In defense of an HPSG-based theory of non-constituent coordination:
A reply to Kubota and Levine

Shûichi Yatabe Wai Lok Tam
University of Tokyo Primagest, Inc.

July 17, 2019

1 Introduction

In many languages, it often seems possible, at least on the surface, to coordinate strings that do not form canonical constituents. In most syntactic theories, including Head-Driven Phrase Structure Grammar (HPSG), this phenomenon, which is often referred to as non-constituent coordination, is analyzed as involving coordination of canonical constituents in some way; for instance, an English sentence like *Keats traveled to, and Chapman returned from, the Isle of Capri* (an example taken from Steedman (1996)) is analyzed as involving coordination of two sentences, *Keats traveled to the Isle of Capri* and *Chapman returned from the Isle of Capri*. In Categorial Grammar (CG), on the other hand, non-constituent coordination is typically analyzed as coordination of non-canonical constituents; for instance, the sentence above is analyzed as involving coordination of two constituents, *Keats traveled to* and *Chapman returned from*, both of which are taken to belong to a category like S/NP, which contains all and only constituents that are capable of becoming an S if a constituent belonging to the category NP is added to its right edge.

In Kubota and Levine (2015), the authors examine the HPSG-based theories of non-constituent coordination proposed in Yatabe (2001), Beavers and Sag (2004), and later works as exemplars of the first type of theory, and argue that those theories compare unfavorably with a theory that can be formulated within the framework of CG. At the heart of their criticism of the HPSG-based theories is the long-known fact that sentences involving non-constituent coordination can mean something different from what is meant by the supposedly corresponding sentences involving only coordination of canonical constituents, as shown by the examples below.

(1) a. Terry gave no man a book on Friday or a record on Saturday.
 b. Terry gave no man a book on Friday or gave no man a record on Saturday.

(2) a. I said different things to Robin on Thursday and Leslie on Friday.
 b. I said different things to Robin on Thursday and said different things to Leslie on Friday.

According to Kubota and Levine, the above-mentioned HPSG-based theories claim that sentences like (1a) and (2a) are generated by applying prosodic ellipsis to sentences like (1b) and (2b) respectively, and as a result, the theories are unable to capture the
semantic contrast between (1a) and (1b) and between (2a) and (2b) without recourse to some ad-hoc mechanism.

As noted above, in CG-based theories, apparent non-constituents like the strings *a book on Friday* and *a record on Saturday* in (1a) are analyzed as full-fledged constituents that can be coordinated with each other. Kubota and Levine refer to this way of analyzing so-called non-constituent coordination as the direct coordination analysis of noncanonical coordination, and formulate a unique variant of such an account by developing a new grammatical theory, Hybrid Type-Logical Categorial Grammar (Hybrid TLCG), which in a sense combines the Lambek calculus and more recent variants of CG in which linear order is treated in a separate prosodic component. They then show that the interpretation of sentences like those above can be performed in an entirely unified, elegant fashion in that account.

In this response to Kubota and Levine (2015), we will first show, in section 2, that these authors’ characterization of the HPSG-based theories is inaccurate; in the HPSG-based theory proposed in Yatabe (2001) and modified in Yatabe (2012), sentences like (1a) and (2a) are not treated simply as cases of prosodic ellipsis, and the interpretation of such sentences poses no empirical problem for the theory. We will next examine, in section 3, whether the HPSG-based theory in question is any more complicated than Kubota and Levine’s theory; it will be argued there that there is no good reason to believe that the two theories differ in overall complexity. And in section 4, we will point out one potential empirical problem with Kubota and Levine’s theory, a problem posed by the phenomenon of summative agreement.

2 A synopsis of an HPSG-based theory of non-constituent coordination

Kubota and Levine say the following about the HPSG-based theories of non-constituent coordination.

In this approach (Yatabe 2001; Crysmann 2003; Beavers and Sag 2004; Chaves 2007), advocated by several authors in the recent HPSG literature utilizing the so-called linearization-based architecture of HPSG, examples like those in (1) receive analyses roughly along the following lines:

(2) a. \[[S I gave Robin a book] \& [S Leslie offered Terry a pair of pliers].
 b. \[[S I gave Robin a pair of pliers] \& [S Leslie offered Terry, a pair of pliers].
 c. \[[S Leslie bought a CD], and [S Robin bought a book].

The key claim, which is effectively the same as the old idea of CONJUNCTION REDUCTION (Gleitman 1965; Jackendoff 1971) from the transformational literature, is that the apparent non-constituent coordination in these examples is in fact only apparent, and that these examples all involve full-fledged coordination in the ‘underlying’ combinatoric structure feeding into semantic interpretation. The surface form of the sentence is obtained by ellipsis of the relevant part of the sentence via identity in form to some string in the other conjunct. (p. 522)

This is arguably an accurate characterization of what is proposed in Beavers and Sag (2004), except that the sentence cited as (2c) here is an instance of gapping, a
phenomenon that is generally distinguished from non-constituent coordination in the HPSG literature.1

However, the passage above is demonstrably inaccurate as a description of the theory proposed in Yatabe (2001), the first document cited in it. On the first page of that document, it is stated that “In the theory proposed, it is claimed that semantic composition (including ‘quantifier retrieval’) takes place not when some signs are syntactically combined to produce a new, larger sign but when some domain objects (which are essentially prosodic constituents) are merged (by the total or partial compaction operation) to produce a new domain object (i.e. a new, larger prosodic constituent).”1

In other words, the structure that feeds into semantic interpretation in this theory is not the ‘underlying’, i.e. pre-ellipsis, syntactic structure but rather the surface, i.e. post-ellipsis, prosodic structure.

In this section, we will explain exactly how the theory in question computes the meaning of a sentence on the basis of its surface prosodic structure, as opposed to its syntactic structure. What is presented below is largely a recapitulation of what is proposed in Yatabe (2001) and Yatabe (2012), but fills in some details that are left unspecified there. We will presuppose familiarity with the basics of the textbook version of HPSG (see Pollard and Sag (1994) and Sag et al. (2003)2) but nothing more.

\section{Linearization-based HPSG}

The syntactic framework that we use to develop our theory is Linearization-based HPSG, the version of HPSG proposed in works such as Reape (1994) and Kathol and Pollard (1995). In this framework, each node in a syntactic phrase-structure tree is associated with what is called an order domain, which can be viewed as a list of prosodic constituents that the words dominated by that node are assembled into. An order domain is a list of domain objects, and is given as the value of the dom feature. A domain object, which represents a prosodic constituent, is very much like a sign; unlike a sign, however, it does not carry any information as to its internal morphosyntactic structure. Departing from an assumption adopted in most versions of Linearization-based HPSG, we will assume in the present article that morphosyntactic constituency is represented not by an unordered tree but by a tree, and that the order of domain objects in an order domain largely reflects the order of the signs that have given rise to those domain objects. (More specifically, we assume that the order of domain objects

1In a gapping construction, what is semantically shared by the ‘conjuncts’ belongs unambiguously to the first ‘conjunct’ in the syntactic representation, as shown by an example like Tom is tall and his brothers short (taken from McCawley (1988, p. 532)), in which the verb that is semantically shared by the two ‘conjuncts’ shows the agreement pattern that is appropriate only for the first ‘conjunct’. (The reason for the scare quotes will become clear shortly.) This contrasts with what we find in non-constituent coordination constructions, giving initial plausibility to the view that gapping is a phenomenon distinct from non-constituent coordination. We assume that the scope fact regarding an example like John can’t eat steak and Mary just spam—it’s not fair, discussed in Kubota and Levine (2015) and the references cited there, indicates that what looks like a non-initial conjunct in a gapping construction is in fact an adjunct, as proposed in Culicover and Jackendoff (2005, section 7.8). Since a gapping construction may involve more than one gapped clause as in Mrs. J can’t live in Boston, her husband in LA, and their children in Osaka, we need to assume that the grammar of English contains a phrase-structure schema that is specifically responsible for licensing gapping constructions and that the schema allows non-binary branching unlike the schema that licenses regular head-adjunct structures.

2The analysis of summative agreement that was proposed in Yatabe (2003) and will be recapitulated in section 4 below relies crucially on the formulation presented in Pollard and Sag (1994), where linguistic structures are modelled by possibly reentrant feature structures. All the other aspects of the present article can be understood within the formulation presented in Sag et al. (2003), which does not allow for reentrancy and thus does not distinguish between type identity and token identity.
We will use a concrete example to explicate the relationship between signs, which are each associated with a node, and domain objects. Figure 1 shows part of the structure assigned to the English sentence *The man saw it*. What is shown is the local subtree in which the subject DP and the VP combine to become the matrix clause. The order domain (i.e. the dom value) of the VP node consists of two domain objects, one that is pronounced *saw*, and the other one that is pronounced *it*; this indicates that this VP is to be pronounced *saw it*. Likewise, the order domain of the DP node indicates that this DP is to be pronounced *the man*, and the order domain of the S node indicates that the S node is to be pronounced *The man saw it*.

Notice that the subject DP node, whose order domain contains two domain objects, contributes to the order domain of the S node only one domain object, which is pronounced *the man*. What is at work here is an operation called total compaction. (3) is a simplified description of the way the total compaction operation takes a sign and turns it into a single domain object.

(3) Total compaction (Preliminary description)

$$\begin{align*}
\text{SYNSEM} &\quad \alpha_0 \\
\text{DOM} &\quad \left\{ \begin{array}{l}
\text{PHON} &\quad \beta_1 \\
\text{SYNSEM} &\quad \alpha_1 \\
\ldots &\quad \ldots \\
\text{PHON} &\quad \beta_n \\
\text{SYNSEM} &\quad \alpha_n
\end{array} \right\}
\end{align*}$$

$$\Rightarrow \quad \text{PHON} \quad \langle \beta_1, \ldots, \beta_n \rangle$$

What is shown on the left of the arrow is the input to the operation; the input is a sign. On the right of the arrow is shown the output of the operation; the output is a domain object. The domain object that is created by totally compacting a sign X is placed in the order domain of the mother of X. In Figure 1, the domain object that is created by totally compacting the subject DP has been placed in the order domain of the S. We say that a node has been liberated when the node is not totally compacted and all the domain objects in the order domain of the node are inherited unaltered by the order domain of the mother of that node. The VP in Figure 1 is liberated. The two domain objects in the order domain of the VP node are both integrated, unaltered, into the order domain of the S node.

There is a third process that a node may undergo, besides total compaction and liberation. We say that a sign has been partially compacted when (i) zero or more

3In Reape (1994) and Kathol and Pollard (1995), the main function of order domains is to determine the linear order of constituents. That is why they were designated as order domains. In contrast, in the present work, the main function of order domains is to represent prosodic constituency; apart from the effects of extraposition, the linear order of constituents is determined by the syntactic tree, each of whose node is associated with a sign. We continue to use terms like order domains, however, in order to underscore the formal parallelism between the theory proposed here and the theories proposed in Reape (1994) and Kathol and Pollard (1995).
domain objects are excised from its order domain and (ii) the sign thus altered is compacted. Note that, by definition, total compaction is in fact a type of partial compaction, not a process separate from it. When a sign is partially compacted, the domain objects that were excised from its order domain (if any) are inherited by the order domain of the mother of that sign, and the domain object that is newly created by compaction is also placed in the order domain of the mother. We will say that those domain objects that were excised from the order domain of a sign and inherited by the order domain of the mother of that sign have escaped compaction, and we will say that the domain objects that were not excised and thus were part of the sign that was compacted (in stage (ii) of partial compaction) have undergone compaction.

In the original definition of partial compaction presented in Kathol and Pollard (1995), it is assumed that only domain objects corresponding to extraposable types of expressions (such as domain objects corresponding to relative clauses in English) can escape compaction, but here we drop that restriction and assume that, in a head-first language like English, any domain object can escape compaction as long as it is not the leftmost element of an order domain. (4) illustrates the way the partial compaction operation takes a sign and turns it into one or more domain objects, which are to be placed in the order domain of the mother of that sign.

(4) Partial compaction for head-first languages (Preliminary description):

\[
\begin{align*}
\text{SYNSEM } &\alpha_0 \\
\text{DOM } &\left\{ \begin{array}{l}
\text{PHON } \langle \beta_1, \ldots, \beta_i \rangle \\
\text{SYNSEM } \alpha_1 \\
\vdots \\
\text{PHON } \langle \beta_{i+1}, \ldots, \beta_n \rangle \\
\text{SYNSEM } \alpha_{i+1} \\
\vdots \\
\text{PHON } \beta_n \\
\text{SYNSEM } \alpha_n \\
\end{array} \right\} \\
\Rightarrow &\left\{ \begin{array}{l}
\text{PHON } \langle \beta_1, \ldots, \beta_i \rangle \\
\text{SYNSEM } \alpha_0 \\
\vdots \\
\text{PHON } \beta_{i+1} \\
\text{SYNSEM } \alpha_{i+1} \\
\vdots \\
\text{PHON } \beta_n \\
\text{SYNSEM } \alpha_n \\
\end{array} \right\}
\end{align*}
\]

In (4), the dom value of the sign that is fed to the operation as the input has \(n \) domain objects in it. Of those domain objects, the first (i.e. leftmost) \(i \) domain objects are bundled together and turned into a single domain object, while the remaining domain objects, if any, are left out of the bundle and continue to be separate domain objects.

Various types of extraposition constructions may result when an expression is partially compacted and surfaces as a discontinuous constituent. Figure 2 shows how the English extraposition construction can be generated via partial compaction. What is shown in the figure is the local subtree in which the subject DP \textit{a man who was wearing a black cloak}.
wearing a black cloak and the VP entered combine to become the sentence A man entered who was wearing a black cloak. Here, the subject DP has been partially compacted; the relative clause has been left out of the bundle and appears in the sentence-final position.

What happens to each sign must conform to the set of constraints shown in (5). Whenever a sign whose order domain contains more than one domain object is required to be partially compacted, there is more than one form that the order domain of the mother of that sign can take. This helps to account for the fact that there can often be more than one possible prosodic phrasing for a given syntactic representation, and as we will see in subsection 2.4 below, partial compaction also plays a crucial role in our account of sentences (1a) and (2a).

(5)

a. In a head-complement structure whose head is not nominal and in a head-subject structure, the head is liberated and the non-head is partially compacted.

b. In a head-adjunct structure whose head is not nominal, the head and the adjunct are both partially compacted.

c. In a headed structure whose head is nominal (i.e. an N, a D, or a projection thereof) and whose non-head is not a marker, the head is totally compacted and the non-head is partially compacted.

We assume that a phrase like the man is headed by the determiner, so the sign man in Figure 1 is only required to be partially compacted, although in this case it happens to be totally compacted.

Two caveats concerning the style of our presentation are in order here before proceeding further. First, throughout this article, we will talk as if a phrase-structure tree were constructed from the bottom up when that way of talking makes the presentation easier to follow, although Linearization-based HPSG is, just like the textbook version of HPSG, a constraint-based formalism in which each grammatical rule or principle is employed not to build a phrase-structure tree from the bottom up but rather to determine whether a given, fully formed representation is admissible or not. Second, in our exposition, we will sometimes use the words sign and node interchangeably, since a sign is always associated with a node in a syntactic phrase-structure tree, and the distinction between the two can be immaterial.

2.2 Minimal recursion semantics

Now we turn to the issue of semantic composition. We make essential use of a modified version of Minimal Recursion Semantics (MRS), a theory of semantic composition proposed in Copestake et al. (2005), so we need to present the basics of MRS first.

MRS is one of the several mutually related semantic formalisms in which semantic representations are allowed to be underspecified so that they can stand for more than one reading of a sentence simultaneously. In MRS, the meaning of a word is expressed by what is called an elementary predication, which consists of a predicate and its arguments, and the meaning of a phrase is expressed by a sequence of elementary predications. Each elementary predication in such a sequence is given a handle, which indicates precisely how that elementary predication is to fit into the overall semantic...

4In these constraints, nominal expressions and non-nominal headed expressions are treated differently. The motivation for this distinction has to do with a certain restriction on long-distance scrambling in Japanese, as explained in Yatabe (2009, fn. 6). The distinction plays no role in the analysis to be presented in the rest of this article.
representation. Let us take the following sequence of five elementary predications as an example.

\[(6) \langle h_0 : \text{every}(x, h_1, h_2),
\quad h_1 : \text{smart}(x),
\quad h_1 : \text{student}(x),
\quad h_3 : \text{probably}(h_4),
\quad h_5 : \text{agrees}(x) \rangle \]

These five elementary predications, each prefaced with its handle, represent the meaning of the words every, smart, student, probably, and agrees respectively, and the sequence as a whole is supposed to represent the two possible meanings of the sentence Every smart student probably agrees, one in which every smart student outscopes probably and another in which the universal quantifier is outscoped by the adverb. The three arguments of the predicate every are the variable that the quantifier binds, the restrictor of the quantifier, and the (nuclear) scope of the quantifier, respectively.

In an MRS representation, elementary predications that are prefaced by the same handle are interpreted as being conjoined with each other. Thus, the second and the third elementary predication in this example, which both have the handle \(h_1\), are interpreted as conjoined with each other.

The capacity of an MRS representation to serve as an underspecified representation that can stand for more than one semantic interpretation comes from the fact that handles that are given different names (such as \(h_1\) and \(h_2\)) may or may not be the same handle. The representation in (6) becomes (7) if \(h_2 = h_3\) and \(h_4 = h_5\), and becomes (8) if \(h_4 = h_0\) and \(h_2 = h_5\).

\[(7) \langle h_0 : \text{every}(x, h_1, h_2),
\quad h_1 : \text{smart}(x),
\quad h_1 : \text{student}(x),
\quad h_2 : \text{probably}(h_4),
\quad h_4 : \text{agrees}(x) \rangle \]

\[(8) \langle h_4 : \text{every}(x, h_1, h_2),
\quad h_1 : \text{smart}(x),
\quad h_1 : \text{student}(x),
\quad h_3 : \text{probably}(h_4),
\quad h_2 : \text{agrees}(x) \rangle \]

When the handle of a set of elementary predications is identical to a handle filling an argument slot of a predicate, the set of elementary predications is interpreted as filling that argument slot. Thus, the representation in (7), in which \(h_0\) is the top handle, i.e. the outermost handle, can be rewritten as (9), and (8), in which \(h_3\) is the top handle, can be rewritten as (10). The former is the reading in which the universal quantifier takes wide scope over the adverbial, and the latter is the reading in which the adverbial takes scope over the universal quantifier.

\[(9) \text{every}(x, \text{smart}(x) \wedge \text{student}(x), \text{probably}(\text{agrees}(x))) \]

\[(10) \text{probably}(\text{every}(x, \text{smart}(x) \wedge \text{student}(x), \text{agrees}(x))) \]

These two are the only meanings that correspond to the underspecified representation in (6) because it is assumed (i) that there is a global top handle that outscopes every other handle, (ii) that, for each handle filling an argument slot of a predicate, there must be at least one elementary predication whose handle is identical to it, and (iii)
that an elementary predication cannot be interpreted as filling more than one argument slot. The third assumption, which requires that elementary predications in an MRS representation should form a tree, prevents \(h_5 \) from being equated with \(h_1 \) and with \(h_2 \) at the same time, for example. Another constraint that is imposed on MRS representations is that a variable that is bound by a quantifier in an MRS representation cannot be reused as a free variable or a variable bound by another quantifier in the same MRS representation, although this condition, which is referred to as the variable binding condition in the literature, plays no role in the above example.

2.3 Compaction-driven meaning assembly

We are now in a position to explicate how semantic composition can be performed on the basis of prosodic structure. It turns out that all that is required is a simple modification to the way MRS is integrated into Linearization-based HPSG.

Figure 3 illustrates how semantic composition is performed in a standard variety of Linearization-based HPSG. In this figure, which shows the syntactic phrase-structure tree assigned to the sentence *Some boy saw every girl* in standard versions of Linearization-based HPSG, a determiner *every* and a noun *girl* combine to form a DP, which combines with a transitive verb *saw* to become a VP, which then combines with a subject DP *some boy* (whose internal structure is suppressed in this figure) to become a sentence. The sign at each node in the representation is associated with the \textit{synsem} feature and the \textit{dom} feature. The value of the \textit{synsem} feature, which will sometimes be abbreviated as \textit{ss} below, is a feature structure that is equipped with the \textit{category} feature, which is abbreviated below as \textit{cat}, and the \textit{content} feature, abbreviated either as \textit{cont} or as \textit{cn} below.\(^5\) The \textit{cont} value of the sign associated with each node represents the semantic content of that node; when MRS is used, the \textit{cont} value of each node is an MRS representation of the content of that node. In each local subtree, the \textit{cont} value of the mother is computed on the basis of the \textit{cont} values of the daughter nodes.

What is to be noted here is that, in this standard picture, meaning assembly proceeds along two routes, so to speak. On the one hand, the meaning of successively larger signs is computed on the basis of the meaning of their daughters. But at the same time, as a side effect of this, the meaning of successively larger domain objects is computed as well, since the \textit{cont} value of each domain object mirrors the \textit{cont} value of the sign whose compaction gave rise to that domain object. For instance, let us see how the meaning of *every* and that of *girl* are combined to yield the meaning of the phrase *every girl* in Figure 3. This process takes place in the local subtree at the very bottom, where the meaning of the DP sign *every girl* (i.e. the denotation of \([10]\)) is computed on the basis of the meaning of the D sign *every* (i.e. the denotation of \([12]\)) and the meaning of the N sign *girl* (i.e. the denotation of \([14]\)). (The denotation of \([10]\) is schematically shown within the sign associated with the top node, and the denotations of \([12]\) and \([14]\) are schematically shown within the sign associated with the object DP node.) But at the same time, if you ignore the \textit{cont} values of signs and instead focus on the \textit{cont} values of domain objects in the figure, it looks as though the semantic content of the second domain object in the order domain of the VP node (namely the domain object to be pronounced “every girl”) had been computed by combining the semantic content of the first and the second domain object in the order domain of the object DP node (namely the two domain objects to be pronounced “every” and “girl” respectively.)

In the theory to be explicated below, we control this second route of meaning assembly, which is realized in the \textit{cont} values of domain objects, directly, rather than

\(^5\)The features \textit{category} and \textit{content} are called \textit{syntax} and \textit{semantics} respectively in Sag \textit{et al.} (2003).
Figure 3: A schematic representation of the structure assigned to the sentence *Some boy saw every girl* in the standard versions of Linearization-based HPSG.
letting it simply mirror what takes place in the \textit{cont} values of signs. Meaning assembly is compaction-driven in this theory, in the sense that one step of meaning assembly takes place every time a sign undergoes compaction and a new domain object is created. Since domain objects are representations of prosodic constituents, the proposed theory can be regarded as an attempt to modify the HPSG framework to capture the insight, expressed most clearly in Steedman (2000), that the linguistic objects that need to be given semantic interpretation are strings that are viewed in most grammatical theories as prosodic constituents, as opposed to morphosyntactic constituents.

(The remainder of this subsection is an exposition of the technical details of the theory. Those readers who are not interested in seeing all such details might wish to skip to subsection 2.4. Much of the rest of this article will be understandable even if these technical details are skipped.)

In the theory that we advocate, the value of the \textit{synsem/content} feature is a feature structure with the following features: \textit{ep}, \textit{key}, \textit{ltop}, \textit{semhead}, \textit{index}, \textit{h-store}, and \textit{h-cons}. Below, we will describe how each of these features is utilized within the \textit{content} values of domain objects as well as within the \textit{content} values of signs.

The \textit{ep} value of a domain object is a list of elementary predications that represents the meaning of that domain object. For instance, the \textit{ep} value of a domain object representing the expression \textit{every girl} would be as shown in (11).

\begin{equation}
\begin{cases}
\text{HNDL} & h5 \\
\text{RELN} & \text{every} \\
\text{VAR} & y \\
\text{RESTRICTOR} & h6 \\
\text{SCOPE} & h7
\end{cases} \quad , \quad \begin{cases}
\text{HNDL} & h12 \\
\text{RELN} & \text{girl} \\
\text{INSTANCE} & y
\end{cases}
\end{equation}

Within each elementary predication, the \textit{HNDL} value represents the handle of that elementary predication, and the \textit{RELN} value represents the relation that holds together that elementary predication. We assume that, unlike the \textit{ep} value of a domain object, the \textit{ep} value of a sign is always an empty list.

The \textit{key} value of a phrase, which is determined according to the rules in (12), shows the meaning of the head of that phrase. We assume that the \textit{key} value of a word is identical to the \textit{ep} value of the sole domain object in its order domain.

\begin{equation}
\begin{aligned}
\text{a.} & \quad \text{The } \textit{key} \text{ value of a headed phrase is identical to the } \textit{key} \text{ value of the head daughter.} \\
\text{b.} & \quad \text{The } \textit{key} \text{ value of a coordinate structure is the list obtained by concatenating the } \textit{key} \text{ values of the conjuncts.}^6
\end{aligned}
\end{equation}

The \textit{key} values of signs are used to distinguish intersective modifiers from non-intersective ones (see (13) below) and to distinguish quantificational DPs from non-quantificational DPs (see Appendices B and D). Since the \textit{key} feature does not have any role to play inside domain objects, we assume that the \textit{key} value of a domain object is always \textit{none}.

The \textit{ltop} value and the \textit{semhead} value of a sign are used to maintain the relationship between the \textit{HNDL} values of elementary predications, i.e. their handles, and are determined largely as if the signs (rather than domain objects) were given semantic interpretation just as in standard versions of HPSG. The \textit{ltop} value of a sign is the

\footnote{Following the tradition in formal linguistics, we use the word \textit{conjunct} to refer to each of the expressions that are coordinated inside a coordinate structure, irrespective of whether the coordinator involved expresses conjunction or disjunction. The word \textit{disjunct} will be used as a more restrictive term that can be employed only when the coordinator involved expresses disjunction.}

10
local top handle of the meaning that the sign would receive in standard theories, and
the semhead value of a sign is the local top handle of the meaning that the sign would
receive in standard theories assuming that no quantifier was retrieved from the quan-
tifier storage at that node.\footnote{This means that the semhead feature in this theory has roughly the same function that the ltop feature does in the version of MRS presented in Copestake et al. (2005).} For instance, suppose that (7) is the meaning that the sign X would receive in standard theories. In that situation, the ltop value of X is h_0, the handle of the quantificational determiner every, and the semhead value of X is h_2, the handle of the adverb probably. The semhead value of a node can diverge from its ltop value only when the ltop value is the handle of a quantifier meaning.

In order to ensure that the ltop feature and the semhead feature on a sign receive the kinds of values that they are supposed to receive, we assume that the values of those features are subject to the following set of constraints.\footnote{The theory described in Yatabe (2001) did not have a mechanism for interpreting intersective modifiers, a task that is achieved here by (13d).}

\begin{enumerate}
\item The ltop value and the semhead value of a headed structure whose head is liberated are identical to the ltop value and the semhead value of the head respectively.
\item The semhead value of a head-complement structure whose head is totally or partially compacted is identical to the ltop value of the head.
\item In a head-adjunct structure such that the key value of the non-head daughter contains a scopal elementary predication (i.e. an elementary predication in which at least one argument slot is filled by a handle), the semhead value of the mother is identical to the ltop value of the non-head daughter.
\item In a head-adjunct structure such that the key value of the non-head daughter does not contain a scopal elementary predication, the semhead value of the mother, the ltop value of the non-head daughter, and the ltop value of the head are identical to each other.
\end{enumerate}

These statements constrain the relationship between the semhead value of a phrasal sign and the ltop values of its daughter nodes. The way the values of these features are further constrained by the rest of the grammar will become apparent later in this subsection.

The rule in (13c) is for a head-adjunct structure in which the adjunct is of the non-intersective kind. Take as an example a head-adjunct structure made up of a VP and a non-intersective adverb probably. Assuming the standard type of semantic composition (which is not adopted in the theory being described), the meaning of the head-adjunct structure as a whole would be something like probably'\(\text{'(VP)'}\), if no quantifier is retrieved from quantifier storage and takes scope at that node; the meaning of the adverb (i.e. probably') would be the outermost element of that semantic representation. That is why the semhead value of the head-adjunct structure as a whole has to be identical to the ltop value of the adjunct, as specified in (13c); although signs are not principal carriers of semantic information in the proposed theory and their ep values are accordingly always an empty list, the semhead value of a sign (as well as its ltop value) is determined as if the sign were given a semantic interpretation in the standard way. The ltop value of the head-adjunct structure as a whole will also be identical to the ltop value of the adjunct, unless the semhead value of the head-adjunct structure is identified with the scope value of an elementary predication expressing the meaning of a quantificational determiner.

The constraint in (13d) is for a head-adjunct structure in which the adjunct is intersective. One example of a relevant structure would be an expression of the form
blue N, consisting of an intersective adjunct blue and a nominal N. Assuming the standard type of semantic composition, the semantic representation for this structure as a whole would be something like $\text{blue}'(x) \land N'(x)$, provided that no quantifier is retrieved from quantifier storage and takes scope at this node; the meaning of the adjunct and that of the head would both be the outermost elements of this representation. That is why the SEMHEAD value of this type of head-adjunct structure has to be identical to the LTOP value of the adjunct and the LTOP value of the head, as specified in (13d).

The constraint in (13b) is for a nominal head-complement structure, such as a phrase of the form mother of DP. Assuming the standard type of semantic composition, the semantic representation for the phrase would be something like mother'(DP'), provided that no quantifier is retrieved from quantifier storage and takes scope at this node; the meaning of the head would be the outermost element of this representation. That is why the SEMHEAD value of the head-complement structure of this type has to be identical to the LTOP value of the head, as specified in (13b).

And the constraint in (13a) is for head-subject structures and non-nominal head-complement structures. This category of structures is treated separately from nominal head-complement structures because we assume (as stated in (5)) that the head is liberated in the former but not in the latter type of structure. As we will see shortly, the fact that the head is not compacted means that no semantic composition involving the local top handle of the head takes place in this type of structure. That is why (13a) requires that the LTOP value and the SEMHEAD value of the mother be identical to the LTOP value and the SEMHEAD value of the head daughter respectively.

The INDEX value of a sign is used in the grammar the same way that it is used in the standard version of HPSG. The INDEX value of a domain object is required (by the definition of the compaction operation, to be presented shortly) to be identical to the INDEX value of the sign whose compaction has given rise to it.

The h-STORE value of a domain object functions as a quantifier storage; it is a set that consists of the handles of those quantifiers that are contained in that domain object and that are yet to be associated with any constraints as to where to take scope. The h-CONS value of a domain object is a set of constraints that are imposed on the relationship between the handles involved. The values of these two features are determined partly by lexical entries and partly by constraints imposed by application of the compaction operation. We assume that the h-CONS value and the h-STORE value of a sign are both always an empty set.

Figures 4, 5, and 6 show part of the lexical entries that we are assuming for the words saw, every, and girl, respectively. In each lexical entry, the SEMHEAD value of the sign is identified with the HNDL value of an elementary predication contained in the EP value of a domain object. The SEMHEAD value of a leaf node is thus always linked to the HNDL value of some elementary predication.

The meaning of a larger prosodic constituent (i.e. a larger domain object) is computed by amalgamating the meaning of the smaller prosodic constituents that make it up (i.e. the smaller domain objects contained in the order domain of the sign whose compaction gave rise to the larger domain object). This is achieved by the compaction operation as it is defined in Figure 7. What this figure means is that, when a sign

9The definition of compaction given here differs from that given in (24) of Yatabe (2001) in several respects. First, the definition used here constrains the SEMHEAD value and the KEY value of the newly created domain object, while the old definition did not. Second, the specification of the h-CONS value of the newly created domain object now utilizes only the canonical kind of set union, without requiring the disjointness of the members of the sets that are put together. And third, the semantics of handle constraints has been altered, as will be explained in the text shortly. While the first two modifications do not have immediate empirical consequences, the third modification does; quantifier lowering is allowed more freely by this new definition.
Figure 4: Part of the lexical entry for saw

Figure 5: Part of the lexical entry for every

Figure 6: Part of the lexical entry for girl
that has the form specified in the first line is compacted, the domain object that is
produced as a result must have the form specified in the second line. The symbol ⊕
used here represents list concatenation. Each time a sign is compacted according to
this definition, a new domain object is created whose content value is the result of
putting together the content value of each domain object in the order domain of that
sign. The definition is a specification of what happens to a sign when a node is totally
compacted as well as what happens to a sign in the second stage of partial compaction
(the first stage being excision of some domain objects from the order domain of the
sign); as such, it is meant to replace the simplified description of total compaction
shown in (3) as well as part of the description of partial compaction given in (4) above.

When a sign is compacted, the h-cons value of the newly created domain object
contains (i) all the handle constraints that were in the h-cons sets of the domain objects
in the order domain of that sign (i.e. \([h_1] \cup \cdots \cup [h_n]\) in Figure 7) and (ii) a new handle
constraint of the form \(h_0 \geq A\), where \(h_0\) is the ltop value of the compacted sign (i.e.
\([0]\) in Figure 7) and \(A\) is the set consisting of the semhead value of the compacted
sign and the handles contained in the h-store sets of the domain objects in the order
domain of that sign (i.e. \(\{c_1\} \cup \cdots \cup \{c_n\}\) in Figure 7). A handle constraint of
the form \(h_0 \geq A\) is satisfied if and only if, for each \(h_i\) in \(A\), either \(h_0\) is identical to
\(h_i\) or \(h_0\) outscopes \(h_i\). (This semantics of handle constraints is slightly different from
what is proposed in Yatabe (2001) and is similar to one of the possibilities considered
in Copestake et al. (2005).)

What compaction does with the h-cons values enables the present theory to capture
the apparent fact that certain syntactic configurations (such as conjuncts in Japanese
(see Yatabe (2007))) function as scope islands. The handle constraint that is created by
the compaction operation and added to the h-cons set of a newly formed domain

10 In contrast, the version of MRS presented in Copestake et al. (2005) is based on the assumption that
there are no syntactic configurations that function as scope islands.
object states that the local top handle of the compacted sign must either be identical to or outscope all the handles contained in the \textit{h-store} sets of the domain objects that underwent compaction. This means that, when a sign is compacted, each quantifier whose handle was in the \textit{h-store} set of a domain object that underwent compaction is required to take scope within that sign. Therefore, a sign becomes a scope island when it is required to undergo total compaction.

The function f in the definition of compaction is a function that constructs an appropriate prosodic structure out of smaller prosodic constituents. For the sake of concreteness, we assume the following, which is in fact adequate in most cases.

\begin{equation}
 f([d_1, \ldots, d_n]) = \langle [d_1, \ldots, d_n] \rangle
\end{equation}

The value of the \textit{to-be-stored} feature on a node is the set consisting of the handles representing the quantifiers that are to be put in the quantifier storage through compaction at that node. The way the value of this feature is constrained is presented in Appendix B.

The overall architecture of this theory can be summarized by the following somewhat impressionistic statements. The \textit{ltop} value of a node is linked to things that are supposed to outscope it by one of the constraints in (13), by a constraint contained in some lexical entry, or by the quantifier storage mechanism. The \textit{semhead} value of a node is linked to things that it is supposed to outscope either by one of the constraints in (13) or by a constraint contained in some lexical entry. And every time a node is either totally or partially compacted, the \textit{ltop} value and the \textit{semhead} value of the node are linked with each other by a handle constraint produced by the compaction operation (viz. the handle constraint described as $\{0\} \geq \{2\} \cup \{c_1\} \cup \cdots \cup \{c_n\}$ in Figure 7).

We will illustrate how all this works by showing how the two readings of the sentence \textit{Some boy saw every girl} are licensed in this theory. It will be shown below how the two readings of this sentence, which are shown in a conventional notation in (15), are produced as a result of semantic composition inside the \textit{cont} values of domain objects, as opposed to the \textit{cont} values of signs.

\begin{equation}
 \begin{align*}
 &a. \quad \text{some}(x, \text{boy}(x), \text{every}(y, \text{girl}(y), \text{saw}(x, y))) \notag \\
 &b. \quad \text{every}(y, \text{girl}(y), \text{some}(x, \text{boy}(x), \text{saw}(x, y)))
 \end{align*}
\end{equation}

Figure 8 shows part of the structure assigned to the sentence in question. As in the textbook version of HPSG, a syntactic representation like this is licensed by the grammar if and only if each local subtree in it conforms to the principles in the grammar. We will choose two of the local subtrees in Figure 8 and show how they both conform to the principles in the grammar that have been presented so far.

First, let us examine the local subtree that is at the very bottom, in which the D sign \textit{every} and the N sign \textit{girl} combine to form a DP sign \textit{every girl}. The first daughter node, which is associated with the D sign, satisfies all the constraints embodied in the lexical entry shown in Figure 5. For instance, the \textit{semhead} value of this node (namely \textit{h5}) is identical to the handle of the only elementary predication in the order domain of this sign, as required by the lexical entry. The fact that the \textit{restrictor} value of this elementary predication (namely \textit{h6}) is identical to the \textit{ltop} value of the complement N (i.e. the second daughter of this local subtree) is also in conformity with the lexical entry of the word \textit{every}. (Recall that we are assuming that the D is the head here.) The second daughter node, on the other hand, satisfies all the constraints embodied in the lexical entry shown in Figure 6. For instance, the \textit{index} value of this second daughter is identical to the \textit{instance} value of the only elementary predication in its order domain, in accordance with that lexical entry. This local subtree is a head-complement structure.
Figure 8: Part of the structure assigned to the sentence Some boy saw every girl
whose head is nominal, and thus the first daughter must be totally compacted and the second daughter must be partially compacted, due to (5c). In the structure at hand, both the daughters are totally compacted, satisfying the requirement. (Since the order domains of these two daughters both contain only one domain object, compaction of these daughters can only be total compaction.) The first domain object in the order domain of the mother DP is the result of totally compacting the first daughter, and the second domain object in that order domain is the result of totally compacting the second daughter. Both applications of compaction conform to the definition given in Figure 7. For instance, the h-cons set of the first domain object in the order domain of the mother contains a handle constraint requiring the l_{top} value of the D node to either outscope or be identical to its semhead value (i.e. a constraint of the form $h_11 \geq \{h_5\}$), as required by the definition. This handle constraint corresponds to $0 \geq \{2\} \cup \{5\} \cup \cdots \cup \{c_a\}$ in the second line of Figure 7; the handle h_{11} corresponds to 0, the handle h_5 corresponds to 2, and $\{5\} \cup \cdots \cup \{c_a\}$ are all empty sets in the case at hand. Finally, this local subtree has to conform to the constraint in (13b) as well, and it does; the semhead value of the mother (namely h_{11}) is identical to the l_{top} value of the head D sign.

The local subtree in which the V *saw* combines with the DP *every girl* to produce the VP *saw every girl* similarly conforms to all the constraints contained in the grammar. This local subtree is a head-complement structure whose head is not nominal, so it has to satisfy the constraint in (5a), and it does. The head V is liberated, and the domain object inside its order domain is thus inherited unchanged by the order domain of the VP node. The complement DP is required to be partially compacted, and is here totally compacted; the result of that compaction is the domain object to be pronounced "every girl", i.e. the second domain object in the order domain of the mother. Since the head daughter is liberated, this local subtree has to satisfy the condition in (13a), and it does; the l_{top} value and the semhead value of the mother VP node (namely h_0 and h_4) are identical to the l_{top} and the semhead value of the head daughter, respectively. The relationship between the second daughter and the second domain object in the order domain of the mother correctly reflects what is specified in the definition of the compaction operation. For instance, the h-cons set of the second domain object in the order domain of the mother, namely $\{h_{10} \geq \{h_{11}\}, h_{11} \geq \{h_5\}, h_6 \geq \{h_{12}\}\}$, consists of (i) two handle constraints that have been inherited from the h-cons sets of the domain objects in the order domain of the DP sign whose compaction gave rise to this domain object and (ii) a newly created handle constraint (namely $h_{10} \geq \{h_{11}\}$) which means that the l_{top} value of the DP sign has to either outscope or be identical to its semhead value. The former corresponds to $\{h_1\} \cup \cdots \cup \{h_a\}$ in the second line of Figure 7, and the latter corresponds to $0 \geq \{2\} \cup \{5\} \cup \cdots \cup \{c_a\}$ there.

The semantic content of a sentence as a whole is obtained by first totally compacting the top node of the syntactic representation and then resolving the values of the handles in the VP value in conformity with all the grammatical constraints including the handle constraints that have been collected in the h-cons set. Figure 9 shows the domain object that results when the top node in Figure 8 is totally compacted. Its l_{top} value indicates that h_0 is the top handle. The handle constraints in the h-cons set, taken together, require, among other things, that $h_0 \geq h_4$, $h_0 \geq h_8 \geq h_9 \geq h_1$, and $h_0 \geq h_{10} \geq h_{11} \geq h_5$, where we use the notation of the form $A \geq B$ to mean that A either outscopes or is identical to B. Since the elementary predication whose handle is h_4 (i.e. the one representing the meaning of the verb *saw*) contains variables that must be bound by the quantifiers whose handles are h_1 and h_5, h_4 needs to be outscoped by h_1 and h_5, and thus cannot be identical to h_0. On the other hand, h_1 and h_5 can
be identical to \(h_0 \); in fact, \(h_0 \) must be identical either to \(h_1 \) or to \(h_5 \), since there is no other handle that could come between \(h_0 \) and \(h_1 \) and between \(h_0 \) and \(h_5 \). If \(h_0 \) is taken to be identical to \(h_1 \), then \(h_3 \) must be taken to be identical to \(h_5 \), yielding the reading in which the subject takes scope over the object; if \(h_3 \) is not taken to be equal to \(h_5 \), then there is no way to obtain a resolved MRS representation in which every handle filling an argument slot has been equated with the handle of some elementary predication. If, on the other hand, \(h_0 \) is taken to be identical to \(h_5 \), then \(h_7 \) must be taken to be identical to \(h_1 \), yielding the reading in which the object takes scope over the subject. The handle \(h_4 \) is identified with \(h_7 \) in the former case and with \(h_3 \) in the latter case. In both cases, \(h_2 \) must be equal to \(h_13 \) and \(h_6 \) must be equal to \(h_12 \). Thus, the only meanings represented by the cont value of the domain object in Figure 9 are the ones shown in the conventional notation in (15) above.

2.4 Non-constituent coordination in the HPSG-based theory

The mechanism of compaction-driven meaning assembly makes it possible to capture the semantic properties of non-constituent coordination within the HPSG framework without recourse to any ad-hoc machinery.

Following the established tradition, we will refer to the operation that fuses the right edges of phrases (typically conjuncts) to produce a sentence like Keats traveled to, and Chapman returned from, the Isle of Capri as right-node raising (RNR), and to the operation that fuses the left edges of phrases (typically conjuncts) to produce a sentence like John drove to Chicago in the morning and Detroit in the afternoon as left-node raising (LNR). The theory of non-constituent coordination presented in Yatabe (2001) and modified in later works such as Yatabe (2012) posits that there are two types of RNR and two types of LNR: a phonological kind of RNR and LNR that is merely prosodic ellipsis and a syntactic kind of RNR and LNR that involves fusion of multiple domain objects that has the potential of affecting semantic interpretation.

Phonological LNR (or RNR) simply deletes some phonological material at the
left (or right, respectively) edge of non-initial (or non-final, respectively) daughters, on condition that the same phonological material is contained in the initial (or final, respectively) daughter. We will continue to say things like “Expression X has been phonologically RNRed”, but in fact nothing happens to an expression X when X is phonologically LNRed or RNRed; what takes place is prosodic ellipsis of some other expression Y, on condition that Y has the same pronunciation as X and that a certain structural relationship obtains between X and Y. Consequently, phonologically LNRed (or RNRed respectively) material simply becomes part of the domain object corresponding to the initial (or final, respectively) daughter, and tends to be pronounced as a normal part of that daughter. For instance, if the sentence John likes and Bill hates that picture of Mary is generated as a result of phonological RNR of that picture of Mary and its pronunciation is not perturbed by extraneous factors such as focusing, the prosodic phrasing indicated in (16) will result, in which the right-node-raised string is pronounced as a normal part of the final conjunct.

(16) [John likes] [and Bill hates that picture of Mary]

Unlike phonologically left- or right-node-raised expressions, syntactically left- or right-node-raised expressions escape compaction and continue to exist (for the time being) as independent domain objects, so there tend to be prosodic boundaries around them, since domain objects inside order domains are, by hypothesis, representations of prosodic constituents. For instance, if the sentence above is generated as a result of syntactic RNR of the DP that picture of Mary and its pronunciation is not perturbed by extraneous factors, the prosodic phrasing indicated in (17) will result, in which the right-node-raised string is pronounced as an independent prosodic constituent.\(^1\)

(17) [John likes] [and Bill hates] [that picture of Mary]

Notice that the structure in (17), which is utilized as the scaffolding for semantic composition in our theory, resembles the structure that is posited in CG-based theories such as those proposed in Steedman (2000) and Kubota and Levine (2015). This is the basis of our claim that our theory is in a sense an attempt to capture in the HPSG framework the intuition underlying the CG-based theories.

We will first illustrate roughly how this theory works using the example in (18), before presenting a more general characterization. Figure 10 shows part of the structure assigned to this sentence when the verb drove is assumed to have been syntactically left-node-raised and the preposition to is assumed to have been phonologically left-node-raised. What is shown is the local subtree in which two VPs are conjoined and the verb and the preposition are left-node-raised. A coordinator like and is assumed to be introduced into the syntactic structure by a linearization-related mechanism, and does not appear as a node in the syntactic phrase-structure tree (see Yatabe (2012)).

(18) John drove to Chicago in the morning and Detroit in the afternoon.
 (from Dowty (1988))

Syntactic LNR (or RNR) excises a list of domain objects from the left (or right, respectively) edge of the order domain of each daughter, fuses those domain objects item by item to create a possibly modified list of domain objects, and places the resulting list of domain objects at the left (or right, respectively) edge of the order domain of the mother. As a result, syntactically LNRed or RNRed domain objects continue to exist as separate domain objects in the order domain of the mother, rather

\(^1\)It is claimed in Valmala (2013) that the phrasing in (17) is used when the right-node-raised DP is focused and that the phrasing in (16) is used when the verb hates is focused.
than becoming part of some larger domain objects. In Figure 10, a domain object corresponding to the verb *drove* is excised from the left edge of the order domain of the first daughter and from the left edge of the order domain of the second daughter. Those two domain objects are then fused with each other to create a new domain object, and that new domain object, which is to be pronounced “drove” like the two domain objects that have given rise to it, is placed at the left edge of the order domain of the mother.

The second domain object in the order domain of the mother node in Figure 10 is there to represent the meaning of conjunction and does not have any phonological content. It is added to the order domain of a coordinate structure by the phrase-structure schema that licenses coordinate structures (see Yatabe (2012) for the details of this analysis).

The third domain object in the order domain of the mother node in Figure 10 was created by compacting that portion of the first daughter node that did not undergo syntactic LNR, and the fourth domain object in the order domain of the mother node was created by compacting that portion of the second daughter node that did not undergo syntactic LNR. The *phon* value of the fourth domain object was later modified first by applying phonological LNR to its left edge (and thereby eliding the string *to* that was there) and then by adding the string *and* to the left edge. (See Yatabe (2012) for the details of the process that adds a string that corresponds to a coordinator at the beginning of the *phon* value of a conjunct.) The phonological material *to* in this second conjunct is allowed to be elided here because (i) it is at the left edge of the second conjunct after the domain object for the verb *drove* is removed by syntactic LNR and (ii) the same phonological material appears in the corresponding position (viz. the left edge, modulo the syntactically left-node-raised material) in the first daughter.

When two or more identical domain objects are fused together by syntactic LNR or RNR to become a single domain object, the output of the fusion will naturally be a domain object that is identical to the input domain objects in its entirety. That can be regarded as the default type of syntactic LNR and RNR. It turns out, however, that not all instances of syntactic LNR and RNR are of this type. There are two types of exceptions to consider. First, consider the following example, discussed in Postal (1998).

(19) The pilot claimed that the first nurse, and the sailor proved that the second nurse, were spies.

This example cannot be a case of phonological RNR, since the right-node-raised VP does not agree in number with either of its two grammatical subjects. What is involved here therefore must be syntactic RNR of the VP *were spies*. However, the domain object that represents the VP inside the order domain of the first conjunct cannot be identical to the domain object that represents the VP inside the order domain of the second conjunct; since the VP has combined with different grammatical subjects in
the two conjuncts, the domain object for the VP coming from the first conjunct and the one coming from the second conjunct must have different valence values and different cont values. Deferring the discussion of what happens to the valence values to section 4, let us focus here on what should happen to the cont value of the right-node-raised domain objects when they are fused. The domain object representing the VP in the order domain of the first conjunct has an ep value that expresses the proposition that \(x \) is a spy, where \(x \) is the referent of the DP the first nurse, and the domain object representing the VP in the order domain of the second conjunct has an ep value that expresses the proposition that \(y \) is a spy, where \(y \) is the referent of the DP the second nurse. In order for the sentence as a whole to be given appropriate semantic interpretation, the domain object that results from fusing these two domain objects needs to have an ep value that expresses both these propositions. In other words, the newly created domain object must express the proposition that \(x \) is a spy and \(y \) is also a spy, as is expected from the fact that the VP exhibits plural agreement.

The second type of exception to consider is exemplified by (20), taken from Abbott (1976).

(20) I borrowed, and my sister stole, a total of $3000 from the bank.

This sentence cannot be an instance of phonological RNR either, because its most salient reading is truth-conditionally different from any of the readings of the sentence I borrowed a total of $3000 from the bank, and my sister stole a total of $3000 from the bank. What is involved must be syntactic RNR of the DP and the PP a total of $3000 from the bank. Let us focus here on the RNR of the DP a total of $3000. Since what the speaker borrowed and what the speaker’s sister stole ought to be different from each other, they must be represented by different indices. This means that the domain object for the DP in the order domain of the first conjunct cannot be identical to the domain object for the DP in the order domain of the second conjunct. Moreover, we cannot carry over the analysis of sentence (19) that we suggested above to the example in (20); in the case at hand, the ep value of the domain object that results from fusion cannot simply express each of the propositions expressed by the input domain objects. Supposing that the index for the DP is \(x \) in the first conjunct and \(y \) in the second conjunct, the domain object for the DP in the order domain of the first conjunct must express the proposition that \(x \) is a total of $3000, and the corresponding domain object in the order domain of the second conjunct must express the proposition that \(y \) is a total of $3000. Thus, if the domain object that results from fusing these two domain objects simply expressed both these propositions, the sentence would mean “I borrowed \(x \) from the bank, my sister stole \(y \) from the bank, \(x \) is a total of $3000, and \(y \) is also a total of $3000,” which is one possible reading of the sentence but not its most salient reading.

In light of these considerations, Yatabe (2012) suggests that the grammar should contain the following principle. When syntactic LNR or RNR fuses \(n \) domain objects of the form shown in (21) (each coming from a different daughter) to produce a single domain object of the form shown in (22) (to be placed in the order domain of the mother), one of the three conditions shown in (23) must be satisfied. If the local subtree involved is a coordinate structure whose coordinator is \(or \), then one of the first two conditions has to be satisfied.\(^{12}\)

\(^{12}\) A more precise definition of this fusion relation is provided in the Appendix of Yatabe (2012), but there were four minor errors in that definition, which have been corrected here. First, the definition of (23b) presented in the 2012 paper required that \(d_0 = d_1 = \cdots = d_n \). Second, the third line of (23b) was not in the version presented in the 2012 paper. Third, the definition of (23c) in the 2012 paper did not require the h-cons set of each daughter to be identical to that of the mother. And fourth, the definition of (23c) in
The condition in (23a) licenses the default type of syntactic LNR and RNR in which the domain objects to be fused and the domain object that results from fusing them are all identical.\footnote{Whenever the condition in (23a) is invoked, the domain objects that are fused by LNR or RNR are in fact identified with each other in their entirety. See the second line of (46) in Yatabe (2012).} When this condition is applied to syntactically right-node-raised or left-node-raised domain objects representing a quantifier, those domain objects, which are equated with each other, turn out to represent a single quantifier, and that quantifier therefore has to take wide scope over all the daughter nodes, since otherwise some of the variables to be bound by the quantifier would remain unbound, in violation of the variable binding condition. This aspect of this theory makes it somewhat analogous to the theories that analyze right-node raising in terms of multidominance, for example the one proposed in Bachrach and Katzir (2007); in all these theories, a single quantifier that is to be interpreted only once can nevertheless be contained in multiple, distinct syntactic phrases.

The second condition, namely condition (23b), licenses the type of syntactic RNR and LNR exemplified by sentence (19). When the domain objects corresponding to a syntactically right-node-raised or left-node-raised expression obey this condition, the sentence as a whole is given the same interpretation that it would receive if the expression in question did not undergo RNR or LNR. (In the case of (19), the sentence is given the same interpretation as \textit{The pilot claimed that the first nurse was a spy, and the sailor proved that the second nurse was a spy.}) This is because the effect that condition (23b) has on the ep and the h-cons values parallels what compaction does to those values.

The constraint (23b) does not require the domain objects to be fused to be identical to each other, but it requires the domain objects to be fused to be alphabetic variants of each other. Two domain objects are \textit{alphabetic variants} if (i) they are identical except
for their indices and handles and (ii) these indices and handles exhibit the same pattern of links.

And the condition in (23c) licenses the type of syntactic LNR and RNR exemplified by sentence (20). When a new domain object to be placed in the order domain of the mother is created according to this condition, the newly created domain object is, roughly speaking, the semantic sum of the domain objects coming from the daughter nodes. We use a string of the form \(i_1 + \cdots + i_n \) to represent an index whose interpretation is required to be the sum of the interpretations of \(i_1, \ldots, i_n \). Additionally, we are assuming that, when the denotation of the tags \(t_1, \ldots, t_n \) are indices \(i_1, \ldots, i_n \) respectively, the denotation of a tag of the form \(t_1 + \cdots + t_n \) is the index \(i_1 + \cdots + i_n \).

Let us use an example to illustrate what (23c) does. Suppose the DP \(\textit{twenty books} \) in the sentence \(\textit{Mary borrowed and John stole twenty books} \) has been syntactically right-node-raised in accordance with the condition (23c). In that case, if the domain object for the DP contained in the order domain of the first conjunct and the domain object for the DP contained in the order domain of the second conjunct are (24) and (25) respectively, the domain object for the DP in the order domain of the matrix node, which is the fusion of the two domain objects, is required to be (26).

(24) The domain object for the DP \(\textit{twenty books} \) in the order domain of the first conjunct:

\[
\begin{array}{l}
\text{INDEX } x \\
\text{HNDL} h_1 \\
\text{RELN} \text{twenty} \\
\text{VAR} x \\
\text{RESTRICTOR} h_2 \\
\text{SCOPE} h_3 \\
\text{H-CONS} \{ h_6 \geq \{ h_5 \}, h_5 \geq \{ h_1 \}, h_2 \geq \{ h_4 \} \} \\
\text{H-STORE} \{ h_6 \}
\end{array}
\]

(25) The domain object for the DP \(\textit{twenty books} \) in the order domain of the second conjunct:

\[
\begin{array}{l}
\text{INDEX } y \\
\text{HNDL} h_1 \\
\text{RELN} \text{twenty} \\
\text{VAR} y \\
\text{RESTRICTOR} h_2 \\
\text{SCOPE} h_3 \\
\text{H-CONS} \{ h_6 \geq \{ h_5 \}, h_5 \geq \{ h_1 \}, h_2 \geq \{ h_4 \} \} \\
\text{H-STORE} \{ h_6 \}
\end{array}
\]

(26) The domain object for the DP \(\textit{twenty books} \) in the order domain of the matrix node:

\[
\begin{array}{l}
\text{INDEX } x + y \\
\text{HNDL} h_1 \\
\text{RELN} \text{twenty} \\
\text{VAR} x + y \\
\text{RESTRICTOR} h_2 \\
\text{SCOPE} h_3 \\
\text{H-CONS} \{ h_6 \geq \{ h_5 \}, h_5 \geq \{ h_1 \}, h_2 \geq \{ h_4 \} \} \\
\text{H-STORE} \{ h_6 \}
\end{array}
\]

Apart from the constraint (already mentioned) that prohibits use of condition (23c) in disjunctive coordinate structures, there is no statement in the grammar that specifies
which one of the conditions (23a)–(23c) should be invoked in a given situation; any of
the conditions can be invoked as long as no constraints in the grammar are violated by
the resulting structure. For instance, in fusing the domain objects shown in (24) and
(25), condition (23b) can be invoked instead of condition (23c). Condition (23a) can
also be invoked, provided that the indices \(x \) and \(y \) can be equated with each other.

Whereas phonological LNR and RNR are always meaning-preserving, syntactic
LNR and RNR can be either meaning-preserving (due to the existence of the option
(23b)) or meaning-changing (due to the existence of the options (23a) and (23c)).
Thus, whether a particular instance of RNR or LNR is of the syntactic kind or the
phonological kind is not necessarily determined by the semantic interpretation of the
sentence involved, while it generally is determined by the prosodic phrasing of the
sentence involved.

We will now demonstrate that, unlike a theory that views RNR and LNR only
as prosodic ellipsis, this theory correctly accounts for the kinds of observations that
Kubota and Levine claim are problematic for the HPSG-based theories in general.

2.4.1 Quantifier scope

First, we will illustrate how the theory we have described analyzes the sentence in
(1a), which is reproduced below as (27). (Those readers who believe that they already
understand how the sentence can be analyzed in our theory might want to skip to
sub-subsection 2.4.2.)

(27) Terry gave no man a book on Friday or a record on Saturday.

Figure 11 shows part of the structure that the theory assigns to the sentence when
the string \(\text{gave no man} \) is taken to have undergone the syntactic type of LNR. What is
shown in Figure 11 is the local subtree where the two VPs (viz. \(\text{gave no man a book on Friday} \) and \(\text{gave no man a record on Saturday} \)) are conjoined by the coordinator \(\text{or} \) to
become a larger VP (viz. \(\text{gave no man a book on Friday or a record on Saturday} \)). As
noted above, a coordinator like \(\text{or} \) is assumed to be introduced into the syntactic
structure by a linearization-related mechanism, and does not appear as a node in the
syntactic phrase-structure tree.

The first domain object in the order domain of the mother represents the verb \(\text{gave} \),
which has been syntactically left-node-raised. This domain object is the result of fusing
the first domain object in the order domain of the first daughter and the first domain
object in the order domain of the second daughter. The relationship between this
domain object and the two domain objects that gave rise to it conforms to the condition
in (23b). The two handle constraints listed in the \(h\text{-cons} \) value of this domain object
(viz. \(h17 \geq \{h4\} \) and \(h25 \geq \{h5\} \)) both arose when a VP to be modified by an adjunct
underwent partial compaction in accordance with (5b). Figure 12 depicts the local
subtree in which the VP \(\text{gave no man a book} \) combines with the adjunct \(\text{on Friday} \) to
become the first conjunct in sentence (27). Although the two daughters in this local
subtree are both only required to undergo partial compaction, the second daughter,
\(\text{i.e. on Friday} \), undergoes total compaction. On the other hand, the compaction that
the first daughter, i.e. the VP \(\text{gave no man a book} \), undergoes is not total. The two
non-initial domain objects (viz. the one representing \(\text{no man} \) and the one representing
\(\text{a book} \)) escape compaction and are inherited by the order domain of the mother. As
a consequence of this, a VP sign whose order domain consists only of the domain object
representing the verb \(\text{gave} \) undergoes compaction, producing a domain object whose
\(h\text{-cons} \) set contains the handle constraint \(h17 \geq \{h4\} \). The constraint \(h25 \geq \{h5\} \)
was added to an \(h\text{-cons} \) set in an analogous fashion in the second conjunct.
Figure 11: Part of the structure that the theory advocated here assigns to sentence (27), when the string *gave no man* is taken to have undergone the syntactic type of LNR.
Figure 12: Part of the structure assigned to the first conjunct of sentence (27)
As Kubota and Levine do, we treat the meaning of a phrase like *on Friday* as an unanalyzed unit, for the sake of simplicity; we represent it using a single elementary predication. Figure 13 shows the lexical entry we are assuming for this expression.

The second domain object in the order domain of the mother in Figure 11 represents the quantifier *no man*, which is also assumed to have been syntactically left-node-raised. This DP is constructed in a way analogous to the way the DP *every girl* is constructed in Figure 8. The sole handle in the h-store set of this domain object (viz. h_{10}), which will turn out to be identical to h_{11} and h_{6}, is the handle of the meaning of the quantifier *no man* itself. This domain object is the result of fusing the second domain object in the order domain of the first daughter and the second domain object in the order domain of the second daughter. It conforms to the condition in (23a) above; the three domain objects involved are identical to each other and represent a single quantifier. Since domain objects rather than signs are the principal carriers of semantic information in this theory, the fact that the order domain of the mother node contains only one set of elementary predications corresponding to this quantifier means that the semantic representation of this sentence is going to contain only one instance of that quantifier, which is thus required to take scope over the entire coordinate structure.

The third domain object in the order domain of the mother node is there to represent the meaning of disjunction, and has no phonological content. This domain object is created by the phrase-structure schema that licenses coordinate structure, as we noted at the outset of this subsection, i.e. subsection 2.4. That phrase-structure schema stipulates (i) that a list consisting of the ltop values of the conjuncts (viz. $\langle h_2, h_3 \rangle$ in this example) be the argument of the meaning of the coordinator, and (ii) that the handle of the elementary predication expressing the meaning of the coordinator (viz. h_1 in this example) be the semhead value of the coordinate structure as a whole.

The fourth domain object of the mother node in Figure 11 is the result of compacting the first daughter or, more precisely, the sign that is obtained by excising the first two domain objects of the first daughter, which were syntactically left-node-raised out of it. This means that the sign whose compaction gave rise to this domain object had only two domain objects (viz. the one representing a book and the one representing *on Friday*) in its order domain. The first handle constraint in the h-cons value of this fourth domain object (viz. the constraint $h_2 \geq \{ h_{28}, h_{18} \}$) was produced by the application of compaction that led to the creation of this domain object; the constraint says that the ltop value of the first conjunct (i.e. h_2) has to either outscope or be identical to the semhead value of the first conjunct (i.e. h_{28}) and the handle of the quantifier meaning.
of a book (i.e. \(h_{18}\)). The second, the third, and the fourth handle constraint in the \(h\)-cons value (viz. the constraints \(h_{18} \geq \{h_{19}\}\), \(h_{19} \geq \{h_{12}\}\), and \(h_{13} \geq \{h_{15}\}\)) were produced by the three applications of compaction that were involved in generating the DP a book. And the fifth handle constraint in this \(h\)-cons value (viz. the constraint \(h_{28} \geq \{h_{16}\}\)) was produced when the adjunct on Friday was compacted within the first conjunct (see Figure 12).

The fifth domain object of the mother node in Figure 11 is the result of compacting the second daughter or, more precisely, the sign that is obtained by excising the first two domain objects of the second daughter, which were syntactically left-node-raised out of it. The first element of its \(\text{phon}\) value, namely “or”, was added here after this application of compaction.

The lexical entry we assume for the proper noun Terry is shown in Figure 14. The symbol \(\text{gtop}\) used in this lexical entry represents a designated handle that is always identified with the global top handle of an MRS representation.

When the VP shown in Figure 11 is combined with the subject DP Terry and the resulting sentential sign is totally compacted, we obtain a domain object whose \(h\)-cons value is (28) (where \(h_{30}\) is the \(\text{ltop}\) value of the subject DP).

\[
(28) \{ h_{0} \geq \{h_{1}, h_{10}\}, h_{30} \geq \{\text{gtop}\}, h_{17} \geq \{h_{4}\}, h_{25} \geq \{h_{5}\}, h_{10} \geq \{h_{11}\}, h_{11} \geq \{h_{6}\}, h_{7} \geq \{h_{9}\}, h_{2} \geq \{h_{28}, h_{18}\}, h_{18} \geq \{h_{19}\}, h_{19} \geq \{h_{12}\}, h_{13} \geq \{h_{15}\}, h_{28} \geq \{h_{16}\}, h_{3} \geq \{h_{29}, h_{26}\}, h_{26} \geq \{h_{27}\}, h_{27} \geq \{h_{20}\}, h_{21} \geq \{h_{23}\}, h_{29} \geq \{h_{24}\}\}
\]

This means, among other things, that \(h_{2} \geq h_{18} \geq h_{19} \geq h_{12}\), which means that the DP a book has to take scope within the first disjunct. Likewise, the DP a record is required to take scope within the second disjunct. On the other hand, the DP no man has to take wide scope over the disjunction because it has to bind all the occurrences of the variable \(v\), which is used in both disjuncts. The scope relation between the DP a book and the adjunct on Friday is underspecified, as is the scope relation between the DP a record and the adjunct on Saturday.

The \(\text{cont}\) value of the domain object representing the sentence as a whole therefore corresponds to the four representations in (29) in the conventional notation.

\[
(29) \text{a. } u = \text{Terry} \land \text{no}(v, \text{man}(v), \text{onFri}(a(w, \text{book}(w), \text{gave}(u, v, w))) \lor \text{onSat}(a(x, \text{record}(x), \text{gave}(u, v, x))))
\]
b. \(u = \text{Terry} \land \text{no}(v, \text{man}(v), \text{a}(w, \text{book}(w), \text{onFri}(\text{gave}(u, v, w)))) \lor \text{onSat}(\text{a}(x, \text{record}(x), \text{gave}(u, v, x)))) \)

c. \(u = \text{Terry} \land \text{no}(v, \text{man}(v), \text{onFri}(\text{a}(w, \text{book}(w), \text{gave}(u, v, w))) \lor \text{a}(x, \text{record}(x), \text{onSat}(\text{gave}(u, v, x)))) \)

d. \(u = \text{Terry} \land \text{no}(v, \text{man}(v), \text{a}(w, \text{book}(w), \text{gave}(u, v, w))) \lor \text{a}(x, \text{record}(x), \text{onSat}(\text{gave}(u, v, x)))) \)

Assuming that the values of free variables are contextually determined, the four representations in (29) are truth-conditionally equivalent to each other and are all adequate representations of the reading of sentence (27) in which the quantifier no man takes wide scope over the coordinate structure. Thus, we see that this reading of sentence (27) does not pose a problem for the HPSG-based account.

The other reading of this sentence, in which the quantifier is outscoped by the disjunction, is not a problem for the account either. That reading can be generated in the following two ways. First, if the quantifier no man is taken to have undergone phonological LNR, the sentence will be given the same interpretation as Terry gave no man a book on Friday or no man a record on Saturday, which is precisely the interpretation in which the quantifier no man is outscoped by the disjunction. Second, the same reading can be obtained by taking the quantifier no man to have undergone syntactic LNR and utilizing condition (23b) instead of condition (23a) in licensing the fusion of two domain objects corresponding to that left-node-raised quantifier. Thus, Kubota and Levine’s claim that a sentence like (27) poses an empirical challenge to the HPSG-based account is incorrect.

2.4.2 Symmetrical predicates

Next, we will illustrate the way the HPSG-based theory analyzes (2a), reproduced below as (30), which is another sentence that Kubota and Levine claim poses a problem for the theory.

\((30) \) I said different things to Robin on Thursday and Leslie on Friday.

The reading that we are interested in is one where this sentence means that the thing that the speaker said to Robin on Thursday was different from the thing that the speaker said to Leslie on Friday. Kubota and Levine imply that the fact that such a reading exists is not addressed anywhere in the HPSG literature, but it is addressed in Yatabe (2012), and we are going to present the analysis that is proposed in that article below, again filling in some details that are left unspecified there. (Those readers who believe that they already understand how the sentence can be analyzed in our theory might want to skip to the penultimate paragraph of the present sub-subsection, which starts with “As we have already noted”.)

Figure 15 shows part of the structure that the HPSG-based theory under discussion assigns to this sentence. It depicts the local subtree in which two VPs are conjoined to become a larger VP.

The first domain object in the order domain of the mother node, i.e. the one to be pronounced “said”, is the result of fusing the first domain object in the order domain of the first daughter and the first domain object in the order domain of the second daughter.

\(^{14}\text{Here is what is said on p. 538 in Kubota and Levine (2015): “The situation is exactly parallel with symmetrical and summative predicates. In short, with ‘respective’, symmetrical and summative predicates, essentially the same problem arises as in the case of quantifiers when they interact with coordination, but the situation for the LBE approach is worse: currently, there is not even an attempt at addressing this problem.” (LBE stands for Linearization-Based Ellipsis.)}\)
Figure 15: Part of the structure assigned to sentence (30)
The relationship between these three domain objects conforms to the constraint stated in (23b).

The second domain object in the order domain of the mother node in Figure 15, i.e. the one to be pronounced “different things”, is the result of fusing the second domain object in the order domain of the first daughter and the second domain object in the order domain of the second daughter. The relationship between these three domain objects conforms to the constraint stated in (23c).

Apart from the fact that (23c) was invoked for the second domain object instead of (23a), the way the structure in Figure 15 is licensed is analogous to the way the structure in Figure 11 is licensed. The reason that the domain object corresponding to said and the domain object corresponding to different things both exist as independent domain objects at this point is that the VP that is modified by the temporal adjunct underwent partial compaction in each conjunct. When the VP said different things to Robin was modified by the adjunct on Thursday in the first conjunct, the two non-initial domain objects in the order domain of the VP (viz. the one corresponding to different things and the one corresponding to to Robin) escaped compaction. Likewise, when the VP said different things to Leslie was modified by the adjunct on Friday in the second conjunct, the two non-initial domain objects in the order domain of the VP (viz. the one corresponding to different things and the one corresponding to to Leslie) escaped compaction. Partial compaction of the VP said different things to Robin in the first conjunct gave rise to the first handle constraint in the h-cons set of the first domain object in the order domain of the mother node in Figure 15 (viz. $h_{13} \geq \{h_4\}$), while partial compaction of the VP said different things to Leslie in the second conjunct gave rise to the second handle constraint in that h-cons set (viz. $h_{15} \geq \{h_5\}$).

The third domain object in the order domain of the mother node in Figure 15 merely represents the meaning of conjunction, and does not have phonological content.

The fourth domain object, i.e. the one to be pronounced “to Robin on Thursday”, is the result of compacting the first daughter or, more precisely, the sign that is obtained by excising the first two domain objects in the order domain of the first daughter, which were syntactically left-node-raised. The first handle constraint in the h-cons set of this domain object (viz. $h_2 \geq \{h_{16}\}$) was created when this compaction took place. The second handle constraint in the set (viz. $h_{18} \geq \{h_{18}\}$), which is tautological, was created when the PP to Robin underwent total compaction. (The lexical entry we assume for the marking preposition to is shown in Figure 16.) The third handle constraint (viz. $h_{18} \geq \{g_{top}\}$) was created when the DP Robin underwent total compaction. And the fourth handle constraint (viz. $h_{16} \geq \{h_{12}\}$) was created when the adjunct on Thursday underwent compaction.

And the fifth domain object in the order domain of the mother node in Figure 15, i.e. the one to be pronounced “and Leslie on Friday”, is the result of (i) compacting the second daughter or, more precisely, the sign that is obtained by excising the first two domain objects in the order domain of the second daughter, which were syntactically left-node-raised, (ii) applying phonological left-node raising to the left edge of its phon value and deleting the string “to” there, and (iii) adding the string “and” to the left edge of its phon value.

Figure 17 shows part of the internal structure of the DP different things in the first conjunct of sentence (30). For concreteness, we assume that this DP is headed by a phonologically empty determiner whose semantics is identical to that of some. Figure 18 shows part of the lexical entry that we are assuming for the word different. The DP different things in the second conjunct is generated in an almost identical fashion but with a distinct index, namely y instead of w. The second domain object in the order domain of the mother node in Figure 15 has the index feature whose value
Figure 16: Part of the lexical entry for the marking preposition to

Figure 17: Part of the structure assigned to the DP different things in the first conjunct of Figure 15
Figure 18: Part of the lexical entry for the adjective different

is \(w + y \) because it was created by fusing a domain object whose \textit{index} value is \(w \) and an almost identical domain object whose \textit{index} value is \(y \) in accordance with the condition (23c).

When the VP as a whole is combined with the subject DP \(I \) and the resulting \(S \) is totally compacted, we obtain a domain object whose \textit{cont} value represents the meaning of the sentence. That meaning is expressed by the representation in (31) in the conventional notation.

(31) \[u = \text{Speaker} \land v = \text{Robin} \land x = \text{Leslie} \land \text{some}(w+y, \text{different}(w+y) \land \text{things}(w+y), \text{onThu}(\text{said}(u, v, w)) \land \text{onFri}(\text{said}(u, x, y))) \]

This is an adequate representation of the reading in question, on the assumption that an elementary predication whose \textit{reln} value is \textit{different} and whose \textit{instance} value is a variable whose name is of the form \(X_1 + \cdots + X_n \) means that the denotations of \(X_1, \ldots, X_n \) are different from each other. Kubota and Levine’s claim that there is no straightforward way to account for the interpretation of a sentence like (30) in an HPSCG-based theory is thus incorrect.\(^{15}\)

As we have already noted, choice between (23a), (23b), and (23c) is entirely free, apart from the restriction that prevents (23c) from applying to disjunctive coordinate structures. Thus, (23c) can be used not just to fuse domain objects standing for an expression like \textit{different things} that contains a symmetric predicate but also to fuse domain objects standing for an expression like \textit{thirty books}. This allows the theory to deal with a sentence like \textit{Mary borrowed, and Bill stole, thirty books (in total) from the library}.

The condition in (23c) could be used to license fusion of domain objects standing for an expression like \textit{Bill} as well, and this might appear to lead to overgeneration, but it does not. Let us examine the interpretation of the sentence \textit{Mary likes, and}
Jane dislikes, Bill as an example. This sentence will be associated with a semantic representation like (32) below, when the domain objects standing for Bill are fused according to (23c).

(32) \[w = \text{Mary} \land x = \text{Jane} \land y + z = \text{Bill} \land \text{likes}(w, y), \text{dislikes}(x, z) \]

In a sci-fi world in which Bill is made up of two components, this can be interpreted as saying that Mary likes the first component of Bill while Jane dislikes the second component. In a real world, in which a man is difficult to conceive of as being made up of two components, it will be inferred that \(y = z = y + z = \text{Bill} \), and the sentence will consequently receive the interpretation that Mary likes Bill while Jane dislikes Bill, that is, the same interpretation that the sentence receives when the condition (23a) is used instead of (23c).16

3 A note on the supposed complexity of the HPSG-based theory

Let us now take a step back and see how the HPSG-based theory as a whole compares with Kubota and Levine’s CG-based theory. Such a comparison seems to reveal the following. In the theory proposed in Kubota and Levine (2015) and Kubota and Levine (2016), sentences like (27) and sentences like (30) are treated in an entirely unified, elegant fashion. In contrast, our theory of RNR and LNR consists of four parts, namely phonological RNR and LNR and the three types of syntactic RNR and LNR which correspond to the three conditions stated in (23). In this HPSG-based theory, sentences like (27) and sentences like (30) are not treated in a unified manner; as we have seen in the previous section, our account of a sentence like (30) relies on the constraint in (23c), which is distinct from the constraint that was invoked to deal with a sentence like (27), namely (23a). Given this situation, the following question naturally arises: is the HPSG-based theory described in section 2 less simple and perhaps more ad hoc than CG-based theories, as claimed in Kubota and Levine (2015), after all?

In this section, we answer this question in the negative. When we take into account a broader range of phenomena involving RNR or LNR, it turns out that the HPSG-based theory is not necessarily more complicated than CG-based theories like Kubota and Levine’s. This assessment will be based on three observations regarding RNR and LNR.

First, as pointed out in Yatabe (2015), Kubota and Levine’s theory needs to be supplemented with a separate mechanism of prosodic ellipsis. Without such an additional mechanism, their theory is incapable of generating some instances of what we call medial RNR and LNR, a phenomenon in which a right-node-raised or left-node-raised expression is pronounced at a location other than the right or left edge of the coordinate structure involved. Medial RNR has been discussed in the context of CG in works such as Whitman (2009), Kubota (2014), and Warstadt (2015), but it can be shown that the particular example in (33) below is problematic for all these CG-based theories, which do not employ prosodic ellipsis of any sort.

(33) Are you talking about a new or that ex-boyfriend you used to date? (from Chaves (2014))
In (33), the right-node-raised expression boyfriend is pronounced at a medial position within the second conjunct, rather than at its right edge. Appendix C presents the result of a small questionnaire study concerning the acceptability of this example, which showed that it is acceptable if not perfect. Since the slight awkwardness of the sentence can plausibly be ascribed to the degraded parallelism between conjuncts that always accompanies medial RNR, we regard the sentence as grammatical.

If we are to apply one of the CG-based theories cited above to this example, we need to view the prepositional object in this example (viz. a new or that ex-boyfriend you used to date) as the result of combining a coordinate structure of the form a new or that ex- you used to date with a noun boyfriend and then phonologically infixing the latter into the former. As noted in Yatabe (2015), such an analysis requires the assumption that a sequence of prenominal modifiers like that ex- and a postnominal modifier like you used to date can form a constituent in English, and once we make such an assumption, it is no longer obvious how we can rule out an ill-formed phrase like (34), which the theory predicts could be generated by combining [a new [who you’re dating now]] or [that ex- [you used to date]] and boyfriend and then phonologically infixing the latter into the former.

(34) *a new [who you’re dating now] or that ex-boyfriend [you used to date]

Thus, an example like (33) appears to be a genuine problem for what Kubota and Levine call the direct coordination approach. Yatabe (2016) notes the existence of similarly problematic examples involving LNR.

The partially ellipsis-based theory like ours, on the other hand, has no problem explaining why (33) is possible while (34) is not. (34) is illicit because it violates the constraint stated in (77a), which says that the order of strings can never be reversed once it is fixed inside some order domain. (34) is the result of conjoining (35) and (36) and right-node-raising the noun boyfriend.

(35) a new boyfriend who you’re dating now
(36) that ex-boyfriend you used to date

In the order domain of the first conjunct, the string boyfriend precedes the string who you’re dating now. However, in the order domain of the coordinate structure as a whole, the string boyfriend follows the string who you’re dating now, thus violating the constraint in question. In contrast, (33) is licit because it does not violate this or any other constraint in the grammar. (33) is the result of combining (37) and (38) and right-node-raising boyfriend.

(37) a new boyfriend
(38) that ex-boyfriend you used to date

The string a new precedes the string boyfriend throughout, that is, both in the order domain of the first conjunct and in the order domain of the coordinate structure as a whole. Similarly, that ex- precedes boyfriend, and boyfriend precedes you used to date throughout, that is, both in the order domain of the second conjunct and in the order domain of the coordinate structure as a whole. Thus, there are no two strings whose order is reversed in violation of the constraint in (77a).

Another problem for the direct coordination approach is that there are acceptable instances of right-node raising in which the right-node-raised expression has a form that is appropriate for the second, final conjunct but not for the first conjunct, as shown in Abeillé and Mouret (2011) and Shiraishi and Abeillé (2016).
The foregoing makes it clear, and Kubota and Levine acknowledge in Kubota and Levine (2018), that their theory of RNR and LNR needs to be supplemented with a separate mechanism for prosodic ellipsis, a mechanism which would play the same role in their theory that phonological RNR and LNR play in our theory. This means that the complexity of Kubota and Levine’s theory as it is now should be compared not with the complexity of our HPSG-based theory as a whole but with the complexity of the portion of our theory that deals with syntactic RNR and LNR alone.

The second observation we make is that RNR and LNR involving a coordinate structure and RNR and LNR involving a non-coordinate structure are treated in a unified manner in the HPSG-based theory, but not in CG-based theories. It has been known since Hudson (1976) that RNR is allowed in non-coordinate structures as well, and it is claimed in Yatabe (2001) that LNR is also allowed in non-coordinate structures. Sentence (39) is one example of such RNR, discussed in Williams (1990); here we take the liberty of adding a dash in front of the right-node-raised phrase, following Postal (1994).

(39) I talked to without actually meeting—all the members who voted against Hinkly.

Example (39) clearly can be construed as an instance of syntactic RNR as opposed to phonological RNR, since the right-node-raised quantifier in this example can be pronounced as an independent prosodic constituent separated from the preceding VP, and can take wide scope over the VP.

In the HPSG-based theory presented in the previous section, an example like (39) is analyzed the same way that an example like (27) is analyzed. In both examples, one domain object is shared by the order domains of two phrases that are sisters of each other, and the quantifier that is expressed by that domain object ends up taking wide scope over the structure made up by the two phrases, owing to the condition stated in (23a).

On the other hand, in CG-based theories, non-coordinate syntactic RNR and LNR, exemplified by (39), must be treated by a mechanism distinct from the mechanism responsible for licensing coordinate syntactic RNR and LNR, exemplified by (27). This lack of unity would not increase the overall complexity of the theory if non-coordinate syntactic RNR and LNR could be handled, as claimed in Steedman (1996), by a mechanism that is independently needed for licensing parasitic gaps. It is questionable, however, whether a unified account of parasitic gaps and non-coordinate RNR and LNR is in fact achievable within Hybrid Type-Logical Categorial Grammar. For one thing, Hybrid Type-Logical Categorial Grammar lacks an account of multiple gaps such as parasitic gaps at the moment (see footnote 13 of Kubota and Levine (2016)). For another, the unified analysis of parasitic gaps and non-coordinate RNR proposed in Steedman (op. cit.) can be shown to be flawed; the theory correctly generates an example like (39), but it incorrectly rules out an example like the following.

(40) I talked to without actually meeting in person—all the members who voted against Hinkly.

The reason this sentence is ruled out is that Steedman assumes (i) that the object NP of a preposition needs to be marked either as -SHIFT or as +SHIFT, -LEX, (ii) heavy NP shift can apply only to NPs that are marked as +SHIFT, and (iii) that NPs realized with lexical material (i.e. NPs that are not fronted) are always +LEX; these three assumptions, taken together, require the right-node-raised expression in (40) to be either +SHIFT and -SHIFT at the same time or +LEX and -LEX at the same time. These problematic
assumptions cannot simply be dropped because they in effect encode the difference between RNR, which can only target the right edge of a constituent, and leftward extraction, which can target medial positions (see Steedman (1996, subsection 3.5.2) for details). Although this problem posed by sentence (40) and the three assumptions is particular to the theory presented in Steedman (1996), it is arguably symptomatic of the difficulty inherent in any attempt to treat in a uniform manner both leftward extraction, such as the kind that yields parasitic gaps, and varieties of LNR and RNR, such as non-coordinate RNR.

Thus, it seems likely that this is an empirical domain in which the HPSG-based theory is more unified and less complicated than CG-based theories. Note that we are not claiming that the HPSG-based theory is in any way superior to CG-based theories in this regard; there is nothing inherently wrong with postulating distinct grammatical mechanisms for coordinate RNR and LNR on the one hand and non-coordinate RNR and LNR on the other. The only point we are making here is that this observation indicates that HPSG-based theories of RNR and LNR are not necessarily more complicated or more ad hoc than CG-based theories.

The third observation we wish to make in this section concerns a phenomenon illustrated by sentences like (41) and (42) below, in which relative clauses appear to modify discontinuous expressions. We will henceforth refer to relative clauses like these as split-antecedent relative clauses.

(41) A man entered the room and a woman went out who were quite similar.
(from Perlmutter and Ross (1970))

(42) Every woman is smiling and every man is frowning who came in together.
(from Fox and Johnson (2016))

The relative clause who were quite similar in (41) appears to modify man and woman at the same time, and the sentence as a whole has a reading on which it means “A man and a woman who were quite similar to each other entered the room and went out respectively”. Likewise, the relative clause who came in together in (42) appears to modify woman and man at the same time, and the sentence as a whole has a reading on which it means “Every woman and man who came in together are smiling and frowning respectively”. The existence of sentences like these has been known for some time, but there is as yet no standard characterization of the syntax and semantics of such sentences.

What we wish to point out regarding sentences like these is the following: if we supplement the theory that we described in the previous section with some auxiliary hypotheses, sentences like (41) and (42) can be treated the same way that sentences like (30) are treated, namely by invoking the condition stated in (23c). Before stating what those auxiliary hypotheses are, let us attempt a schematic illustration of the proposal. Part of the structure that the proposed theory assigns to sentence (42) is shown in Figure 19, where the strings is smiling, is frowning, and who came in together are each treated as a single word for the sake of simplicity. What is shown in this figure is the local subtree at which the relative clause who came in together is right-node-raised out of two sentences that are conjoined with each other. Each conjunct involves extraposition of the relative clause out of the grammatical subject, and is licensed as in Figure 2.\footnote{20}

\footnote{18Even in a sentence like (33), ellipsis can only take place at the right edge of the first conjunct.}

\footnote{19Grosz (2015) discusses an analogous German example.}

\footnote{20The domain object for the relative clause within the order domain of the first conjunct and the domain object for the relative clause within the order domain of the second conjunct have different \textsl{mod} values, as...}

37
Figure 19: Part of the structure assigned to sentence (42)
In order to make it possible to employ condition (23c) in this context, we hypothesize that the index value of a relative clause is identical to the index value of the nominal expression that it modifies. In Figure 19, since the index values of the two grammatical subjects are x and y respectively, the domain object representing the relative clause in the order domain of the first conjunct is given an EP value that means “x came in together”, and the domain object representing the relative clause in the order domain of the second conjunct is given an EP value that means “y came in together”. Therefore, when the two domain objects representing the relative clause are fused in accordance with the condition (23c), the resulting domain object is given an EP value that means “$x + y$ came in together”, because the two domain objects that are fused have x and y respectively as the index values, by assumption.

In order to ensure that appropriate truth conditions are given to sentences like (42), we also hypothesize that the grammar contains the two rules stated in (43) and (44), which can optionally be applied to alter MRS representations. We assume that resolution of an MRS representation is performed incrementally, adding to the representation one by one a constraint that requires two or more handles to be identical, and we say that two handles are known to be identical when they are either represented by the same name or required by the handle constraints to be identical. The expression locally resolved, which is used in (43), is defined in (45).

(43) MRS Adjustment Rule 1:
On condition (i) that a given MRS representation is locally resolved below each of the n handles $1, \ldots, n$ and (ii) that no two of the n handles $1, \ldots, n$ are known to be identical to each other, an elementary predication of the form

\[
\begin{bmatrix}
HNDL & 0 \\
RELN & \text{and} \\
CONJUNCTS & \langle 1, \ldots, n \rangle
\end{bmatrix}
\]

can be removed from the MRS representation, leaving behind a handle constraint that requires that $0, \ldots, n$ be identical to each other.

(44) MRS Adjustment Rule 2:
Suppose a given MRS representation contains n elementary predications of the following form, each representing the meaning of a non-numerical determiner. What we call non-numerical determiners are determiners like every, a, the, few, and no; numerical determiners are determiners like exactly two.

\[
\begin{array}{c|c|c}
HNDL & h_1 & HNDL \\
RELN & 1 & RELN \\
VAR & v_1 & \ldots & VAR \\
RESTRICTOR & 2 & RESTRICTOR \\
SCOPE & 3 & SCOPE \\
\end{array}
\]

Such n elementary predications can be replaced by a single elementary predication of the following form, if h_1, \ldots, h_n are known to be identical to each other and v_1, \ldots, v_n are distinct from each other.

well as different index values and different EP values. According to the formulation given in Yatabe (2012) and the Appendix of Yatabe (2003), however, that does not prevent the two domain objects from being fused with each other. The result of the fusion is a domain object whose mod value is a list containing a phantom coordinate structure whose conjuncts are the synsem values of woman and man. The meaning of the term phantom coordinate structure will be explained in Section 4 below.
The resultant elementary predications is to be interpreted in the expected way. For instance, when the denotation of $[1]$ is “every”, the resultant elementary predications is interpreted as saying “Every n-tuple that makes the restrictor true makes the nuclear scope true as well”.

(45) We say that an MRS representation is locally resolved below the handle h at a given stage of the resolution process if and only if, at that stage, the elementary predications whose handles are known to be either identical to h or outscoped by h form either a resolved MRS representation or a representation that would become a resolved MRS representation if all the free variables in them were bound.

Addition of these two rules to the grammar does not affect the truth conditions assigned to most types of sentences. In sentences involving only “standard” sorts of syntactic structures, application of the MRS Adjustment Rule 1 merely creates a representation that expresses conjunction more succinctly. Likewise, when the determiner involved is every, a, or the, application of the MRS Adjustment Rule 2 merely creates a representation that expresses the same truth condition that would have been expressed if the n elementary predications involved were given different HNDL values, different RESTRICTOR values, and different SCOPE values and no scope-taking element intervened between those n quantifiers.

Addition of the two rules, however, does affect the way a sentence like (42) is interpreted. When sentence (42) is given a structure like that shown in Figure 19, the mechanism for resolving an MRS representation, which is assumed to operate incrementally, can yield a representation that can be expressed as in (46) in the linear format.

(46) and(every(x, woman(x) \land man(y) \land came-in-together(x + y), is-smiling(x) \land is-frowning(y))

\quad every(y, woman(x) \land man(y) \land came-in-together(x + y),

\quad is-smiling(x) \land is-frowning(y)))

This representation as a whole is not a resolved MRS representation, because the restrictor handle and the scope handle of the first occurrence of every are illicitly equated with the restrictor handle and the scope handle of the second occurrence of every respectively, preventing the elementary predications from forming a tree. However, since the representation is locally resolved below h_2 (the handle that is identical to h_4 and thus stands for the meaning of the first occurrence of every) and is also locally resolved below h_3 (the handle that is identical to h_17 and thus stands for the meaning of the second occurrence of every), the MRS Adjustment Rule 1 can apply, yielding a representation equivalent to the following.

21 Even when the determiner involved is no or few, application of the MRS Adjustment Rule 2 does not create a representation expressing deviant truth conditions, assuming that a sentence like No boy loves no girl has a reading that is paraphrasable as “No boy loves any girl”. See Landman (2000, subsection 9.3.5) for discussion of the status of this reading.
Since the MRS Adjustment Rule 1 has identified h_2 and h_3 (and therefore h_4 and h_{17} as well) with each other and x and y are distinct from each other, the MRS Adjustment Rule 2 can now apply, giving us a resolved MRS representation expressing the truth condition shown in (48), which the grammar could not have produced without using the two adjustment rules.

(48) every($x + y$),
 woman(x) ∧ man(y) ∧ came-in-together($x + y$),
 is-smiling(x) ∧ is-frowning(y))

Note that the elementary predications that are contributed by the two occurrences of the word every in sentence (42) are allowed to have the same restrictor value and the same scope value, even though there is nothing in the grammar that requires them to share those values. In the constraint-based version of HPSG, any two objects can optionally be identified with each other, unless there is some constraint that prohibits that identification. This feature of the constraint-based version of HPSG could lead to a certain problem, but the problem can be avoided by adopting a simple assumption. The potential problem stems from the fact that two occurrences of the same word may contribute to the $\mathfrak{e}p$ list of the sentence two entirely token-identical elementary predications. If such two token-identical elementary predications on an $\mathfrak{e}p$ list could jointly be regarded as a single elementary predication, a sentence like Every man’s mother loves every dancer would incorrectly be predicted to have a meaning like “Every male dancer’s mother loves that male dancer”. In order to circumvent this potential problem, we assume that two elementary predications occupying two distinct positions on an $\mathfrak{e}p$ list are always treated as two separate elementary predications even when they are token-identical.

The proposed theory accounts for an example like (49) in a similar fashion, although the MRS Adjustment Rules 1 and 2 are both irrelevant in a case like this, which does not involve coordination or universal quantification.

(49) We always let those boys play with those girls, who know one another from elementary school.
 (from Hoeksema (1986))

What this sentence involves is arguably a non-restrictive relative clause, so a few remarks are in order about how non-restrictive relative clauses are to be analyzed in the theory. We assume that the local top handle of a non-restrictive relative clause is required to be g_{stop}, the designated handle that is always equated with the global top handle. We also assume, pace Arnold (2007), that the antecedent of a non-restrictive relative clause is grammatically determined, rather than relatively freely chosen like the antecedent of a normal anaphoric pronoun. This second assumption is justified by a contrast like the following, and does not seem to us to be challenged by any of the facts discussed in Arnold (2007), one of which is a sentence analogous to (49).

22This is related to what is referred to as Höhle’s problem in Pollard (2001), in which it is stated that “there is widespread spurious ambiguity as to whether or not two structurally identical subparts of a feature structure are token-identical.” Although this spurious ambiguity is a problem from an aesthetic point of view, it is not known to lead to any empirical problem.
(50) *What those girls did today was remarkable, who used to play with those boys.
(51) What those girls did today was remarkable; they used to play with those boys.

In a theory like Kubota and Levine’s, sentences like (30) and sentences like (42) have to be handled using separate mechanisms, since the mechanism that they propose for sentences like (30) can be used only when there is a respectively-type dependency between two syntactic constituents, and sentences like (42) do not involve such dependency. Thus, here we arguably have another empirical domain in which the HPSG-based theory is more unified and simpler than CG-based theories. It should additionally be noted here that it is in fact far from obvious how the phenomenon of split-antecedent relative clauses could be handled at all in the framework of Hybrid TLCG. Specifically, it should be noted that it is not possible to transplant into Hybrid TLCG the theory proposed in Fox and Johnson (2016), which incorporates numerous non-standard assumptions such as the assumption that what is functioning as a universal quantifier in sentence (42) is the portion pronounced who came in together, rather than the portions pronounced every woman and every man.

As explicitly stated above, several auxiliary hypotheses were added to the HPSG-based theory in order to make it possible to use condition (23c) in dealing with split-antecedent relative clauses. In our view, however, that fact does not make our HPSG-based account of sentences like (30) and sentences like (42) any more complicated or any less uniform than Kubota and Levine’s account of sentences like (27) and sentences like (30), since the latter likewise needs to be aided by some auxiliary hypothesis. As acknowledged and discussed in Kubota and Levine (2015, sub-subsection 4.6.2), Hybrid TLCG overgenerates the same way that many versions of Type-Logical Grammar overgenerate, because it employs hypothetical reasoning in the syntactic calculus in order to achieve the uniform analysis of (27) and (30). For instance, on their account, the ill-formed sentence in (52), which instantiates a problem with Type-Logical Grammar that was first identified by P. Dekker, is predicted to be a grammatical English sentence that means “The brother of Pete slept, and John believes that Pete slept.”

(52) *The brother of, and John believes that, Pete slept.

Since we do not know the complexity of the auxiliary hypothesis that needs to be added to Hybrid TLCG to suppress this type of overgeneration, there is at the moment no reason to believe that Kubota and Levine’s account of sentences like (27) and sentences like (30) is any simpler than our HPSG-based account of sentences like (30) and sentences like (42).

Notice that, unlike Hybrid TLCG, our grammar does not need any additional assumption to ensure that an example like (52) is not generated by syntactic RNR. In order to generate (52) in our account, a domain object whose syntactic category is S needs to be right-node-raised out of the second conjunct, irrespective of whether the embedded clause (Pete slept) undergoes total compaction or strictly partial compaction. On the other hand, none of the domain objects right-node-raised out of the first conjunct can belong to the category S. Therefore the right-node raising that has to take place in order for this example to be generated cannot take place, because the grammar does not allow domain objects belonging to different syntactic categories to be fused with each other by syntactic RNR.23

23An auxiliary hypothesis does need to be added to the grammar in order to ensure that (52) is not generated by phonological RNR either. That hypothesis is stated in Yatabe (2012). Presumably Kubota and Levine’s theory of prosodic ellipsis will also need to incorporate an auxiliary hypothesis to prevent the ellipsis mechanism from generating examples of this type.
Table 1: Do the two phenomena receive a uniform treatment in each theory?

<table>
<thead>
<tr>
<th>Phenomena</th>
<th>our account</th>
<th>Hybrid TLCG</th>
</tr>
</thead>
<tbody>
<tr>
<td>wide-scope readings and narrow-scope readings of L/RNRed quantifiers</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>wide-scope readings and internal readings of L/RNRed DPs</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>coordinate L/RNR and non-coordinate L/RNR</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>internal readings of L/RNRed DPs and split-antecedent relative clauses</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>internal readings and respectively readings</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>internal readings involving L/RNR and internal readings not involving L/RNR</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>

In fairness to Kubota and Levine, it should be added that their theory treats sentences like (53) and sentences like (30) in a unified, elegant fashion as well. In the HPSG-based theory, sentences like (53) need to be handled by a completely separate mechanism, as we discuss in Appendix D.

(53) Mary and John saw Bill and Jane, respectively.

It should likewise be noted that Kubota and Levine’s theory of the internal readings of symmetrical predicates is entirely uniform, whereas our account of the same empirical domain is divided into two components, one that deals with cases involving LNR or RNR (see sub-subsection 2.4.2) and another component that deals with cases that do not involve LNR or RNR (see Appendix D for some more discussion). As is hopefully clear by now, however, these observations do not warrant the conclusion that Kubota and Levine’s theory is simpler and less ad hoc than our theory overall. The second and the third observation that we have made in this section show that there are some empirical domains involving RNR or LNR that are amenable to a more unified treatment in the HPSG-based theory than in CG-based theories. As summarized in Table 1, the HPSG-based theory and Kubota and Levine’s CG-based theory are based on different ways to carve up the relevant empirical domain as a whole, neither of which can be regarded as superior on an a priori ground.

4 Summative agreement: an HPSG-based account and its alternatives

In this section, we will argue that there is a potential empirical problem with CG-based theories of coordination such as Kubota and Levine’s. Specifically, we will argue that, unlike the HPSG-based theory, a theory like Kubota and Levine’s may not be capable of providing an explanatory account of a pattern of grammatical agreement that we will refer to as summative agreement, seen in English and many other languages.

Summative agreement is a pattern of agreement in which a predicate that has two or more subjects (or objects in the case of languages like Basque that have object-verb agreement) as a result of having been right- or left-node-raised out of two or more
clauses fails to agree with any of those subjects (or objects) and instead appears to agree with a nonexistent DP (or NP) that would be formed by conjoining all those subjects (or objects, respectively). The sentence in (54), discussed in section 2, exemplifies the phenomenon in question.

(54) The pilot claimed that the first nurse, and the sailor proved that the second nurse, were spies.

In this sentence, the right-node-raised VP were spies has the form that it takes when it agrees with a plural subject DP, despite the fact that the VP takes a singular subject both in the first conjunct and in the second.

The availability of summative agreement is affected by the type of coordinator involved, as shown by (55), and by the kinds of subject DPs involved, as shown by (56) and (57). (See Yatabe (2003) for questionnaire results that support the factual claims being made here.)

(55) The pilot claimed that the first nurse, or the sailor proved that the second nurse, were spies.

(56) The pilot claimed that the nurse from the United States, and the sailor also claimed that the nurse from the United States, {were spies, was a spy.}

(57) The pilot claimed that the nurse from the United States, and the sailor claimed that no one, {were spies, was a spy.}

Intuitively, the verb were is agreeing, or is failing to agree, with a nonexistent DP of the form the first nurse and the second nurse in (54), the first nurse or the second nurse in (55), the nurse from the United States and the nurse from the United States in (56), and the nurse from the United States and no one in (57).

Examples involving summative agreement cannot be viewed as results of simple prosodic ellipsis, and at the same time, they do not seem to be amenable to a CG-based account either. The contrast between (54) and (55) can be captured by somehow stipulating that summative agreement is licensed by conjunction but not by disjunction. However, the contrast between (54) on the one hand and (56) and (57) on the other is problematic. When sentences like (54), (56), and (57) are analyzed in a CG-based theory, information about the semantic content of each subject DP in the embedded clauses becomes unavailable before coordination takes place. In each of these three sentences, the expressions that are conjoined would belong to a syntactic category like S/VP_{sing}, where VP_{sing} is the category for those VPs that take singular subject DPs. There is nothing in this category that indicates anything about the semantic content of the subject DPs in the embedded clauses, over and above the fact that those DPs must mean something that can be denoted by grammatically singular DPs. Thus, in this line of analysis, there is no syntactic reason to expect there to be any difference between (54) on one hand and (56) and (57) on the other.

It might seem that a purely semantic theory of subject-verb agreement would make it unnecessary to say anything special about summative agreement and thus make it possible to maintain a CG-based theory of non-constituent coordination. More specifically, it might seem possible to capture the observed patterns of summative agreement as well as non-summative agreement by saying that the plural form of a verb phrase is used if and only if that verb phrase is predicated of two or more objects. For instance, the example in (54) states that there are two people who were either claimed or proven to be spies, and this semantic fact could be taken to be the reason...
why the verb appears in the plural form. If such a semantic account turns out to be
appropriate in all cases, then it will not even be necessary to distinguish summative
agreement from non-summative agreement.

This line of analysis is ultimately not tenable, however. For one thing, the semantic
representation for the sentence in (54) must mean “The pilot claimed that the first nurse
was a spy, and the sailor proved that the second nurse was a spy”. Nowhere in such
a representation will the VP meaning be predicated of a plural entity. Furthermore, it
is in fact not the case that the plural form of a verb phrase is used if and only if that
verb phrase is predicated of two or more objects. This can be seen from the following

(58) a. More than one student { has *have} passed the exam.

 b. No student { has *have} failed the exam.

 c. No students { *has have} failed the exam.

 d. In Illinois precincts, on the average, \{ \begin{array}{c} 0 \\ .3 \\ 1.0 \end{array} \} { *voter is voters are} voting for Smith.

In (58a), the singular form of the verb has to be used despite the fact that the sentence
claims that the number of students who have passed the exam is two or more. (58b)
and (58c) both claim that the number of students who have failed the exam is zero, but
the singular form of the verb is used in (58b) and the plural form is used in (58c). And
in (58d), the plural forms of the noun and the verb have to be used although each of
the sentences says that roughly one voter or even fewer voters are voting for a specific
candidate. These facts suggest that number agreement in English is at least partly
syntactically determined.

It is claimed in Beavers and Sag (2004) that summative agreement is a result
of some kind of performance error. This analysis would also make it possible to
maintain the CG-based theory of LNR and RNR, but there is a reason to reject such an
analysis as well: summative agreement seems to be categorically banned in Croatian,
Dutch, Greek, and the Northern dialects of German, according to Grosz (2015), and
in Brazilian Portuguese, Finnish, Hindi, Icelandic, Romanian, Serbo-Croatian, and
Slovenian, according to Shen (2019). If summative agreement results from some type
of performance error, there should not be such crosslinguistic variation, especially
between closely related and similar languages such as Dutch and the Southern dialects
of German. Another reason to reject the analysis in question may be provided by the
claim, made in Kazenin (2002), that summative agreement is obligatory in Dargwa
and Russian, as illustrated by the following examples. Sentences (59a) and (59b) are
Dargwa examples, and sentences (60a), (60b), (61a), and (61b) are Russian examples.

24In Kubota and Levine (2018), it is claimed that it is unclear how the contrast between sentences like
Two or more students met and *More than one student met can be accounted for in a syntax-based theory
of number agreement we are advocating here. The contrast can be understood as a consequence of the
intransitive verb to meet and other verbs similar to it selecting a subject that is syntactically plural, as
suggested in Landman (2000, pp. 83–84). There will be some further discussion of Kubota and Levine
(2018) later on.

25Another conclusion we draw from this observation is that the grammar rules responsible for summative
agreement are likely to be acquired on an empirical basis and thus should not necessarily be expected to be
logically deducible.
In each of these sentences, the verb is either right-node-raised or left-node-raised out of two clauses, and takes a singular subject in each conjunct. In each pair of sentences, the first one, whose verb is in the plural, is acceptable, and the second one, whose verb is in the singular, is not, according to Kazenin (2002). The claim that summative agreement is obligatory in Russian has been corroborated in Shen (2019), where the examples in (62) and (63) are presented. According to Shen (2019), summative agreement may be obligatory in Slovak as well.

One caveat is that neither Kazenin (2002) nor Shen (2019) provides detailed information as to the empirical basis of these factual claims. This is unfortunate, as the facts involved may not necessarily be beyond dispute; the one Russian speaker we consulted rated Kazenin’s four Russian sentences, (60a), (60b), (61a), and (61b), as equally possible if slightly unnatural. That said, if these factual claims turn out to be justifiable, then they militate against the view that summative agreement is a type of performance error.

Another theory that would make it possible to maintain the CG-based theory is provided by Chaves (2014). According to Chaves’s theory, when eventuality-denoting expressions like VPs are right-node-raised, the surface form of those right-node-raised
expressions could be different from the pre-RNR forms of those expressions, as long as (i) the eventuality denoted by the surface form is the sum of the eventualities denoted by the pre-RNR forms and (ii) the surface form expresses everything expressed by the pre-RNR forms and, possibly, some additional information supplied by the context. This theory allows a VP of the form *has problems* to undergo RNR out of two conjuncts and to become a VP of the form *have similar problems*, as shown in (64).

(64) I think that Robert has problems and you think that Bill has problems.

↓

I think that Robert and you think that Bill have similar problems.

This RNR is allowed in the theory because (i) the surface form of the right-node-raised VP *have similar problems* could be taken to denote the sum of the eventualities denoted by the two pre-RNR forms (namely the two occurrences of *has problems*) and (ii) the surface form expresses everything the two pre-RNR forms express as well as the additional information (supplied by the context) that Robert’s problem and Bill’s problem are similar.

This analysis of summative agreement is arguably not adequate either, however. First of all, this analysis is ad hoc; it is not clear why the kind of transfiguration of a VP is licensed just when another VP with the same phon value undergoes prosodic ellipsis elsewhere in the sentence. Moreover, Chaves’s analysis overgenerates. There is nothing in the theory that prevents RNR from deriving a sentence like (65) from the pre-RNR form shown at the top of (64) above.

(65) *I think that Robert and you think that Bill they have problems.

We could rule out (65) by augmenting Chaves’s theory with a constraint that says that the surface form of right-node-raised VPs must be a VP. The augmented version of the theory, however, still does not prevent RNR from deriving a sentence like (66) from the pre-RNR form shown in (67). Note that the surface VP in (66), namely *was seen by Robert and Bill*, can mean the sum of the eventualities denoted by the two occurrences of *saw her* in (67), which express the eventuality of Robert seeing her and the eventuality of Bill seeing her respectively, provided that the unexpressed grammatical subject of the surface VP is interpreted as referring to the same individual as the pronoun *her*. Note also that, given that interpretation of the unexpressed subject, the surface VP *was seen by Robert and Bill* expresses everything expressed by the pre-RNR forms, namely the two occurrences of *saw her*; the pre-RNR forms express “x (= Robert) saw z (=her)” and “y (= Bill) saw z (= her)”; and the surface form expresses “z (=her) was seen by x (= Robert) and y (=Bill)”. The fact that the subject of the surface VP needs to be interpreted as different from either of the subjects of the two pre-RNR forms should not be a problem because the same is true in the case of (64).

(66) *I think that Robert and you think that Bill was seen by Robert and Bill.

(The intended meaning: “I think that she was seen by Robert, and you think that she was seen by Bill.”)

(67) I think that Robert saw her and you think that Bill saw her.

In Kubota and Levine (2018), the authors respond to an earlier version of the present article and propose a theory of summative agreement that they claim makes the phenomenon unproblematic for the CG approach. They assume the existence of a special entry for *and* with the syntactic type ((S/VPsg)/(S/VP pl))/(S/VP sg), and make the following three assumptions.
Names, definites, indefinites, and plural expressions of the form all (the) Ns denote individuals, all of which can be conjoined by and_σ (which is a coordinator that conjoins type-e objects to create sums) to form an individual of type e_σ (which is the type of sums).

Singular quantifiers of the form each N, every N, and no N all denote generalized quantifiers of type (e_ι → t) → t, where e_ι is the type of atomic individuals.

The Right-Peripheral Element (RPE) (which is the right-node-raised VP in the present context) can reflect a speaker’s perspective in which the separate arguments of the single RPE predication are in effect retrieved by the speaker from their separate S/VP_sg clauses and thrown together by the speaker’s construal of them as forming a single plural entity to which the RPE predication applies just in case it can take such arguments.

The statement in (70) means, among other things, that the multiple arguments of the right-node-raised VP in a sentence like (54) must be able to form a single plural entity when semantically conjoined with each other.

We find it difficult to evaluate this theory because the statement in (70) is, in our view, not sufficiently transparent. Specifically, it is not clear to us how we are to interpret this sentence: “the separate arguments of the single RPE predication are in effect retrieved by the speaker from their separate S/VP_sg clauses”. Apparently Kubota and Levine are saying here that the rule or principle responsible for regulating summative agreement references not the logical formulas representing the meanings of the conjuncts in narrow grammar but rather some appropriate level of representation of the discourse pragmatics of the sentence, at which notions such as ‘point of view’ are appropriately represented. One example of such a representation of discourse pragmatics is provided by the version of Discourse Representation Theory (DRT) described in Kamp and Reyle (1993). Introduction of DRT-style representations into Hybrid TLCG obviously expands the range of generalizations that are expressible in the theory, and may provide a basis for an account that captures all the facts involving summative agreement.

Even supposing that the statement in (70) can be given an appropriate interpretation along these lines, however, the theory proposed in Kubota and Levine (2018) is ultimately not explanatory in our view, in that it fails to account for the fact that summative agreement is a crosslinguistically common phenomenon. The special lexical item that is posited for and in Kubota and Levine (2018) is quite complicated, and in fact needs to be made even more complicated since (i) the lexical entry as it stands causes a type mismatch and fails to produce any denotation for sentences like (54) and (ii) the lexical entry as it stands does not take into account the fact that summative agreement may involve person agreement (in addition to number agreement) and object-verb agreement (in addition to subject-verb agreement), as we will see shortly. Moreover, the procedure for retrieving the separate arguments of the right-node-raised VP from the separate S/VP_sg clauses adds another layer of complexity to the analysis, a layer that does not exist in the case of non-summative agreement. We do not know how simple or complicated Kubota and Levine’s analysis of agreement as a whole will be, but it is clear that their analysis of summative agreement will be considerably more complicated than their analysis of non-summative agreement. Therefore, their theory leads us to expect that summative agreement must be an uncommon phenomenon, compared to non-summative agreement. Contrary to this expectation, however, summative agreement has been shown to exist in Western Armenian (Grosz (2015)), Basque (McCawley (1988, p. 533), citing Rudolf de Rijk and Todd Sjoblom), Dargwa (Kazenin (2002)), English (McCawley (1988, p. 532); Postal
(1998, p. 173); Levine (2001)), French (Mouret (2006)), German (Schwabe (2001); Schwabe and von Heusinger (2001)), 26 Standard Gujarati (Grosz (2015)), Hebrew (Grosz (2015)), Italian (Grosz (2015)), Polish (Citko (2018)), Russian (Kazenin (2002) and Shen (2019)), and Slovak (Shen (2019)). Sentence (71) is an Austrian German example that indicates that summative agreement can involve person agreement as well as number agreement, and sentence (72) is a Basque example that shows that summative agreement can involve object-verb agreement as well as subject-verb agreement. 27

‘Gustav is proud that I, and Otto is glad that you, will travel to Nigeria.’

(from Grosz (2015))

(72) Miren-ek sagar bat eta Karmen-ek udare bat jango du/dituzte.

‘Miren will eat an apple and Carmen a pear.’

(from McCawley (1988, p. 533))

Thus, it is our tentative conclusion that CG-based theories like Kubota and Levine’s cannot provide an explanatory account of summative agreement, although we do acknowledge that it may be possible to develop a descriptively adequate account of summative agreement within such theories.

Unlike theories incorporating the direct coordination analysis of non-canonical coordination, the HPSG-based theory of RNR and LNR can provide a simple way to characterize the phenomenon of summative agreement. This has been shown in Yatabe (2003). In the theory proposed in that work, when two or more domain objects representing a predicate are syntactically left- or right-node-raised together and thus fused together, what might be called a phantom coordinate structure can be created inside the valence lists of the domain object that results from the fusion. The ‘conjuncts’ of the phantom coordinate structure are the synsem values of the arguments that the predicate has combined with in each of the phrases out of which the predicate has been left- or right-node-raised; in other words, the phantom coordinate structure stores information as to what kinds of arguments the predicate has combined with in each conjunct or, more generally, each of the phrases that share that left- or right-node-raised predicate. Given such a mechanism, the patterns of grammatical agreement, including the patterns of summative agreement, can easily be captured if grammatical agreement between a predicate and its arguments is formulated in terms of a constraint that is imposed on the relationship between the agreement-related property of a domain object representing a predicate and the items on its valence lists, some of which may be phantom coordinate structures.

The way phantom coordinate structures are constructed inside the valence lists of a domain object is illustrated in (73). Depicted in the first line of (73) are two domain objects that are to be fused together by LNR or RNR, and what is shown in the second

26 It has been noted in Grosz (2015) that speakers of Northern German do not allow for summative agreement, as opposed to speakers of Southern dialects.

27 Sentences (60a), (61a), and (72) do not involve clause embedding, and thus might be considered to exemplify a phenomenon distinct from that exemplified by sentences like (54) and (71). Summative agreement cannot be regarded as a rare phenomenon, however, even if examples of the former type are excluded from the tally. It is reported in Grosz (2015) and Shen (2019) that the phenomenon exemplified by (54), i.e. summative agreement induced by RNR out of an embedded clause, is found in Western Armenian, German, Standard Gujarati, Hebrew, Italian, Russian, and Slovak, as well as in English.
line is the result of the fusion. The two input domain objects and the output domain object are all meant to be domain objects representing a transitive verb that takes NPs (not DPs) as subjects and objects. Here the feature name **VALENCE** is abbreviated as **vl** and it is assumed that the coordinator involved is **and**. (The definitions of functions and relations that are needed to implement the proposed analysis are given in Yatabe (2003).)

\[(73) \begin{array}{l}
\text{dom-obj} \\
\text{ss[cat][vl]}
\end{array}
\begin{array}{l}
\text{subj} \langle 1 \text{NP}_1 \rangle \\
\text{comps} \langle 2 \text{NP}_2 \rangle
\end{array}
\] +
\[(73) \begin{array}{l}
\text{dom-obj} \\
\text{ss[cat][vl]}
\end{array}
\begin{array}{l}
\text{subj} \langle 1 \text{NP}_1 \rangle \\
\text{comps} \langle 2 \text{NP}_2 \rangle
\end{array}
\]

\[\rightarrow \begin{array}{l}
\text{dom-obj} \\
\text{ss[cat][vl]}
\end{array}
\begin{array}{l}
\text{subj} \langle 1 \text{NP}_1 \rangle \\
\text{comps} \langle 2 \text{NP}_2 \rangle
\end{array}
\]

In this example, the two domain objects that are to be fused together have identical **subj** lists, although they have non-identical **comps** lists. In this case, as shown in the second line, the **subj** list of the resultant domain object will be identical to the **subj** list of each of the two input domain objects, and the **comps** list of the resultant domain object will consist of a phantom coordinate structure in which the sole element of the **comps** list of the first input domain object and the sole element of the **comps** list of the second input domain object appear to have been coordinated by **and**.28

Using this mechanism that creates phantom coordinate structures inside **VALENCE** lists, the grammar generates a structure like Figure 20, which shows part of the structure assigned to the Russian sentence in (60a).29 Shown here is the local subtree in which two Ss are conjoined to become a larger S, and in which the verb is syntactically left-node-raised. (The sentence-initial adverbial can be regarded as part of the left-node-raised string, but here we are assuming that the adverbial is outside the coordinate structure.) Left-node raising has fused two domain objects, viz. the first domain object in the order domain of the first daughter and the first domain object in the order domain of the second daughter, and the result of that fusion is the first domain object in the order domain of the mother. As a result of this left-node raising, information as to the arguments that the verb has combined with in each conjunct has been collected and stored in the **VALENCE** lists of the first domain object in the order domain of the mother. The **subj** list of \[\textbf{1}\] shows that this verb takes as its subject an NP whose index is \(w\) in the first conjunct and an NP whose index is \(y\) in the second conjunct, and the **comps** list shows that this verb takes as its complement a PP whose index is \(x\) in the first conjunct and a PP whose index is \(z\) in the second conjunct. In addition, \[\textbf{1}\] contains information as to the coordinator that was used to join the first clause and the second clause; in this case, the **subj** list and the **comps** list of \[\textbf{1}\] both indicate that the two clauses were joined together by the coordinator \(\text{a ‘but’}\).

In the theory we are describing, patterns of agreement cannot be encoded in the lexical entries of verbs; if the lexical entry of the verb *were* required the sole item on its **subj** list to be plural, for example, neither the first conjunct nor the second conjunct of sentence (54) would be licensed. It has to be assumed in this theory that the lexical entries for verbs do not impose any constraint on the agreement-related properties of the items on their **VALENCE** lists.

28The **synsem**|**cont** value of the resultant domain object will be determined according to the constraint in (23b), since the other two constraints cannot be satisfied in this case.
29We assume that the grammatical subjects in this sentence are NPs rather than DPs. Angle brackets are suppressed in all the **phon** values shown in this figure.
Figure 20: Part of the structure assigned to the Russian sentence in (60a)
The mechanism that enforces agreement in the proposed theory has two components. First, verbs are given a **head** feature called **agr**, as in Kathol (1999), and the value of that feature is specified in the lexical entry of each verb. For instance, the lexical entry for the verb *sings* specifies that its **agr** value is something like (74). Since the **agr** feature is by assumption a **head** feature, its value is inherited by the **VP** headed by the verb, and will also be shared by domain objects representing the verb or the **VP**.

(74) \[
\begin{array}{c}
\text{per} \\
\text{num}
\end{array}
\begin{array}{c}
3\text{rd} \\
\text{sg}
\end{array}
\]

Second, subject-verb agreement in languages like English and Russian is encoded as a non-lexical constraint that is imposed on the relation between the **agr** value of a domain object representing a verb or a **VP** and the item on its **subj** list. (Here we disregard object-verb agreement and focus on subject-verb agreement.) The constraint in question has to be a non-lexical one since it should be invoked only after the sole element in the **subj** list of a domain object representing a verb or a **VP** takes its final form, one that will not be replaced by a new phantom coordinate structure. One way to state such a non-lexical constraint is (75).

(75) When (i) a domain object \(\delta\) with a non-empty **subj** list undergoes compaction, and (ii) the **subj** list of the domain object newly created by the compaction is not identical to the **subj** list of \(\delta\), the **subj_verb_agreement** relation must hold between the `SYNSEM[CAT|HEAD|AGR]` value of \(\delta\) and the sole element in the **subj** list of \(\delta\).

This can be informally paraphrased as in (76).

(76) Agreement between the `SYNSEM[CAT|HEAD|AGR]` value of a domain object and the sole element in the **subj** list of that domain object is enforced at the point (in a bottom-up tree construction) where the **subj** list of the domain object either is emptied or disappears altogether.

The **subj_verb_agreement** relation, which is mentioned in (75), is defined for each language. The version for English is presented in Yatabe (2003), and is reproduced with minor modifications in Appendix E below. Given this setup, summative agreement will be licensed in a language if the constraint in (75) (in conjunction with the **subj_verb_agreement** relation in that language) allows a domain object that is about to undergo compaction and discharge its **subj** list to have the following two properties simultaneously: (i) the domain object has the **agr** value that is associated with canonical plural agreement, and (ii) the **subj** list of the domain object contains a phantom coordinate structure whose conjuncts are all singular.

Let us describe in informal terms what this theory claims is taking place in the example illustrated in Figure 20. In this example, the verb *poedut* is not required to agree with the subject NP of the first conjunct or that of the second conjunct because the **subj** list of the domain object representing this verb is not emptied or made to disappear while we are constructing this coordinate structure; note that the **subj** list of the verb still has one element in it at the top node in the figure. The top node

30The **agr** value of a verb will have to look a little different if the theory of coordination of unlikes presented in Yatabe (2004) is to be adopted.

31The **subj** list of the first domain object in the order domain of the top node still has one element in it because this domain object is simply inherited from the lexical entry for the verb and does not undergo any compaction until it reaches the top node.
is required to undergo total compaction so that the meaning of the matrix clause can be computed (see subsection 2.3), and the subj list of the domain object representing the verb *poedut* is emptied when this compaction takes place; the domain object created by the compaction will have an empty subj list because the sign associated with the top node has an empty subj list. Thus, the compaction of the top node is licensed by the constraint in (75) only if the SYNSEM[CAT|HEAD|AGR] value of the domain object representing the verb *poedut* in the order domain of the top node is in the subj_verb_agreement relation with the sole element in the subj list of that domain object, which is a phantom coordinate structure consisting of the two subject NPs. To recapitulate, the verb is required to agree with the sole element in its subj list when the top node in the figure undergoes total compaction, but not at earlier stages, and since the sole element in the subj list is a phantom coordinate structure involving the coordinator *a ‘but’* at that point, the verb exhibits summative agreement.

In the proposed account, summative agreement and non-summative agreement are dealt with in a uniform manner. The analysis of summative agreement does not involve any additional complexity that is not involved in the analysis of non-summative agreement; this is so because the mechanism of phantom coordinate structures is as much a part of the theory of non-summative agreement as it is a part of the theory of summative agreement. Our account therefore predicts, correctly in our opinion, that summative agreement should not be particularly less common than non-summative agreement. One reason why this account of summative agreement can be formulated the way it is here is that HPSG is a constraint-based framework in which information as to the arguments of a predicate is represented inside (the valence lists of) the predicate itself. As far as we can see, this account therefore cannot be transplanted into a CG-based theory, where information as to the content of the arguments is not represented inside predicates.

5 Conclusion

To summarize, we showed in section 2 that Kubota and Levine’s characterization of the HPSG-based theory of non-constituent coordination proposed in Yatabe (2001) and later works is inaccurate, and that the theory in question is consistent with the long-known fact that right-node raising and left-node raising can affect semantic interpretation. In the course of demonstrating this, we filled in some details of this HPSG-based theory that had been left unspecified in the previous literature, and we also corrected some minor errors in that literature. Next, in section 3, we discussed the question of whether the HPSG-based theory is more complicated than CG-based theories, and answered it in the negative. We claimed there that the HPSG-based theory and CG-based theories represent different ways to carve up the relevant empirical domain as a whole, neither of which can be regarded as superior on an a priori ground. Finally, we argued in section 4 that the phenomenon of summative agreement is a potential problem for CG-based theories of LNR and RNR such as Kubota and Levine’s.

Although what we have done in this article is to argue for an HPSG-based account of non-constituent coordination while arguing against CG-based accounts, it should be noted that the theory we have proposed shares an important feature with some CG-based theories of syntax and semantics. Like the theory that has been developed by Steedman and others within the framework of Combinatory Categorial Grammar, our theory embodies the view that semantic composition is performed on the basis of structures that are regarded as the prosodic structures of sentences in most standard
theories of syntax. We noted in section 2 that our theory is in a sense an attempt to incorporate this insight into the HPSG framework.

The view that semantic composition is performed on the basis of prosodic structures is supported not just by facts involving non-constituent coordination but also by the fact that semantic interpretation can be affected by prosodic phrasing. For instance, Kayne (1998) notes that, in SVO sentences in English, “the wide-scope reading for the object tends to be associated with an intonation pattern reminiscent of that of Heavy-NP Shift. . . This supports the idea that wide scope for the object in such sentences depends on (a particular combination of) overt movements. . . — if it were just a question of covert movement (whether of a phrase or of a feature), no effect at all on intonation would be expected.” Our theory may make it possible to explain a fact like this without adopting the arguably questionable hypothesis that quantifiers in English undergo overt movement which somehow never affects the surface word order. This prospect is still speculative at the moment, but seems to us to merit further inquiry.

Appendix

A The relation between syntactic trees and order domains

We assume that the correspondence between syntactic phrase-structure trees and order domains is subject to the following constraints.

(77) Principles governing the order of domain objects:

a. If a string \(s \) precedes another string \(t \) in the order domain of a sign, \(t \) cannot precede \(s \) in the order domain of the mother of that sign.
(Here we are using the term string to refer to the phon value or a part of the phon value of a domain object.)

b. Suppose that signs \(B \) and \(C \) are both daughters of a sign \(A \), and that \(B \) precedes \(C \). Then, in the order domain of \(A \), non-extraposable domain objects that come from \(B \) but not from \(C \) must each precede all the non-extraposable domain objects that come from \(C \) but not from \(B \).
(Here, we say that a domain object \(x \) contained in the order domain of a sign comes from a daughter \(y \) of that sign if and only if either (i) \(x \) is also contained in the order domain of \(y \) or (ii) \(x \) is a domain object that is newly created by compacting \(y \) either totally or partially. And we say that a domain object is non-extraposable if its SYNSEM|CAT|EXTRAPOSITION value is \(-\).)

To simplify slightly, (77a) says that the order of strings cannot be reversed once it is fixed in some order domain, and (77b) says that, apart from the effects of extraposition, the order of strings in an order domain reflects the order of those strings in the phrase-structure tree. (77a) is a slightly generalized version of what is called the Persistence Constraint in Kathol (1995).
B Quantifier storage

We employ two features, the quantifiers feature and the to-be-stored feature, to place the handle of each quantifier into the quantifier storage at an appropriate location. The value of the quantifiers feature on a sign is the set consisting of the handles representing all the quantifiers contained in that sign that have yet to be put in the quantifier storage. The value of the to-be-stored feature on a sign is the set consisting of the handles representing all the quantifiers that are to be put into storage at that node. (See how the to-be-stored feature is used in the definition of compaction in Figure 7.) The values of the to-be-stored and the quantifiers feature are subject to the following set of constraints.

(78) Principles governing the value of the to-be-stored feature
 a. The to-be-stored value of a sign must be a subset of its quantifiers value.
 b. The to-be-stored value of a sign that is not totally or partially compacted must be an empty set.

(79) Principles governing the value of the quantifiers feature
 a. The quantifiers value of a phrasal sign that is not a DP (i.e. a saturated phrase headed by a determiner) is the set obtained by subtracting the union of the to-be-stored values of its daughters from the union of the quantifiers values of those same daughters.
 b. The quantifiers value of a DP whose key value contains a scopal elementary predication is the union of (i) the singleton consisting of its ltop value and (ii) the set obtained by subtracting the union of the to-be-stored values of its daughters from the union of the quantifiers values of those same daughters.
 c. The quantifiers value of a DP whose key value does not contain a scopal elementary predication is the set obtained by subtracting the union of the to-be-stored values of its daughters from the union of the quantifiers values of those same daughters.
 d. The quantifiers value of a phrase headed by a verb or an adjective must be an empty set.

In this theory, a handle corresponding to a quantificational determiner like every does not ‘start out’ in a quantifier storage. Figure 21 shows how the two quantifiers in the sentence One apple in every basket was rotten are put in storage in accordance with the principles in (78) and (79).32 The handles for the two quantifiers are both put in storage (i.e. placed in an h-store set) at the top node in the figure. They are ‘retrieved’ from the quantifier storage when the top node undergoes compaction, as are the two quantifiers in Figure 8.

The reason that we need the features like quantifiers and to-be-stored has to do with our decision to define the compaction operation the way we did in Figure 7. As noted in subsection 2.3, when a sign is compacted, each quantifier whose handle was in the h-store set of a domain object that underwent compaction is required to take scope within that sign. This prevents us from assuming that the handle of a quantifier starts out in an h-store set; if it were in an h-store set at the word level, then the quantifier would have to take scope within the D node, since that node is required to undergo total compaction (by (5c)).

32A sentence like Everyone’s mother thinks he’s a genius, discussed in Reinhart (1983, section 8.2), can be handled in an analogous fashion.
Figure 21: How the quantifiers are put in storage in the sentence *One apple in every basket was rotten*. The feature names TO-BE-STORED and QUANTIFIERS are abbreviated as TBS and QS respectively.
C Collection of acceptability judgments on example (33)

We used the method described in Sprouse (2011) to test the acceptability of example (33) on the Amazon Mechanical Turk (AMT) platform.

We included a total of 11 test sentences including (33) in our questionnaire, published on the AMT platform. The other 10 test sentences were also examples of RNR taken from the literature. Besides the test sentences, we also included three questions for (i) verifying that our participants were native speakers of English, (ii) checking whether they were monolingual, and (iii) finding out whether they had the experience of studying linguistics. Every participant was shown the same set of test sentences but in a different, randomized order. Each sentence was followed by a parenthesized sentence that indicated what the intended meaning of the preceding sentence was, and the participants were instructed to rate each of the sentences on a 4-point scale, with 1 meaning “perfectly natural under the intended interpretation”, 2 meaning “slightly unnatural under the intended interpretation”, 3 meaning “considerably unnatural under the intended interpretation”, and 4 meaning “impossible under the intended interpretation”. The participants were each paid three US dollars.

Our questionnaire was completed by 10 participants. It turned out that all our participants had some experience of studying linguistics. We excluded from analysis two participants who did not choose the answer yes for the question of whether they were native speakers of English (and who, incidentally, both rated the sentence (33) as 1).

The result for sentence (33) was as follows: it was rated as 1 by two people, as 2 by three people, as 3 by two people, and as 4 by one person.

D Respectively readings

There are two respects in which the HPSG-based theory that has been proposed in the literature has a narrower empirical coverage compared to the theory proposed by Kubota and Levine. First, the theory does not apply to cases of the internal reading of a symmetric predicate that do not involve non-constituent coordination. Second, the theory does not generate respectively readings.

We believe that the first issue could be dealt with by incorporating into our theory a semantic theory of symmetric predicates such as that proposed in Brasoveanu (2011). Since the theory presented in Brasoveanu (2011) is not applicable to a sentence like (30), his theory and ours could complement each other without any redundancy.

On the other hand, the issue involving respectively readings cannot be rectified by incorporating some existing theory into our theory. There is no ready-made theory that is compatible with our theory and is capable of dealing with sentences like (80), discussed in Kubota and Levine (2015).

(80) I bought and sold a car on Thursday and a bike on Friday, respectively.

Thus, we will sketch below a new account of respectively readings, in order to ensure that the viability of our theory is not threatened by this issue.

Since some of the examples that we will discuss involve conjunction of proper names, we will first state what our assumptions are regarding the interpretation of such conjunction. The analysis of coordination that we presented in section 2 relies on an elementary predication in which “and” or “or” takes a list of handles as its sole argument. This analysis is adequate for coordination of Ss, VPs, and Vs, but it is
not adequate for expressions like *Alex and Chris*, which involve conjunction of non-quantificational nominal signs. We assume that, when two or more non-quantificational nominal signs (i.e. nominals whose key values do not contain scopal elementary predications) whose index values are x_1, \ldots, x_n are conjoined using the coordinator *and*, the phrase-structure schema for coordination requires (i) that a phonologically empty domain object of the form

\[
\text{SYNSEM}\{\text{CONT}\{EP}\}
\]

should be placed in the order domain of the coordinate structure, and (ii) that the index value and the semhead value of the coordinate structure should be x_0 and h respectively.33 We also assume that a non-quantificational NP involving conjunction (such as *Alex and Chris*) is obligatorily preceded by a phonologically empty determiner whose meaning is the same as that of *some*.34

Our account of *respectively* readings consists of two components: an annotation mechanism for keeping track of those prosodic constituents that are to be given *respectively* interpretation, and a rewriting mechanism for deriving semantic representations that embody *respectively* readings. In the proposed account, the semantic representations that are initially produced by the grammar merely indicate which portions of the representations are to be given *respectively* interpretation, and do not actually express the truth conditions that are to be arrived at ultimately. For instance, in the case of the sentence *Mary and Kate saw John and Bill respectively*, the grammar initially produces the semantic representation shown in (81), where the two occurrences of the symbol + are flagged by a common index, and the representation is later converted to (82), which is equivalent to (83), by the rewriting mechanism, which in this case creates a new coordinate structure in the semantic representation in such a way that its first conjunct retains only the first conjunct of each indexed coordinator and its second conjunct retains only the second conjunct of each indexed coordinator.

\begin{align*}
(81) \quad m &= \text{Mary} \wedge k = \text{Kate} \wedge j = \text{John} \wedge b = \text{Bill} \\
&\quad \wedge \text{some}(x, \text{identical}(x, m + i k), \text{some}(y, \text{identical}(y, j + i b), \text{saw}(x, y))) \\
(82) \quad m &= \text{Mary} \wedge k = \text{Kate} \wedge j = \text{John} \wedge b = \text{Bill} \\
&\quad \wedge \text{and} \text{some}(x, \text{identical}(x, m), \text{some}(y, \text{identical}(y, j), \text{saw}(x, y))), \\
&\quad \text{some}(x, \text{identical}(x, k), \text{some}(y, \text{identical}(y, b), \text{saw}(x, y)))) \\
(83) \quad m &= \text{Mary} \wedge k = \text{Kate} \wedge j = \text{John} \wedge b = \text{Bill} \wedge \text{and}(\text{saw}(m, j), \text{saw}(k, b))
\end{align*}

This account is based on the view, which we owe to Ivan A. Sag (personal communication), that *respectively* interpretation is something that is acquired relatively late as an add-on to the core grammatical mechanisms. A piece of circumstantial evidence for this view comes from the fact that the CHILDES corpus does not contain a single occurrence of the word *respectively*. We speculate that the usage of the word as well as the interpretation that is associated with it is something that is acquired as part of the conventions of written English.

33We need to assume that a similar analysis is given to an expression like *the three students*, in order for the present theory to be applicable to sentences like *The three students went to Paris, London, and Berlin, respectively*. We are unable to present the details of such an analysis in the present article.

34Given the theory of constituent coordination proposed in Yatabe (2004), NPs that involve conjunction and NPs that do not can be distinguished from each other because they have distinct kinds of head values.
Let us define some terms that we will use in what follows. First, we will say that in an example like *Mary and Jane saw Bill and Brad respectively*, the subject DP *Mary and Jane* and the object DP *Bill and Brad* are semantically aligned with each other. When we say (as we already did above) that an expression is given respectively interpretation, what we mean can be that it is semantically aligned with some other expression. Second, we will use the term *semantic coordinator* to refer to the following three things: the symbols “and” and “or” used as the values of the RELN feature, and the symbol “+” that is used as part of the SYNSEM(CONT|EP|FIRST|ARG2 value of a domain object introduced by the phrase-structure schema for coordinate structure. And third, we will say that a given occurrence of a semantic coordinator is the *semantic coordinator of* an expression X when that occurrence of the semantic coordinator is contained in the phonologically empty domain object that was introduced by the particular application of a phrase-structure schema that licensed X.

The annotation mechanism optionally assigns subscripts to the semantic coordinators of expressions. Since we are working with a constraint-based framework, this means that the grammar licenses structures in which some occurrences of semantic coordinators have subscripts attached to them. To state this more precisely, we assume (i) that the SYNSEM|CONT|EP|FIRST|RELN value of a domain object that is introduced by the phrase-structure schema for a coordinate structure is allowed to be of the form α_i, where α is either “and” or “or”, and (ii) that when two or more non-quantificational nominal signs whose INDEX values are x_1, \cdots, x_n are conjoined using the coordinator *and*, the SYNSEM|CONT|EP|FIRST|ARG2 value of the domain object that is introduced by the phrase-structure schema for a coordinate structure can be of the form $x_1 + i \cdots + i x_n$.

Expressions whose semantic coordinators have the same subscript are interpreted as semantically aligned with each other. The annotation mechanism can produce a structure in which only one semantic coordinator has a given subscript. We assume that such a structure is filtered out by the rewriting mechanism, which we will present below.

Assignment of subscripts is subject to the constraint stated in (84), which we call the *i*-within-*i* constraint on respectively interpretation. What this constraint states is, roughly, that prosodic constituents that are semantically aligned with each other must not overlap with each other.

(84) The *i*-within-*i* constraint on respectively interpretation

a. Suppose the domain object that has been introduced by the phrase-structure schema for coordinate structure has the following form:

$$\text{SYNSEM|CONT|EP} \left[\begin{array}{l} \text{RELN} \text{CONJUNCTS} \\
\alpha \lor \beta \end{array} \langle h_1, \cdots, h_n \rangle \right]$$

Then the EP values of those domain objects in the order domain of the coordinate structure whose LTOP values are h_1, \cdots, h_n (that is, the EP values of the domain objects that were created by compacting the conjuncts) must not contain a semantic coordinator with the subscript i.

b. Suppose the domain object that has been introduced by the phrase-structure schema for coordinate structure has the following form:

$$\text{SYNSEM|CONT|EP} \left[\begin{array}{l} \text{RELN} \text{IDENTICAL} \\
\text{ARG1} x_0 \\
\text{ARG2} x_1 + i \cdots + i x_n \end{array} \right]$$

Then the EP values of those domain objects in the order domain of the coordinate structure whose INDEX values are x_1, \cdots, x_n (that is, the EP values
of the domain objects that were created by compacting the conjuncts) must not contain a semantic coordinator with the subscript i.

We assume that the grammar contains the following constraint as well, which means that when a coordinate structure is syntactically left- or right-node-raised, it has to be left- or right-node-raised in its entirety, including the phonologically empty domain object expressing the meaning of the coordinator.\footnote{This constraint is consistent with the observation in Neijt (1979, pp. 43–44) and McCawley (1982) that conjuncts cannot be right-node-raised in English, although the proposed grammar does not capture the fact that conjuncts cannot even be phonologically right-node-raised in English.}

(85) a. Suppose a given order domain contains a phonologically empty domain object δ_0 of the form

$$\begin{align*}
\text{PHON} & \text{ none} \\
\text{SYNSEM} & \text{[CONT]} \text{EP} \left(\left[\text{CONJUNCTS} \langle h_1, \ldots, h_n \rangle \right] \right)
\end{align*}$$

as well as domain objects $\delta_1, \ldots, \delta_n$, whose LTOP values are h_1, \ldots, h_n. Then it is not possible to syntactically left-node-raise or right-node-raise some but not all of the domain objects, $\delta_0, \ldots, \delta_n$.

b. Suppose a given order domain contains a phonologically empty domain object δ_0 of the form

$$\begin{align*}
\text{PHON} & \text{ none} \\
\text{SYNSEM} & \text{[CONT]} \text{EP} \left(\left[\text{RELN} \text{ identical} \langle \text{ARG1} x_0, \text{ARG2} x_1 + \cdots + x_n \rangle \right] \right)
\end{align*}$$

as well as domain objects $\delta_1, \ldots, \delta_n$, whose INDEX values are x_1, \ldots, x_n. Then it is not possible to syntactically left-node-raise or right-node-raise some but not all of the domain objects, $\delta_0, \ldots, \delta_n$.

The constraints given in (84) mean that a domain object created by compacting a conjunct of a coordinate structure X cannot contain a semantic coordinator of an expression that is semantically aligned with X. Since the constraints in (85) prevent domain objects representing a coordinate structure from being split apart from each other by syntactic LNR or RNR, this means, among other things, that a domain object created by compacting a conjunct of a coordinate structure X cannot contain any portion of another coordinate structure that is semantically aligned with X.

Let us see what this annotation mechanism can do in the case of the sentence in (80). One way to generate the VP in this sentence is to follow the three steps shown below. In this illustration, each arrow indicates the process of conjoining two VPs, and expressions that are either left- or right-node-raised are italicized.

1. bought a car on Thursday + sold a car on Thursday

→ bought and sold a car on Thursday
2. bought a bike on Friday + sold a bike on Friday
 → bought and sold a bike on Friday

3. bought and sold a car on Thursday + bought and sold a bike on Friday
 → bought and sold a car on Thursday and a bike on Friday

Suppose that each of the three steps involves syntactic RNR or LNR, and that condition (23b) is invoked in each step. In that scenario, the three instances of VP conjunction can each introduce a domain object whose synsem(cont|ep|first|reln) value is “and,” without violating the i-within-i constraint in (84a). Step 3 does not violate the constraint in question because the domain object that is created by compacting the first conjunct in Step 3 contains only elementary predications coming from the string a car on Thursday, and the domain object that is created by compacting the second conjunct in that step contains only elementary predications coming from the string a bike on Friday. Therefore the grammar can produce the following semantic representation for the sentence, ignoring the contribution of the adverb respectively.

\[
\begin{align*}
\text{(86)} & \quad s = \text{Speaker} \land \\
& \quad \text{and, } \text{and, } \text{a(w, car(w), onThu(bought(s, w)))}, \\
& \quad \text{a(x, car(x), onThu(sold(s, x)))}, \\
& \quad \text{a(y, bike(y), onFri(bought(s, y)))}, \\
& \quad \text{a(z, bike(z), onFri(sold(s, z))))}
\end{align*}
\]

We submit that the function of the word respectively is to signal the need to invoke this annotation mechanism in interpreting the sentence. On this view, the function of respectively is analogous to that of the adjective proverbial in a sentence like John kicked the proverbial bucket, where the adjective signals the need to interpret the immediately following noun as part of an idiom.

The rewriting mechanism, which is the second component of our account of respectively readings, turns a representation like (86) into a semantic representation that expresses the actual truth conditions. The workings of this rewriting mechanism are as follows.

\[
\begin{align*}
\text{(87)} & \quad \text{The rewriting mechanism for respectively interpretation:} \\
& \quad \text{Suppose (i) the given semantic representation (where all the handle values have been resolved) contains more than one semantic coordinator with the subscript i, and (ii) all those semantic coordinators express predicates or operators that take n arguments. Then select a formula X in the semantic representation that contains all the occurrences of i, and replace X with and}([X]^{i,1}, \ldots, [X]^{i,n}).
\end{align*}
\]

The function $[\bullet]^{i,p}$, whose role is to extract the pth argument of each predicate or operator that has the subscript i and discard the other arguments, is defined as follows.

\[
\begin{align*}
\text{(88)} & \quad \text{a. } [\alpha]^{i,p} \equiv \alpha, \text{ when } \alpha \text{ is an atomic symbol.} \\
& \quad \text{b. } [\alpha(\beta_1, \ldots, \beta_n)]^{i,p} \equiv [\alpha]^{i,p}(\lbrack \beta_1 \rbrack^{i,p}, \ldots, \lbrack \beta_n \rbrack^{i,p}), \text{ when } \alpha \text{ is a predicate with either no subscript or a subscript other than } i \text{ and } \beta_1, \ldots, \beta_n \text{ are its arguments.} \\
& \quad \text{c. } [\beta_1 + \cdots + \beta_n]^{i,p} \equiv [\beta_1]^{i,p} + \cdots + [\beta_n]^{i,p} \\
& \quad \text{d. } [\beta_1 \cdot \beta_2]^{i,p} \equiv [\beta_1]^{i,p} \cdot [\beta_2]^{i,p}, \text{ when } i \neq j. \\
& \quad \text{e. } [\beta_1 \lor \cdots \lor \beta_n]^{i,p} \equiv [\beta_1]^{i,p} \lor \cdots \lor [\beta_n]^{i,p} \\
& \quad \text{f. } [\alpha(\beta_1, \ldots, \beta_n)]^{i,p} \equiv [\beta_p]^{i,p}, \text{ when } \alpha \text{ is a predicate with the subscript } i \text{ and } \beta_1, \ldots, \beta_n \text{ are its arguments.}
\end{align*}
\]
g. $[[\beta_1 + \cdots + \beta_n]]^{(i,p)} \equiv [[\beta_p]]^{(i,p)}$

We assume that this rewriting mechanism has to be applied to a given semantic representation until there remains no subscript in the representation, and that a semantic representation that contains subscripts that cannot be eliminated that way is illicit and is not associated with any truth conditions. We also assume that the representations that we manipulate at this stage are no longer MRS representations and thus are not subject to the variable binding condition, described at the end of subsection 2.2.36

Here is what happens when this rewriting mechanism is applied to the representation in (86). The portion of this representation that follows the symbol \land (i.e. the portion that starts with the first "and,"") contains all the occurrences of i in the representation. Let us represent that portion as A. Since all the symbols with the subscript i in A are occurrences of “and,” that conjoin two conjuncts, A in this representation can be replaced by and($[[A]]^{(1)}$, $[[A]]^{(2)}$), according to (87). The values of $[[A]]^{(1)}$ and $[[A]]^{(2)}$ are as follows, according to (88).

(89) $[[A]]^{(1)} = \llbracket \land_i (\land_i (a(w, \text{car}(w)), \text{onThu}(\text{bought}(s, w))), \land_i (a(x, \text{car}(x)), \text{onThu}(\text{sold}(s, x)))) \rrbracket^{(1)}$

(90) $[[A]]^{(2)} = \llbracket \land_i (\land_i (a(w, \text{car}(w)), \text{onThu}(\text{bought}(s, w))), \land_i (a(x, \text{car}(x)), \text{onThu}(\text{sold}(s, x)))) \rrbracket^{(2)}$

Thus, one possible interpretation of (80) turns out to be the following, which correctly captures the respectively reading of the sentence.

(91) $x = \text{Speaker}$

$\land (a(w, \text{car}(w)), \text{onThu}(\text{bought}(s, w))), a(z, \text{bike}(z), \text{onFri}(\text{sold}(s, z)))$

As noted in Kubota and Levine (2015), a sentence like the following does not have a respectively reading, unlike (80).

(92) I bought and sold a car on Thursday and bought and sold a bike on Friday.

This fact is correctly accounted for by the proposed theory. In order for this sentence to have the same respectively reading as (80), the three instances of conjunction in this sentence have to be given the same subscript, but that leads to a violation of the i-within-i constraint on respectively readings, formulated in (84) above. When the two VPs bought and sold a car on Thursday and bought and sold a bike on Friday in

Footnote 36: Like MRS representations, the semantic representations that we manipulate at this stage are objects with internal syntactic structure, not the kinds of model-theoretic objects that are often taken to be the denotations of linguistic expressions.
this sentence are conjoined, each conjunct is compacted to become a domain object. The constraint in (84a), in conjunction with (85), means that neither domain object is allowed to contain any part of a coordinate structure that is semantically aligned with the coordinated VP. The two domain objects, however, both contain elementary predications coming from a coordinate structure that is semantically aligned with the coordinated VP.

Kubota and Levine (2016) claim that a sentence like (92) indicates that the internal readings of symmetric and summative predicates and respectively readings should be handled by the same mechanism in the grammar, as in their theory.

(92) John collected, and Mary got pledges for, a total of $10,000 for charity from his family and her clients, respectively.

Sentences like this, however, do not pose any particular problem for our account, where the two types of readings are handled separately. We will demonstrate this using a syntactically somewhat simpler example in (93).

(93) John stole, and Mary borrowed, similar books from Pete and Sue (respectively).

This sentence can be analyzed as involving constituent coordination of two non-quantificational NPs Pete and Sue and syntactic right-node raising of similar books from Pete and Sue out of conjoined sentences. The DP similar books here can be treated the same way that the DP different things is treated in the sentence (30). Thus the annotation mechanism can produce a semantic representation like the following for this sentence. (Recall that we are assuming that a non-quantificational NP involving conjunction, such as Pete and Sue, is obligatorily preceded by a phonologically empty determiner whose meaning is the same as that of some.)

(94) \[j = \text{John} \land m = \text{Mary} \land p = \text{Pete} \land s = \text{Sue} \land \text{some}(x + y, \text{similar}(x + y) \land \text{books}(x + y), \text{some}(z, \text{identical}(z, p + i, s), \text{and}, \text{stole}(j, x, z), \text{borrowed}(m, y, z))) \]

The constraint in (84a) is not violated in producing this representation because the syntactically right-node-raised PP (from Pete and Sue) escapes compaction and thus does not become part of the domain objects representing the conjuncts when the two sentences are coordinated. The third argument of the first instance of “some” in (94) contains all the occurrences of the subscript \(i\) in this representation. Let us call it \(A\). Since in \(A\) the subscript \(i\) is attached to a predicate and an operator taking two arguments, the rewriting mechanism can replace \(A\) with (\(\|A\|^{(1)}\), \(\|A\|^{(2)}\)). The values of \(\|A\|^{(1)}\) and \(\|A\|^{(2)}\) are shown in (95).

(95) a. \(\|A\|^{(1)}\)

\begin{align*}
\|\text{some}(z, \text{identical}(z, p + i, s), \text{and}, \text{stole}(j, x, z), \text{borrowed}(m, y, z)))\|^{(1)} \\
= \|\text{some}(z, \text{identical}(z, p + i, s))\|^{(1)} \land \|\text{stole}(j, x, z)\|^{(1)} \\
= \|\text{some}(z, \text{identical}(z, p), \text{stole}(j, x, z))\|^{(1)} \land \|\text{borrowed}(m, y, z)\|^{(1)} \\
= \|\text{stole}(j, x, p)\|^{(1)} \land \|\text{borrowed}(m, y, s)\|^{(1)} \quad \vdash (88g) \text{and} (88a)
\end{align*}

b. \(\|A\|^{(2)}\)

\begin{align*}
\|\text{some}(z, \text{identical}(z, p + i, s), \text{and}, \text{stole}(j, x, z), \text{borrowed}(m, y, z)))\|^{(2)} \\
= \|\text{some}(z, \text{identical}(z, p + i, s))\|^{(2)} \land \|\text{stole}(j, x, z)\|^{(2)} \\
= \|\text{some}(z, \text{identical}(z, s), \text{borrowed}(m, y, z))\|^{(2)} \land \|\text{borrowed}(m, y, s)\|^{(2)} \\
= \|\text{borrowed}(m, y, s)\|^{(2)} \quad \vdash (88g) \text{and} (88a)
\end{align*}
Thus the sentence (93) is associated with (96), which is an adequate representation of its most prominent reading.

(96) \[j = \text{John} \land m = \text{Mary} \land p = \text{Pete} \land s = \text{Sue} \]
\[\land \text{some}(x + y, \text{similar}(x + y) \land \text{books}(x + y), \]
\[\text{and}(\text{stole}(j, x, p), \text{borrowed}(m, y, s))) \]

We conclude that the issue of respectively readings does not threaten the viability of the HPSG-based theory of non-constituent coordination that we are advocating.

The theory of respectively interpretation that we have presented here has three notable features, which we describe below.

First, unlike Kubota and Levine’s theory, our account takes into consideration the fact that not just and and plural DPs but also or can give rise to respectively interpretation. Gawron and Kehler (2004) suggest that or can yield respectively interpretation only when the word expresses conjunction rather than disjunction, but this line of analysis seems implausible, given an example like (97), discussed in Eggert (2000).

(97) If the cup is too small or too large, then you should go up or down, respectively, in cup size.

The word or can induce respectively interpretation in conjunction with another occurrence of or in the same sentence, as in (97), in conjunction with an occurrence of and elsewhere in the sentence, as in (98), and in conjunction with an occurrence of a plural DP elsewhere in the sentence, as in (99).

(98) The n and N commands repeat the previous search command in the same or opposite direction, respectively. (discussed in Eggert (2000))

(99) These sentences will be true just in case the set of sneezers (represented either by \(\hat{x}[\text{sneeze}(x)] \) or by sneeze) contains some person, every man, or most babies, respectively. (from Barwise and Cooper (1981))

Secondly, our account correctly captures subject-verb agreement facts like the following, noted in Goodall (1987, p. 94).

(100) John and Mary \(\{^{*}\text{plays}} \text{play} \}\) the tuba and \(\{^{*}\text{sings}} \text{sing} \}\) songs (respectively).

On the assumption that the number-agreement morphology on a verb usually if not always reflects the semantic property of the corresponding grammatical subject, the agreement pattern shown above suggests that the subject argument of each verb phrase here is some kind of sum, as opposed to an atom. This observation is compatible with our theory, according to which the sentence above is given a preliminary interpretation in which each verb phrase takes a sum consisting of John and Mary as its subject argument.

And thirdly, our theory can arguably provide an adequate characterization of the constraints on respectively interpretation. Our theory as it has been described so far predicts that respectively interpretation can be given to any expressions in any positions, but this prediction is incorrect. There are certain restrictions on the availability of respectively interpretation. For instance, there is a contrast in acceptability between sentence (101) and sentence (102) below, as noted by Eggert (2000).

37A reviewer notes that, according to his or her intuition, sentence (102) is acceptable if the speaker is discussing what different people might drink given their upbringing and Grant grew up at a brewery and Camelia at a winery. We attribute this observation to the possibility in the reviewer’s idiolect of interpreting the sentence in question as containing an unpronounced sentential adverb like perhaps, which would make the sentence semantically analogous to (101).
(101) Grant or Camelia might drink beer or wine respectively.
 (as a response to “Will anybody be drinking at the party?”)

(102) *Grant or Camelia drinks beer or wine respectively.

Likewise, the *respectively interpretation becomes unavailable when *or is replaced by *and in (97), as shown below.

(103) *If the cup is too small and too large, then you should go up and down, respectively, in cup size.

In the theory that we have proposed, these contrasts can be explained by making reference to the preliminary interpretations that are assigned to the sentences, that is, the interpretations that are initially computed by the grammar and are given as input to the rewriting mechanism specified in (87). We submit that the following principle constrains the availability of *respectively interpretation.

(104) When the rewriting mechanism specified in (87) replaces a formula X that contains subscript i with another formula Y that does not contain i, there must exist a paraphrase of X that satisfies the following conditions.

1. The paraphrase is truth-conditionally equivalent to X, given an appropriate context.
2. The paraphrase can be obtained by combining the i-components of X using conjunction and disjunction.
3. Deletion of some of the i-components of X in the paraphrase yields Y.

(105) Suppose that X is a formula that contains subscript a. We say that a formula F is an a-component of X if and only if F is the result of selecting one arbitrary semantic conjunct of (and deleting all the other conjuncts of) each semantic coordinate structure with the subscript a in X.

(For instance, saw(a, c), saw(b, c), saw(a, d), and saw(b, d) are each an i-component of the formula
\[
\text{or}_i(\text{saw}(a +_i b, c), \text{saw}(a +_i b, d)),
\]
and nothing else is.)

Given this principle, (80) is correctly allowed to have a *respectively reading. The portion of the preliminary interpretation of (80) that is rewritten by the rewriting mechanism can be paraphrased as follows, combining its i-components. We represent the content of the paraphrase in English for the sake of readability.

(106) [I bought a car on Thursday], [I sold a car on Thursday], [I bought a bike on Friday], and [I sold a bike on Friday].

If two of the i-components are deleted, the final interpretation of (80) that is produced by the rewriting mechanism will result. Therefore this *respectively reading is licensed by (104).

The principle in (104) captures the contrast between (97) and (103) as follows. The preliminary interpretation of one possible reading of (97) can be paraphrased by (107), which can be obtained by combining the four i-components of the preliminary interpretation using conjunction and disjunction.\(^{38}\) (Here and below we assume that the coordinate structures that are semantically aligned are all given the subscript i.) Again, we express the content of the paraphrase using English.

\(^{38}\)(97) and (107) are truth-conditionally equivalent just as $(\phi \lor \psi) \rightarrow \chi$ and $(\phi \rightarrow \chi) \land (\psi \rightarrow \chi)$ are equivalent in propositional logic.
If the cup is too small, then you should go up in cup size, or
if the cup is too small, then you should go down in cup size], and
if the cup is too large, then you should go up in cup size, or
if the cup is too large, then you should go down in cup size].

The final interpretation produced for this sentence by the rewriting mechanism results if two of the i-components are deleted in (107), assuming that, for any formula X, or(X) is equivalent to X. Thus, the respectively reading of this sentence is correctly licensed by (104). On the other hand, the preliminary interpretation of (103), which says that the addressee should go up and down in cup size when faced with a contradictory situation in which the cup is simultaneously too large and too small, does not have a paraphrase that can be obtained by combining its i-components using conjunction and disjunction.

The contrast between (101) and (102) can be understood analogously. The preliminary interpretation of (101) can be paraphrased by the following, using its i-components.39

(108) [Grant might drink beer], [Grant might drink wine], [Camelia might drink beer], and [Camelia might drink wine].

Deletion of two of the i-components leads to the final interpretation produced by the rewriting mechanism. Thus the respectively reading is licensed by (104). In contrast, the preliminary interpretation of (102) does not have the type of paraphrase required by (104). The preliminary interpretation in question can be paraphrased by (109), but the respectively reading produced by the rewriting mechanism, which says that Grant drinks beer and Camelia drinks wine, cannot be obtained by deleting any part of (109).

(109) [Grant drinks beer] or [Grant drinkswine] or [Camelia drinksbeer] or [Camelia drinks wine].

The acceptability of the following examples, noted in Kubota and Levine (2016), is also consistent with the proposed theory.

(110) Robin and Leslie thought that studying category theory and intuitionistic logic respectively would be all that was needed for success.

(111) Robin and Leslie got home before the train and the bus stopped running respectively.

(112) Robin and Leslie named someone who was innocent and guilty respectively.

Given a context in which two questions like those shown in (113) are under discussion at the same time, the preliminary interpretation of sentence (110), i.e. the most salient reading of the sentence obtained by removing the word respectively from (110), is truth-conditionally equivalent to (114), which can be obtained by conjoining the i-components of that preliminary interpretation. (What is crucial in this account is that there are two questions under discussion, each pertaining to a different kind of success, because otherwise the first and the second i-component in (114) would contradict each

39Given a normal conversational context, the paraphrase in (108) is felt to be truth-conditionally equivalent to (101), despite the fact that \(\phi \lor \psi \) is not logically equivalent to \(\phi \lor \psi \). This phenomenon may be explainable in terms of Gricean implicature, as claimed in Geurts (2010), but has been argued by some authors to be attributable to the semantics of the modal and/or disjunction. See Romoli and Santorio (2018) for a recent discussion. The validity of our theory is not affected by the ultimate outcome of this debate, since what is required in our theory is truth-conditional equivalence in a specific context, not logical or semantic equivalence.
other, as would the third and the fourth \(i \)-component. It is not crucial that the two questions under discussion mention category theory and intuitionistic logic explicitly, as the questions in (113) do.

(113)
 a. Question under discussion 1: Is studying category theory all that is needed for success as Robin conceives it, or is it also necessary to study some other subjects in order to achieve success as Robin conceives it?

 b. Question under discussion 2: Is studying intuitionistic logic all that is needed for success as Leslie conceives it, or is it also necessary to study some other subjects in order to achieve success as Leslie conceives it?

(114)
[(As regards question under discussion 1,) Robin thought that studying category theory would be all that was needed for success] and
[(as regards question under discussion 2,) Robin thought that studying intuitionistic logic would be all that was needed for success] and
[(as regards question under discussion 1,) Leslie thought that studying category theory would be all that was needed for success] and
[(as regards question under discussion 2,) Leslie thought that studying intuitionistic logic would be all that was needed for success]

Since the \(\text{respectively} \) reading of (110) can be obtained by deleting two of the \(i \)-components in (114), the reading is correctly predicted to be possible. The sentence in (111) is also correctly predicted to be acceptable, because its preliminary interpretation, which we take to be something like “The minimal interval during which both Robin and Leslie got home temporally precedes the minimal interval during which both the train and the bus stopped running,” can be paraphrased by (115), from which the \(\text{respectively} \) reading of (111) can be obtained by deleting two of the \(i \)-components.

(115)
[Robin got home before the train stopped running] and
[Robin got home before the bus stopped running] and
[Leslie got home before the train stopped running] and
[Leslie got home before the bus stopped running]

Sentence (112) is likewise predicted to be possible because it can be given a preliminary interpretation that can be paraphrased by (116).\(^40\)

(116)
[Robin named someone who was innocent] and
[Robin named someone who was guilty] and
[Leslie named someone who was innocent] and
[Leslie named someone who was guilty]

Thus, the contrast between sentences that allow \(\text{respectively} \) interpretation and ones that do not is correctly captured by (104).

\section*{E Definition of the \textit{subj_verb_agreement} relation}

The English version of the \textit{subj_verb_agreement} relation, which is employed in (75), is defined as in (117) below.\(^41\) The definition of the \textit{per_agr} relation used in line 8

\(^40\)The reading of \textit{someone who was innocent and guilty} on which it is synonymous with \textit{someone who was innocent and someone who was guilty} can be made salient with use of hand gestures, if two different people are present to be indicated.

\(^41\)This definition will have to be modified slightly if the analysis of coordination of unlikes that is proposed in Yatabe (2004) is to be adopted.
of (117) is given in Yatabe (2003). The functor symbol c, which is also employed in (117), is defined in (118). Roughly speaking, \(c(\alpha) \) is an appropriate description of an object \(X \) if and only if either \(\alpha \) is an appropriate description of \(X \) or \(X \) is a possibly nested phantom coordinate structure such that \(\alpha \) is an appropriate description of each of its ‘conjuncts’.

\[
(117) \quad \text{subj}_\text{verb}_\text{agreement} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \equiv \begin{cases}
\begin{array}{c}
\begin{bmatrix} 1 \\ \text{PER} \\
\text{NUM} \end{bmatrix} & \begin{bmatrix} 3 \\ 4 \end{bmatrix} \\
\text{CAT} & \text{HEAD} & \text{AGR} \\
\end{array} \\
\begin{array}{c}
\begin{bmatrix} 2 \\ \text{ARGS} \end{bmatrix} \\
\begin{bmatrix} a_1, \ldots, a_n \end{bmatrix} \\
\end{array} \\
\begin{array}{c}
\begin{bmatrix} 1 \\ \text{subj}_\text{verb}_\text{agreement} \end{bmatrix} \\
\begin{bmatrix} 1 \\ a_1 \end{bmatrix} \\
\end{array} \\
\begin{array}{c}
\begin{bmatrix} \ldots \end{bmatrix} \\
\end{array} \\
\begin{array}{c}
\begin{bmatrix} 2 \\ \text{subj}_\text{verb}_\text{agreement} \end{bmatrix} \\
\begin{bmatrix} 1 \\ a_n \end{bmatrix} \\
\end{array}
\end{cases}
\end{cases} \\
\lor \\
\begin{cases}
\begin{array}{c}
\begin{bmatrix} 1 \\ \text{PER} \\
\text{NUM} \end{bmatrix} \\
\begin{bmatrix} 3 \\ 4 \end{bmatrix} \\
\text{CONT} & \text{INDEX} \\
\end{array} \\
\begin{array}{c}
\begin{bmatrix} 7 \\ \text{CAT} & \text{HEAD} & \text{AGR} \\
\text{NUM} & \text{sg} \\
\end{bmatrix} \\
\begin{array}{c}
\begin{bmatrix} \text{ltop} \end{bmatrix} \\
\begin{bmatrix} 8 \\ \text{KEY} & \text{RELN} & \text{NO} \end{bmatrix} \\
\end{array}
\end{cases}
\end{cases}
\end{cases}
\]

\[
(118) \quad \begin{bmatrix} 1 \end{bmatrix} : c(\alpha) \equiv \begin{cases}
\begin{array}{c}
\begin{bmatrix} 1 \\ \text{PER} \\
\text{NUM} \end{bmatrix} \\
\begin{bmatrix} 3 \\ 4 \end{bmatrix} \\
\text{CAT} & \text{HEAD} & \text{AGR} \\
\end{array} \\
\begin{array}{c}
\begin{bmatrix} \text{ARGS} \end{bmatrix} \\
\begin{bmatrix} a_1, \ldots, a_n \end{bmatrix} \\
\end{array} \\
\begin{array}{c}
\begin{bmatrix} \alpha \end{bmatrix} \\
\end{array} \\
\begin{array}{c}
\begin{bmatrix} \alpha \end{bmatrix} \\
\end{array} \\
\begin{array}{c}
\begin{bmatrix} \alpha \end{bmatrix} \\
\end{array}
\end{cases}
\end{cases}
\]

As mentioned in section 4, the \text{subj}_\text{verb}_\text{agreement} relation is a relation that may or may not hold between the \text{ss}||\text{CAT}||\text{HEAD}||\text{AGR} value \(\begin{bmatrix} 1 \end{bmatrix} \), and the \text{ss}||\text{CAT}||\text{VAL}||\text{SUBJ}||\text{FIRST} value \(\begin{bmatrix} 2 \end{bmatrix} \) of a domain object standing for a \text{V} or a projection thereof. (The \text{ss}||\text{CAT}||\text{VAL}||\text{SUBJ}||\text{FIRST} value of a domain object is the sole element in its \text{SUBJ} list.) The first disjunct in the right-hand side of the definition of this relation (i.e. line 2 of (117)) deals with cases that do not involve phantom coordinate structures. The second disjunct (i.e. lines 3–6) deals with cases in which a predicate agrees with each ‘conjunct’ of a phantom coordinate structure. The Russian version of this relation should not have this second disjunct, if (as claimed in Kazenin (2002) and Shen (2019)) Russian does not allow the kind of non-summative agreement that is licensed by this disjunct. And the third disjunct (i.e. lines 7–12) licenses summative agreement, provided that certain conditions are satisfied; lines 9–10 block summative agreement in cases like (55), and lines 11–12 block summative agreement in cases like (56) and (57).

\[\text{See Yatabe (2003) for more explanation as to this third disjunct. (Note that the \text{num} feature is assumed to be in \text{CONT}||\text{INDEX} rather than in \text{CAT}||\text{HEAD}||\text{AGR} in Yatabe (2003).)}\]
References

