that externally merged in the position marked (α) above, as evidenced by the fact that this is where the reflexive pronoun elle-même is interpreted: in the scope of its antecedent cette loi. Once again, a state of affairs that would otherwise be highly puzzling can be given a principled rationale in terms of MERGE and its effects at the interfaces.
The structural distance spanned by dependencies of this sort is not clause-bounded but of arbitrary depth. Some well-known evidence suggests that movement leaves intermediate copies, so that “long” dependencies are in effect composed of “shorter” sub-dependencies (see Boeckx 2007 for review). All copies are available at SEM, rendering reconstruction operations of earlier theories obsolete. By contrast, mapping to PHON forces a choice about the realization of the discontinuous object created by IM. The typical choice is the highest position, with all lower copies remaining silent. If, when, and how this preference can be overridden by parametric and other factors remains an important research question (cf. Nunes 2004; Trinh 2011).

Whether other types of rearrangements commonly found in the world’s languages, such as semantically vacuous scrambling, extraposition, clitic movement etc., likewise reflect narrow-syntactic computations or are part of the mapping to PHON (prior to the introduction of linear order, hence with displacement-like properties) is an open question. It is commonly assumed that effects on meaning pertaining to topic/focus articulation necessarily indicate core-syntactic displacements, but the relevant notion of “meaning” encompasses pragmatic as well as externalization-related (e.g., prosodic) properties of expressions. “Meaning” properties in this broad sense plausibly emerge from holistic interpretation of <SEM,PHON> pairs, rather than narrow-compositional interpretation of SEM itself. We briefly return to related matters in section 5.

Does the basic operation MERGE meet the criterion of evolvability? Any answer to this question is necessarily preliminary given our ignorance about the evolution of UG. Bolhuis et al. (2014) and Berwick & Chomsky (2016) suggest that MERGE plausibly arose as a cognitive innovation in an individual, which ultimately spread to a group. Whether or not this speculation is on the right track, given that MERGE is the minimal computational operation required to generate a discrete infinity of syntactic objects, its emergence is a necessary prerequisite for our species-specific linguistic mind. The evolutionary origins of the other central component of I-language—the lexicon and its atoms with all their semantic intricacies (Chomsky 2000b)—remain deeply mysterious.

3. Operations and Constraints

We assume that MERGE(X,Y) forms \{X,Y\}, and nothing else. We will occasionally refer to this operation as simplest MERGE, in order to distinguish it from proposals in the literature adopting a more complex operation (cf. Epstein et al. 2014; Fukui & Narita 2014; Collins 2017).
A computational system comprising a lexicon and MERGE applying freely will automatically satisfy some fundamental desiderata, such as recursive generation of infinitely many structures with internal constituency and discontinuous (displaced) objects. MERGE operates over syntactic objects placed in a workspace: the MERGE-mates X and Y are either taken from the lexicon or were assembled previously within the same workspace (for some relevant formal definitions, see Collins & Stabler 2016). There is no motivation for additional representations, such as numerations or lexical arrays, as employed in earlier approaches that assumed trans-derivational comparisons (Chomsky 1993, 1995; cf. Collins 1997:sect. 4.6 on this point).

We assume that MERGE is strictly binary: given that this is what is minimally necessary to create hierarchical structure, we assume that this is the only operation defined by UG (although adjunction structures may necessitate a separate operation, a point to which we return in section 5). Generation by simplest MERGE thus entails a restrictive class of recursively defined, binary-branching and discrete-hierarchical structures. Anachronistically speaking, early work on “non-configurational” languages by Ken Hale (1983) suggested that there are languages without the binarity restriction, but subsequent work showed this postulation of additional, non-binary combination operations to be unjustified; see, e.g., Webelhuth 1992 on German, Legate 2002 on Warlpiri, and Kayne 1984, 1994 for additional arguments. While challenges remain, we take binarity and the absence of “flat” structures to be a theoretically desirable and empirically feasible property of MERGE-based generation.

Restriction to simplest MERGE entails an Inclusiveness Condition (IC) that precludes the introduction of extraneous objects—for instance, traces and the bar-levels of X-bar Theory and other labels, but not copies and the detection of headedness via search (more on this below). Unlike the production rules of phrase-structure grammars, simplest MERGE thus incorporates no notion of “projection” (Chomsky 2013, 2015). IC also bars introduction of features that are not inherent to lexical items, such as the discourse-related features (topic, focus, etc.) assumed in the cartographic tradition and other approaches (e.g. Rizzi 1997; López 2009). We suggest below that MERGE is generally not triggered but applies freely. Importantly, IC need not be stipulated as part of UG: it is a corollary of simplest MERGE.

Suppose having constructed \(K = \{X,Y\} \), we proceed to merge \(K \) and some object \(W \). \(W \) is either internal to \(K \) or external to it. If \(W \) is external, then it is taken from the lexicon or has been assembled independently; this is EM. If \(W \) is internal to \(K \), then it is a term of \(K \); this is IM.
(displacement). If \(W = Y \), MERGE(K,Y) yields \(K' = \{Y,\{X,Y\}\} \), with two copies (occurrences) of \(Y \) in \(K' \). Note that there is still only one, discontinuous object \(Y \) in \(K' \), not two distinct objects; for instance, a semantically ambiguous phrase such as Mary’s book will not be interpreted differently in the multiple positions it occupies after IM (as in, e.g., Mary’s book arrived/was published Mary’s book last month).

A widely-held but, we believe, unjustified assumption is that MERGE is a “Last Resort” operation, licensed by featural requirements of the MERGE-mates (cf. Chomsky 2000a and most current literature, e.g. Pesetsky & Torrego’s 2006 Vehicle Requirement on Merge). Note that a trigger condition cannot be restricted to either EM or IM: the operation MERGE(X,Y) is the same in both cases, the only difference being that one of X, Y is a term of the other in one case, while X and Y are distinct in the other. Simplest MERGE is not triggered. Featurally-constrained structure-building requires a distinct, more complicated operation (defined as Triggered Merge in Collins & Stabler 2016; see Collins 2017 for additional discussion). The features invoked in the technical literature to license applications of MERGE are typically ad hoc and without independent justification, “EPP-features” and equivalent devices being only the most obvious case. The same holds for selectional and discourse-related features; the latter in addition violate IC, as noted above (cf. Fanselow 2006). Featural diacritics typically amount to no more than a statement that “displacement happens”; they are thus dispensable without empirical loss and with theoretical gain, in that Triggered Merge or equivalent complications become unnecessary (cf. Chomsky 2001:32, 2008:151; Richards 2016; Ott 2017b).

MERGE thus applies freely, generating expressions that receive whatever interpretation they are assigned by interfacing systems. Surface stimuli deriving from the objects constructed by I-language can have any degree of perceived “acceptability” or “deviance,” from perfect naturalness to complete unintelligibility. Since Chomsky 1955[1975] it has been recognized that

5 The “edge features” of Chomsky 2008 are equally dispensable while not technically equivalent, and were originally introduced to distinguish elements that enter into computation from those that do not, such as interjections and response particles (which Holmberg 2016 argues to be elliptical in many cases).

6 A trigger-free approach to MERGE also eliminates the motivation for counter-cyclic MERGE in subject/object raising, an extremely complex operation (Epstein et al. 2012); see Chomsky in press.

7 We should be careful to distinguish “interpretive systems” from “performance systems.” The interpretive sensorimotor and conceptual-intentional systems are systems of cognitive competence, involved in the determination of entailment and rhyme relations among expressions, for instance. Actual performance introduces all sorts of other complicating factors, such as memory constraints, irrationality, etc.
no independently given notion of “well-formedness” exists for natural language in the way it is stipulated for artificial symbolic systems (Chomsky & Lasnik 1993:508). Consequently, concerns about “overgeneration” in core syntax are unfounded; the only empirical criterion is that the grammar associate each syntactic object generated to a \(<\text{SEM,PHON}>\) pair in a way that corresponds to the knowledge of the native speaker.\(^8\) In fact, “overgeneration” must be permitted on purely empirical grounds, since “deviant” expressions are systematically used in all kinds of ways. To pick a random illustration, the expression *John will ever agree* involving NPI *ever* must be generated to be usable in contexts such as *I doubt that [John will ever agree]*. Constructions such as Right-node Raising may have similar properties (see Larson 2018).

Do we need operations other than MERGE for the construction of syntactic objects? Agreement phenomena indicate that there is an operation AGREE that relates features of syntactic objects (Chomsky 2000a, 2001). The assumption of much current work is that AGREE is asymmetric, relating initially unvalued φ-features on a *Probe* to matching, inherent φ-features of a *Goal* within the Probe’s search space (structural sister). These dependencies find their expression in morphological inflection in highly variable, language-specific ways. AGREE is structure-dependent: in (12) and (13) below, the verbal morphology indicates agreement with the *in situ* object regardless of whether the linear order is VO or OV (examples from Tallerman 2005).

(12) \(\text{ni-k-te:moa šo:čitl.} \) (Nahuatl) \(\text{Uqa jo ceh-ade-ia.} \) (Amele)
\(1\text{SG-3SG}-\text{seek flower} \) \(\text{he } \text{houses build-3PL-3 SG.PST} \)
\text{‘I seek a flower.’} \text{‘He built houses.’}

AGREE furthermore obeys structurally-conditioned minimality: regardless of the eventual surface order of constituents in (14) and (15), upon entering the derivation the inflectional Probe above the verb phrase locates the hierarchically closest Goal (underlined below) in each case—the singular subject in (14) vs. the plural one in (15), the latter subsequently displaced to the left.

(14) \(\text{Die Kinder hat/ *haben [vP die Lehrerin die Kinder erschreckt].} \) (German)
\(\text{the children has have the teacher startled} \)
\text{‘The teacher startled the children.’}

\(^8\) By contrast, the conception of syntactic computation as “crash-proof” (Frampton & Gutmann 2002, among others) is based on the dubious assumption that an I-language defines a set of well-formed, intuitively “acceptable” expressions. But there is no basis for this assumption, and the informal notion of “acceptability” involves a host of factors that under no rational conception are part of I-language.
(15) Die Kinder haben / *hat [vP die Kinder die Lehrerin erschreckt].
 the children have has the teacher startled
 ‘The children startled the teacher.’

Embedding the plural subject NP of (15) within a larger singular NP expectedly gives rise to
singular agreement, despite identical adjacency relations at the surface.

(16) [Die Geschichte über [die Kinder]] hat / *haben [vP NPs die Lehrerin erschreckt].
 the story about the children has have the teacher startled
 ‘The story about the children startled the teacher.’

Empirically, AGREE or some equivalent operation is clearly required; we set aside here many
intricacies of agreement phenomena uncovered in much detailed work on the topic (e.g. Bobaljik
2008; Harbour et al. 2008; Legate 2008). It is commonly assumed that IM is parasitic on AGREE,
but this, like the assumption that applications of MERGE are licensed by formal features,
requires a more complicated, separate movement operation. It is also empirically unfounded,
since the effects of AGREE can be observed in the absence of IM and vice versa. Consider (18),
where the matrix verb parecen ‘seem’ agrees with the in situ NP varios sobornos a políticos
‘many bribes to politicians’ (as well as with the participle descubiertos ‘discovered’).

(17) Parecen haber sido descubiertos varios sobornos a políticos. (Spanish)
 seem.3PL have.INF been discovered.3PL many bribes to politicians
 ‘Many bribes to politicians seem to have been discovered.’

The NP can raise into the matrix clause but it need not, unlike in languages such as English.
Cases of this short show that IM and AGREE are independent operations.9 IM without AGREE is
illustrated by cases such as (14) above.

Objects constructed in core syntax must be mapped onto representations that can be accessed by
C-I and SM systems: SEM and PHON, respectively. Consequently, there must be an operation
TRANSFER that hands constructed objects over to the mapping components. The mapping to
PHON is complex, involving the computation of stress and a prosodic contour, “flattening” of the
hierarchical structure, etc. (see Collins 2017 for a partial theory of this mapping, Idsardi & Rainy

9 Further arguments are needed to establish the absence of covert raising in such cases (with English-style
IM but pronunciation of the original copy); see Wurmbrand 2006 on German and Icelandic. But such
vacuous covert displacements are highly dubious on grounds of learnability alone.
2013 for general discussion, and Arregi & Nevins 2012 for a detailed case study in ‘postsyntax’).
The mapping to SEM is more direct, given that hierarchical structure is the input to semantic interpretation; just how complex it is depends on the obscure question of where the boundary between the generative procedure and C-I systems is to be drawn.

A further open question is what the effects of TRANSFER are on the syntactic derivation. Ideally, TRANSFER should impose some degree of cyclicity on the system, such that for a given syntactic object K assembled in the course of the derivation, further computation cannot modify K. This is achieved if TRANSFER renders the objects to which it applies impenetrable to later operations, thereby providing an upper bound to the internal complexity of syntactic objects operated on at any given stage of the derivation. In Chomsky 2000a and subsequent works it is suggested that the derivational phases subject to TRANSFER correspond to the thematic domain (the verb phrase, vP) and the propositional domain (the clause, CP). A common assumption in the literature is that TRANSFER to PHON (or Spell-Out) eliminates structure, such as the interior of a phase, from the derivation. This cannot be literally correct, however: transferred phases are not spelled out in their original position but can be realized elsewhere, such as when a larger object containing the phase is displaced (Obata 2010). To illustrate, in (18) the NP α contains the clausal phase β:

(18) [α the verdict [β that Tom Jones is guilty]]

Suppose that subsequent to TRANSFER of β, α raises to a higher position, as in (19):

(19) [α the verdict [β that Tom Jones is guilty]] seems to have been reached (α) by the jury

The clausal phase β is pronounced in its derived position internal to displaced α; it is not pronounced in its original position (or omitted from the final string). This means that there is no Spell-Out, and no structure is eliminated: there is only TRANSFER, which renders β inaccessible to subsequent manipulation.\footnote{We thus avoid what Collins & Stabler (2016) dub the assembly problem, first discussed in Uriagereka 1999.}

At the C-I interface, global principles of interpretation such as Condition C of the Binding Theory and the unbounded character of operator-variable dependencies (including “reconstruction” effects, as in (11) above) suggest the same conclusion: transferred phases remain accessible, but they
cannot be modified at later cycles. This is a version of the Phase Impenetrability Condition (PIC) that permits Probe-Goal relations across phase boundaries, as long as these only manipulate the Probe. Examples are the well-known quirky-subject configurations in which C-T agrees (at least optionally) with an internal argument \textit{in situ} and cases of long-distance agreement across finite-clause boundaries (D’Alessandro et al. 2008; Richards 2012).\footnote{See Epstein et al. 2016a for a theory of “phase cancellation” that may permit a stronger formulation of the PIC, with no access to what has already been transferred. For alternative ways to cancel, extend, or parametrize phases, see Gallego 2010a, den Dikken 2007, Alexiadou et al. 2014, and Chomsky 2015.}

While permitting Probe-Goal relations and interpretive dependencies, PIC blocks IM of X “out of” a phase P on the plausible assumption that the resulting discontinuity of X alters P’s internal structure.\footnote{The No-Tampering Condition (NTC) sometimes assumed in the literature is a general desideratum of computational efficiency, but the case of IM shows that it cannot hold in its strictest form: if X is a term of Y contained in W, MERGE(X,W) affects both X (now a discontinuous object) and W (now no longer containing X), but doesn’t change X or Y, e.g. by replacing either with a distinct object. This suggests that the NTC is reducible to the PIC (Gallego 2017).} Suppose X is raised from within P by IM. If syntactic objects are defined as sets of occurrences, it follows that P subsequently no longer contains X, since it does not contain the set of X’s occurrences. Consequently, inter-phasal IM is barred by the PIC, as it affects the internal constitution of previously-transferred P. PIC thus requires raising of X to the edge of P before or at TRANSFER, as well as the assumption that the edge remains accessible at the next phase. In this way, the PIC gives rise to successive-cyclic movement and its reflexes in externalization.

If smaller units such as NPs, PPs, etc. are also phases (as argued in Uriagereka 1999, Abels 2003, Den Dikken 2007, Marantz 2007, Bošković 2014, and various other works), PIC enforces cyclic movement of any internal element that will undergo modification at a later stage of the derivation. While technically coherent, this inflation of phasal categories creates significant additional complexity and threatens to render the theoretical concept of the phase vacuous. The fact that the effects associated with successive cyclic movement seem to be absent from these categories (Gallego 2012; Van Urk 2016) supports the hypothesis that vP and CP are the only phases.

The verbal and clausal phases in essence capture the “duality of interpretation” stated in terms of the D-structure/S-structure distinction of earlier theories. EM within the vP phase gives rise to configurations expressing generalized argument structure, whereas IM at the CP cycle yields chains that enter into the determination of scope/discourse properties (Chomsky 2004, 2007; Gallego 2013a, 2016). While this is a reasonable approximation of the effects of EM and IM at
the C-I interface, apparent exceptions (such as semantically vacuous displacements) pose interesting research questions.

To be sure, the basic operations MERGE, AGREE, and TRANSFER require much further formal explication; we will address some relevant issues in the following two sections.13 Despite many remaining questions, we think that it is important to appreciate the fact that an austere system as outlined so far can accommodate a significant range of facts about natural language that are equally fundamental and surprising from a naïve point of view, such as hierarchical structure and structure-dependence, the cross-linguistically variable externalization of head-complement structures, the ubiquity of displacement and “reconstruction,” and the duality of interpretation.

4. Interfaces

At the completion of each derivational cycle, the object W constructed in narrow syntax is subject to TRANSFER to the interfaces, mapping W onto SEM and PHON, accessed by C-I and SM systems, respectively. Let us refer to the mapping from narrow syntax to PHON as \textit{externalization} (EXT). How and when does EXT take place? There are several possibilities. It could be that EXT takes place “all at once,” applying to the final output of the narrow-syntactic derivation. Or it could be that the units rendered inaccessible by PIC are spelled out partially, while not being eliminated from the syntactic representation (permitting phasal objects to be moved as part of larger objects, as discussed above).

The interpretive and perceptual/articulatory performance systems accessing PHON and SEM impose constraints on the expressions freely constructed by MERGE that map onto these representations. For instance, the C-I system imposes a general requirement of \textit{Full Interpretation}: all terms of a syntactic object must be interpreted, none can be ignored.14 As a result, (20) cannot be interpreted at C-I as either “Who did John see?” or “John saw Mary,” ignoring the theta-less object $Mary$ or the vacuous operator \textit{who}, respectively.

13 We will not discuss here the operation of FEATURE INHERITANCE (F-I), introduced in Chomsky 2008 in order to account for the deletion of φ-features of phase heads. Ouali (2008) explores three possible manifestations of this operation, whereas Gallego (2014) argues that F-I can be eliminated under the Copy Theory of Movement. For reasons given in Richards 2007, F-I, like AGREE, must apply at the phase level, avoiding countercyclicity (Chomsky 2007:19 fn. 26).

14 Sportiche (2015) argues that Full Interpretation permits “neglect” of elements that are meaningless or multiply represented. On this view, agreement features valued in the course of the derivation remain without consequence at C-I; no additional mechanism that removes these features is required.
(20) \{who,\{John,\{T,\{see,\text{Mary}\}\}\}\}\}

So-called “crash-proof” models seek to bar generation of structures such as (21), given the intuitive “ill-formedness” of the derivative string (Frampton & Gutmann 2002). We think this is a mistake, for both conceptual and empirical reasons (see note 8 and related discussion above). On methodological grounds, constraints imposed on MERGE are typically redundant with more general interface conditions, such as Full Interpretation in the case of (20) (Chomsky 1986). The same is true for theta-theoretic violations, e.g. when the derivation fails to supply a strongly transitive verb with an object: the incompleteness is independently detected at the C-I interface, and there is no need to block generation of the “deviant” object, e.g. by complicating MERGE.\footnote{An important remaining question is how to handle apparent idiosyncrasies in selection. Some of these may well turn out upon closer scrutiny to be less idiosyncratic than standardly assumed, as argued recently by Melchin (2018) for 	extit{eat}/*	extit{devour}* type contrasts. Idiosyncratically selected functional prepositions plausibly fall under a general theory of morphological case realized as part of externalization.}

Furthermore, “deviant” expressions typically do have some interpretation, however inexpedient. More specific constraints are imposed by C-I on particular elements within SEM, such as those governed by the principles of Binding Theory. Thus, different types of pronouns receive interpretations that relate them to c-commanding antecedents in specific ways, accounting for the fact that 	extit{Himself likes John} does not mean “John likes himself,” the impossibility of a coreferent interpretation of “John” and “him” in 	extit{John likes him}, etc. While many aspects of Binding Theory remain to be addressed for a system obeying IC, principled explanations of core cases in terms of C-I principles appear to be within reach (Chomsky 2008, Reuland 2011).\footnote{Chomsky (2007, 2008) suggests that reflexive binding might reduce to AGREE of one Probe with multiple Goals (cf. Hiraia 2005, López 2007). For more on this idea, see Hasegawa 2005; Gallego 2010b.}

What about the other interface, which relates the core computational system to articulatory and perceptual systems involved in EXT? As noted above, EXT is necessarily much more complex than the mapping to SEM, in that hierarchical objects must be translated into an altogether distinct, sequential format. This is not the only complication: EXT violates just about every natural computational principle and carries out extensive modifications (e.g. by introducing boundary tones, prosodic contours and stress placement, etc., all in violation of IC), in ways that are furthermore highly variable across languages. While linear order plausibly plays no role in the syntactic and semantic processes yielding expressions and their interpretations, it is plainly required for vocal or gestural articulation. The mapping must be sufficiently general to
accommodate the contingencies of all possible modalities. For instance, speech requires strict temporal ordering, while gestural articulation permits a degree of simultaneity between manual and non-manual signs as well as within manual signs (Sandler & Lillo-Martin 2006, Vermeerbergen et al. 2007). The morphophonological properties superimposed as part of EXT also seem to be the locus of much, perhaps all cross-linguistic variation (in accordance with Chomsky’s 2001 *Uniformity Principle*). ¹⁷

Psycholinguistic and neurolinguistic inquiries have the potential to shed light on the status of EXT. One example is Smith & Tsimpli’s (1995) work on a subject they call Chris, whose cognitive capacities are extremely limited but who has extraordinary linguistic capacities that allow him to pick up languages very quickly (at least superficially, without significant understanding). Smith and Tsimpli investigated Chris’s reactions to invented languages of two types, one that conformed to UG principles and another that used principles that are not available to UG, such as linearity-based operations. It turned out that Chris was completely unable to deal with the language using simple computational procedures using linear order, but would master easily an invented language that conformed to UG principles in employing structure-dependent rules. Subsequent studies by Smith and Tsimpli (corroborated by Musso et al.’s 2003 findings mentioned above) suggest that normals can likewise deal relatively easily with languages conforming to UG principles, but can handle the non-UG-conforming systems relying on linear order only if they were expressly presented as a puzzle rather than a language. While preliminary, these findings strike us as suggestive.

These observations support the speculation that those properties of language that pertain exclusively to perception and articulation are ancillary, perhaps altogether external to I-language, whereas the core computational system may be close to uniform (Berwick & Chomsky 2016; but see Irurtzun this volume). ¹⁸ EXT relates very different systems, a computational system constructing hierarchical expressions on the one hand and sequential production/perception systems on the other. While the computational system appears to have evolved recently and suddenly, the SM systems had at that point been in place for hundreds of thousands of years (see,

¹⁷ For related discussion and developments in the study of parametric variation, see Biberauer et al. 2014; Eguren et al. 2016; Kayne 2013; Picallo 2014.

¹⁸ We say “close” because even a computationally minimal core syntax might permit a degree of variation when multiple derivational options are consistent with efficiency of computation. See Richards 2008 and Obata et al. 2015 for proposals along these lines.
e.g., Fitch 2010:chapter 8). Given that the linkage between these two systems is an inherently “messy” affair, EXT is a plausible source of linguistic variation—perhaps the only one.\(^\text{19}\)

Where does all of this leave us with regard to the question of evolvability? MERGE and the inventory of lexical atoms it operates over must be part of UG and as such represent evolutionary innovations specific to the human linguistic mind. What about AGREE and TRANSFER? We believe that while no firm conclusions can be drawn at this point, it is plausible that these operations are rooted in principles of efficient computation. Chomsky (2013, 2015) suggests that AGREE instantiates *minimal search* within the syntactic object, in which case its core properties (structure-dependence, minimality) would reduce to general properties of computation. With regard to TRANSFER and the interface mappings, the mapping to PHON is necessarily complex, while the mapping to SEM may be near-trivial. A plausible speculation is that EXT and its variable properties reflect not UG specifications but rather the absence thereof, if the linkage established between the computational system proper and externalization systems was a problem that had to be solved subsequently to the evolution of I-language.

5. Open Questions and Future Directions

In this section, we turn to a number of theoretical issues and outstanding questions that have emerged in recent work. While we will outline what seem to us to be plausible steps towards resolving these questions, our primary intention here is to highlight their relevance to future research in GG.

We begin by returning to the operation MERGE, which, despite its apparent simplicity, raises many questions. A narrow conception of MERGE permits only two logical options: binary EM and IM. Various further options have been proposed in the literature, such as Parallel Merge/Sideward Movement, a species of “multidominance” structures (Nunes 2004, Citko 2005), and countercyclic Late Merge (Lebeaux 1988, Fox 2002), which replaces a displaced object with a larger one. Are these options corollaries of the availability of simplest MERGE, as has sometimes been claimed, or do they require additional mechanisms, raising new evolvability

\(^{19}\) See Huybregts 2017 for relevant recent discussion (expanding on observations in Uriagereka 2012:254) of the evolutionary relevance of aerially isolated click phonemes.
problems? We believe that there are reasons for skepticism towards these extensions beyond a narrow conception of MERGE, which warrant further scrutiny in future research.

All syntactic objects in the lexicon and in the workspace WS are accessible to MERGE; there is no need for a SELECT operation (as in, e.g., Chomsky 1995). WS represents the stage of the derivation at any given point. The basic property of recursive generation requires that any object already generated be accessible to further operations. WS can contain multiple objects at a given stage, so as to permit formation of \{XP,YP\} structures (subject-predicate constructions) by EM. A derivation may, but need not, terminate whenever WS contains a single object; if it terminates in any other situation, no coherent interpretation can be assigned.

Beyond these fundamentals, many questions arise. For instance, does MERGE(X,Y) add \{X,Y\} to WS = [X,Y] (where X, Y are LIs or complex elements), yielding WS' = [X,Y,\{X,Y\}]? Or does it rather replace X and Y in WS with \{X,Y\}, yielding WS' = [{X,Y}] (as assumed in Chomsky 1995:243)? The latter view is more restrictive, and arguably more in line with basic desiderata for optimal generation: the generative procedure constructs a single object to be mapped onto PHON and SEM, not a multiplicity of objects; and considerations of computational efficiency suggest that WS should be kept minimal throughout a derivation.\(^{20}\) The same conclusion is suggested by the fact that a workspace WS' = [X,Y,\{X,Y\}] derived by MERGE(X,Y) would not ensure that subsequent operations can apply in a determinate fashion: any rule applying to X or Y would ambiguously refer to the individual objects X, Y or to the terms of K = \{X,Y\}. Indeterminacy of rules in this sense is formally unproblematic and in fact a familiar property of phrase-structure grammars; but a sensible question to ask is whether it should be permitted in an optimal I-language at all, given that it raises various technical complications (for instance with regard to the distinction between copies and repetitions, to which we return below). If the answer is negative, we are led to a view of simplest MERGE as mapping WS = [X,Y] onto WS' = [{X,Y}], reducing its complexity and avoiding indeterminate rule application. For further elaboration on this conception of MERGE as a function mapping workspaces onto workspaces, going back to Bobaljik 1995, see Collins &

\(^{20}\) A strong hypothesis about the generative procedure would be that operations never extend WS (i.e. increase the cardinality of elements contained in it). Except for the case where two elements taken from the lexicon are combined, EM and IM keep WS constant or reduce it. For related considerations (but very different conclusions), see De Vries 2009.
This restrictive view of MERGE, which seeks to curtail the complexity of WS, bars operations such as Parallel Merge (which establishes a ternary relation between the shared element X, its MERGE-mate Y, and the object Z containing Y) and Late Merge (which requires substitution of X by some more complex object; see Epstein et al. 2012). This leaves EM and IM as the only possible instantiations of simplest MERGE. We believe that future work should address these and other questions raised by the above considerations, in order to establish a restrictive “null theory” of the generative procedure that adheres to plausible—yet at present necessarily tentative—desiderata of computational efficiency.

Regardless of which implementation of recursive generation we adopt, a further central question is how a MERGE-based system can distinguish copies (created by IM) from repetitions of identical elements (created by EM), so that we correctly distinguish the two instances of the noun phrase the man in The man saw the man from those in the unaccusative construction The man arrived the man. Suppose MERGE(K,W), where W is a term of K, creates Z. Z now contains two (or more) copies of W. But upon accessing Z, how do the external interpretive systems know whether multiple instances of W are copies of a single object or independent objects (repetitions of W)?

Different answers to this question have been pursued, e.g. in terms of multidominance structures (Gärtner 2002) or an operation COPY that duplicates W prior to IM (Chomsky 1993, Nunes 2004). But complex graph-theoretic objects are not defined by simplest MERGE, and no COPY operation is necessary given that copies are simply a by-product of IM (on standard set-theoretic assumptions). Another possibility is that the system keeps track of how often the relevant object was assembled (or accessed in the lexicon) and communicates this information to the interfaces as part of TRANSFER (see Kobele 2006 and Hunter 2011 for related proposals). Along these lines, Chomsky (2007, 2012b) proposes that the distinction is established by the phasal nature of syntactic computation. At TRANSFER, phase-level memory suffices to determine whether a...
A further important question is whether objects constructed by MERGE are necessarily endocentric and identified by a determinate *label*, as in earlier phrase-structural models incorporating X-bar Theory. The assumption of universal endocentricity carried over to the Bare Phrase Structure model of Chomsky 1995, where MERGE(X,Y) is taken to yield a labeled object \{L,\{X,Y\}\}, \(L \in \{X,Y\}\). But this is a departure from simplest MERGE, rooted in the intuitive appeal and pedagogical convenience of tree notation. In its simplest form, MERGE has no “built-in” projection mechanism, hence does not yield labeled objects (Chomsky 2013, 2015, Collins 2017). Unlike displacement and linear order, projection is not an empirically detectable property of linguistic expressions but a theory-internal concept. Encoding a label as part of the object constructed by MERGE raises various non-trivial questions (Seely 2006); for instance, why can the label not undergo head movement on its own, or be pronounced? These problems vanish if labels *qua* syntactic objects do not exist, but the question of endocentricity remains in a different form: is it relevant to the syntactic derivation and/or to the interfacing systems?

Chomsky (2013) argues that the answer to this question is positive, and that an algorithm LABEL is required to supplement MERGE. For some syntactic object K, LABEL(K) locates within K the first element where search “bottoms out:” the structurally most prominent lexical item. LABEL is thus not an entirely new operation, but, like AGREE, an instantiation of minimal search. For \(K = \{H,XP\}\), where H is an LI and XP a complex object, H will be chosen as the label. The first step in a derivation necessarily relates two atomic objects, yielding \(K = \{H,R\}\). What is the label of K

23 Identity must take features into account, so that, for instance, in a double-object construction with two identical objects (*The king sold a slave a slave*), an object NP raised to the phase edge can be correctly associated with its lower copy. The distinction is trivial if the NPs are distinguished by structural vs. inherent case-marking.
in this case? If R is a feature-less root, as assumed by many contemporary approaches, it is
plausibly ignored by LABEL, and H will be correctly chosen as the label of K. On this
conception, LABEL locates a feature of H, which renders the traditional notion of “head”
irrelevant for labeling purposes. This approach to labeling raises intricate questions about the
nature of lexical items (and the distribution of their properties across components, as assumed by
models such as Distributed Morphology), which we set aside here.
X-bar-theoretic universal endocentricity has conceptually and empirically questionable
consequences. To begin with, it is trivially falsified by every case of IM, which yields an
unlabelable \{XP,YP\} configuration (putting aside head movement). Another case in point is the
DP hypothesis, a corollary of X-bar Theory. Bruening (2009) shows that while selection by a
higher verb clearly targets C (the head of the clause), there is no selection for D (only for
properties of N, e.g. number); and unlike C, D is not universal. The challenge, then, is to
accommodate D-type elements while retaining the nominal character of the overall phrase. One
possibility, suggested in Chomsky 2007 and developed by Oishi (2015), is that nominals are
headed by a nominalizer n, analogous to v as the head of the verb phrase, with D, where present,
occupying some lower position. Another is that determiners are in fact internally complex
elements, as suggested by their morphology in many languages; see, e.g., Leu 2015.
If K = \{X,Y\} and neither X nor Y is a lexical item (e.g., when X is a “specifier,” in earlier
terminology), no head is detected by LABEL. Building on Moro 2000, Chomsky (2013) argues that
this situation can motivate displacement of X: if X merges (internally) to some object W containing
K, K will no longer contain X (X being the set of its occurrences), and consequently Y will act as
the label of K. Chomsky suggests that W and X must share a feature if the resulting configuration is
to be “stable,” an idea that Chomsky (2015) extends to EPP and ECP effects (see also Rizzi 2015).
Such feature sharing is involved in subject/object raising, for instance, where the raising XP enters
into an AGREE relation with the head it raises to (T/v*, respectively; see Gallego in press for an
alternative, and Epstein et al. 2016b for further discussion).
Again building on Moro’s work, Ott (2012), Chomsky (2013, 2015), and Blümel (2017) argue
that the need to break the symmetry of \{XP,YP\} configurations (motivated by LABEL) can drive
displacement of XP, yielding phenomena such as successive-cyclic movement, raising to object,
and others. Such proposals assume that MERGE applies freely; but derivations in which relevant
applications fail to apply will not yield the required outcome. Plausibly, efficiency of
computation precludes “superfluous” applications of MERGE that have no effect on the eventual output (such as string-vacuous IM with no effect on interpretation, which would entail massive structural ambiguity of any given sentence). For proposals along these lines and relevant evidence, see e.g. Fox 2000; Chomsky 2001, 2008a; Reinhart 2006; Struckmeier 2016.

Note that unlike classical X-bar Theory, a LABEL-based system allows for the possibility that a constructed object K remains unlabeled (exocentric), e.g. when K is a root clause or created by operations that are not head-oriented in any plausible sense, e.g. syntactic scrambling. Further illumination of these issues will require a theory that answers the question of where detectable endocentricity is required: in the syntactic derivation (say, for purposes of interpreting local selectional relations), at the interfaces (say, for the computation of prosody), both, or not at all (Collins 2017)? These questions remain open for now and are in urgent need of clarification.

A further important research question is whether structure-building mechanisms beyond simplest MERGE are necessary, such as Chomsky’s (2004) PAIR-MERGE for adjuncts and De Vries’s (2012) PAR-MERGE for parenthetical expressions. Adjuncts and parentheticals have distinct properties, among them strong opacity for extraction. Thus, while (21) is ambiguous between a complementation and an adjunction structure, (22) is unambiguous, since only the former permits IM of the wh-phrase. And while an NP such as a book about NP readily permits wh-extraction of NP (23), an analogous extraction from a corresponding parenthetical appositive NP yields no coherent interpretation (24).

(21) John decided on the boat.

(22) What did John decide on _?

(23) What did John read a book about _?

(24) *What did John read something, a book about _?

Chomsky (2004) proposes that adjunction is the result of an operation PAIR-MERGE, which yields asymmetric (ordered) pairs rather than symmetric (unordered) sets, permitting the identification of an adjunct in a phrase-modifier configuration. PAIR-MERGE may also be required for unstructured coordination (as in John is tall, happy, hungry, bored with TV, etc.), a construction that was recognized as problematic in the earliest work in GG, due to the apparent
absence of internal hierarchical organization. Even unrestricted rewriting systems cannot generate these expressions, nor can transformations (see Lasnik & Uriagereka 2012 for a critical review of some proposals in Chomsky & Miller 1963).

PAIR-MERGE is a formally distinct operation from simplest MERGE, hence raises problems of evolvability. Ideally, it could be shown to be dispensable. We do not take up the challenge here; for some suggestive work on adjunction that does not invoke special operations (but at the cost of introducing other stipulations), see Hunter 2015. As for parenthesis, it seems to us that the only principled approach consistent with evolvability considerations relegates the phenomenon entirely to discourse pragmatics, obviating the need to enrich UG with special operations. That is, parenthetical expressions, which are frequently elliptical, are generated independently and interpolated or juxtaposed only in production (see Ott & Onea 2015, Ott 2016a,b).

Traditionally, adjunction is also assumed to be involved in head movement (HM), but such an approach has several unwelcome consequences (Chomsky 2015:12ff.; also Carstens et al. 2016). HM violates principles of minimal computation and cannot be implemented by simplest MERGE, given its countercyclic character. It also typically lacks semantic effects, at least for the core cases of verb raising. This vacuity and the fact that the configurations standardly described in terms of HM are highly variable across languages suggest that at least some instances of HM might fall within the mapping to PHON (as suggested in Chomsky 2001 and supported by specific arguments in Zwart 2017 and elsewhere), although there are interesting arguments to the contrary (e.g., Roberts 2010). Other cases might reduce to core-syntactic IM, in line with proposals in Toyoshima 2000 and Matushansky 2006. We believe that a fresh take on the relevant phenomena is needed, based on the recognition that traditional implementations of HM are in fact problems restated in technical terms rather than solutions.

24 A possible analysis of unstructured coordination that avoids these problems could take each AP in the above example to be an elliptical ‘afterthought’ expression in the sense of Ott & De Vries 2016, Ott 2016. This would capture the central properties of the construction: infinite iterability and individual predication of each AP of the subject. For reasons of space, we cannot explore this idea further here.

25 See Epstein et al. 2016a on PAIR-MERGE as a mechanism for affixation.

26 For a different, syntactic approach to HM, see Chomsky 2015. Core-syntactic HM is presupposed by many approaches to diverse phenomena, such as Donati’s (2006) analysis of free relatives, where the wh-element is analyzed as a D head that determines the label of the embedded clause after IM. See Ott 2011 for an alternative that is consistent with a non-syntactic conception of HM, but relies on specific assumptions concerning the interaction of TRANSFER and LABEL.
We noted above that simplest MERGE applies freely, and that features which are not introduced into the derivation by LIs, such as those pertaining to informational functions of XPs, violate IC. “Cartographic” analyses, where such features take center stage as the driving force behind displacements to the peripheries, are essentially construction-based approaches, with the notion “construction” recast in terms of features and phrase-structure rules generating cascades of projections. But informational notions such as “topic” or “focus,” like grammatical functions or thematic roles, are properties of configurations and their syntactic/discursive context, not of individual syntactic objects (Chomsky 1965; Hale & Keyser 1993); consequently, they should neither be represented in the lexicon, nor in the narrow syntactic derivation (cf. Uriagereka 2003; Fortuny 2008; López 2009; Gallego 2013a, 2016).

The Cartographic Program pursued by Cinque, Rizzi and many others has revealed remarkable facts and generalizations, such as Cinque’s (1999) hierarchy of adverbial positions and Rizzi’s (1997) structure for the left periphery. But the postulated structures raise serious problems, as acknowledged by Cinque & Rizzi (2010:63). As we observed above, any linguistic theory is going to have to meet two conditions: the conditions of acquirability and evolvability. UG must permit acquisition of I-language, and it must have evolved in the human lineage—and if current best guesses are correct, it must have evolved recently. The cascades of projections postulated for various areas of clause structure cannot possibly be learned: there is no conceivable evidence that a child could rely on to infer these hierarchical sequences from experience. But attributing complex functional hierarchies to UG raises an evolutionary puzzle: it seems virtually unimaginable that the complex cartographic templates could have evolved as irreducible properties of UG. The conclusion is that cartographic sequences of positions are problems, not solutions. As aptly discussed by Rizzi (2013b), the challenge is to derive the descriptive generalizations from more elementary principles that are motivated independently.

There is some promising work in this direction, such as Ernst’s (2002) non-templatic analysis of adjunct ordering that derives Cinque’s universal template from interpretive properties of adverbial expressions, rendering a “hard-coded” functional sequence obsolete. Developing alternatives to templatic approaches to the clausal peripheries will require, we believe, a re-evaluation of the extent to which the superficial complexity of “sentences” in fact reflects amalgamation of independent expressions in discourse, rather than syntactic composition. In contrast to Cinque’s (1983) early work on “topic constructions,” the cartographic tradition
assumes that all sorts of peripheral elements, including left- and right-dislocated constituents, are structurally integrated into the clause structure. As a result, the puzzling properties of dislocated elements that distinguish them from displaced constituents (such as *wh*-phrases) are merely restated, not explained, including their universal extra-peripheral ordering. An alternative, developed in Ott 2014, 2016b, 2017a, denies the reality of structurally complex peripheries by analyzing dislocated elements, unlike fronted or extraposed XPs, as structurally independent elliptical expressions that are interpretively related to their host clauses by principles of discourse organization and anaphora. On this alternative approach, cartography’s peripheral functional sequence remains only as an artifact of description.

We adumbrated above the idea that the core computation yields hierarchically-structured, language-invariant expressions (entering into “thought” processes of various kinds at the interface with C-I systems) whereas the mapping that feeds externalization-related SM systems is necessarily more involved and indirect. This asymmetry between the two interfaces leads Chomsky (2014) to adopt the following hypothesis:

(25) I-language is optimized relative to the C-I interface alone, with EXT ancillary.

The adjective “optimized” here refers to the kinds of considerations introduced above: relying only on simplest MERGE and no more complex operations. As we pointed out, this strong thesis is consistent with the general fact that operations of I-language operate over structures, not strings (with concomitant beneficial implications for language acquisition), and that structured objects provide the input to compositional interpretation. At the same time, challenges for (25) emerge from recent work suggesting a rather direct involvement of morphophonological factors in the syntactic computation. Richards (2016) develops an elaborate theoretical framework in which the articulation systems impose universal constraints that, in conjunction with independent language-specific differences, can account for central aspects of cross-linguistic variation (see also Mathieu 2016 for a related proposal). In this model, metrical requirements of affixes and other conditions imposed by PHON can effect the application of MERGE and other operations.\(^{27}\) Given the

\(^{27}\) Richards explicitly discusses instances of derivational opacity, where phonological factors trigger movements whose effects are later undone by subsequent operations. This entails that the
impressive results achieved by Richards’ system, his work poses an interesting challenge to the hypothesis that EXT is an ancillary process. The same is true for recent work arguing for the relevance of linear order to various syntactic and semantic processes (Kayne 2011, 2018; Barker 2012; Bruening 2014; Willer Gold 2018), contrary to our suggestions above. If and how these challenges can be reconciled with (25) is an important topic for future research. As noted above, a related open question pertaining to the overall organization of the system is whether the narrow-syntactic computation includes an operation AGREE in addition to MERGE, or whether featural interactions are restricted to EXT. The former view is based on the assumption that AGREE mediates assignment of structural Case and serves to eliminate semantically redundant φ-features from the syntactic object, as required by a particularly strong version of the Full Interpretation principle (Chomsky 2000a et seq., building on observations of Vergnaud 1977[2006] and George & Kornfilt 1981). Another possibility is that case is a purely morphological phenomenon (Marantz 1991; McFadden 2004), and that uninterpretable features are simply neglected at the C-I interface (in the spirit of Sportiche 2015). The latter scenario is consistent with relegating AGREE to EXT, where it would then serve the sole purpose of determining the morphological form of initially underspecified inflectional elements (cf. Bobaljik 2008, and Preminger 2014 for an opposing view; also Landau 2016 for an argument from Control). Also in view of the cross-linguistically highly variable expression of inflection, AGREE seems to fit rather naturally with other operations pertaining to EXT. We believe that there are interesting arguments in either direction and leave the matter here as an important topic for future research.

These and many other issues concerning the overall architecture of the computational system(s) underlying human linguistic capacity remain to be adequately addressed and explored. The mere morphophonology in his model cannot simply act as an output filter, but must be directly involved in the narrow-syntactic derivation.

Kayne (2018) presents a series of arguments for the inclusion of linear order in core-syntactic operations, proposing an operation ip-merge that yields an ordered pair expressing a relation of immediate precedence. Kayne argues furthermore that the operation is constrained such as to only construct LCA-compliant syntactic objects (in the sense of Kayne 1994). This logic strikes us as inconsistent: where LCA or some similar principle determines order, it is wholly redundant to impose order independently in narrow syntax. Kayne’s empirical arguments also strike us as unconvincing, as they appear to pertain primarily to pragmatics/discourse organization and production/processing, hence EXT. For reasons of space, however, we have to leave a proper discussion of Kayne’s arguments to another occasion.
fact that they can be coherently stated testifies to the progress GG has made over the years, providing ample fertile ground for further stimulating research.

6. Conclusion

Even within the expressly narrow focus of GG on linguistic competence, virtually every aspect of (I-)language remains a problem. Nevertheless, significant progress has been made since the 1950s, and in recent years the establishment of a minimal formal toolkit meeting basic desiderata of explanatory and evolutionary adequacy has become a feasible goal. As always, it remains to be seen to what extent such a toolkit can be reconciled with the empirical challenges and puzzles that inevitably arise wherever we look. As documented above, an approach based on the operation MERGE raises new problems on its own, both empirical and conceptual. In fact, in many cases it remains to be determined where to even look for solutions, e.g. when we ask whether heavy-NP shift falls within the MERGE-based system of core computation or is part of externalization. In our view, this conclusion makes the challenges ahead no less exciting, but should rather fuel our appreciation of the fascinating research questions that present themselves once we approach human language as an object of the natural world.

References

