Focus association by movement: Evidence from Tanglewood

Michael Yoshitaka Erlewine and Hadas Kotek, January 2017

To appear in Linguistic Inquiry

We argue for the existence of covert focus movement in English focus association with only. Our evidence comes from Tanglewood configurations of the form in Kratzer 1991. We show that Tanglewood configurations are sensitive to syntactic islands, contrary to Kratzer’s claims and predictions. We propose that Tanglewood configurations always involve covert movement of the focused constituent—possibly with covert pied-piping (Drubig 1994; Krifka 1996, 2006; Tancredi 1997/2008, 2004; Wagner 2006; Erlewine and Kotek 2014)—to bind a bound variable in the ellipsis site. This availability of covert pied-piping explains examples such as Kratzer’s where the Tanglewood construction appears to be island-insensitive. We show that covert focus movement is long-distance and not simply QR. Kratzer’s proposal that ellipsis enforces the identity of focus indices and many other previous approaches are shown to overgenerate Tanglewood readings.

Keywords: association with focus, only, covert focus movement, covert pied-piping, island-sensitivity, variable binding

Contents

1 The problem of Tanglewood 2
2 Proposal 6
3 New evidence from island (in)sensitivity 12
4 Tanglewood readings with overt bound variables 17
5 Alternative analyses of Tanglewood readings 19
6 Covert focus movement is long-distance, not QR 21
7 Conclusion 22

Acknowledgements: For valuable comments and discussion, we thank audiences at the University of Edinburgh, Yale University, SALT 26, and the Tokyo Semantics Research Group, Brian Buccola, Jason Merchant, Miriam Nussbaum, Gary Thoms, anonymous reviewers, and especially Aron Hirsch. Errors are of course each other’s.
This paper studies the mechanism of *association with focus* in English: in particular, the relationship between the focus-sensitive adverb *only* and the associating focused constituent in its scope. We begin the paper by briefly introducing the influential analysis of association with focus in Rooth 1985, 1992 and discussing the problem posed by Kratzer’s (1991) famous *Tanglewood constructions*. We then present our proposal for their explanation via covert focus movement and evidence supporting our proposal from island sensitivity and Tanglewood readings with overt bound variables. We discuss previous alternative analyses of Tanglewood readings and argue that they cannot explain the facts we present here. Finally, we show that covert focus movement can be long-distance, arguing that its effects cannot be reduced to QR.

1 The problem of *Tanglewood*

Focused constituents, indicated by F-marking, are pronounced with prosodic prominence. Semantically, they introduce a set of *alternatives* into the computation. Focus-sensitive operators such as *only* then quantify over those alternatives.

(1) I only wear [red]_F_ shirts.
 Alternatives to “red”: green, blue, ...
 Presupposition: I wear red shirts.
 Assertion: I do not wear green shirts, I do not wear blue shirts, ...

Under the Alternative Semantics theory of focus in Rooth 1985, 1992—which continues to be the most widely adopted theory of association with focus—each syntactic node \(\alpha \) has two “dimensions” of meaning: an ordinary semantic value \([\alpha]^{o}\) as well as a *focus semantic value* \([\alpha]^{f}\), which can be thought of as a set of alternative denotations and which includes \([\alpha]^{o}\) as a member. Focus semantic values for complex phrases are computed compositionally using the meanings of their parts, just as ordinary semantic values are.

(2) **Recursive definition for focus semantic values (Rooth 1985: 14):**

The focus semantic value of node \(\alpha \), \([\alpha]^{f}\), is:

a. the set of objects in the model matching \([\alpha]^{o}\) in type, if \(\alpha \) bears the feature F;
b. the unit set \(\{[\alpha]^{o}\}\), if \(\alpha \) is a non-focused non-complex phrase;
c. the set of objects which can be obtained by picking one element from each of the focus semantic values corresponding to the component phrases of \(\alpha \), and applying the semantic rule for \(\alpha \) to this sequence of elements, if \(\alpha \) is a non-focused complex phrase.
Rooth proposes that focused constituents such as red in (1) are interpreted in their pronounced position at LF. Following the procedure in (2), the alternatives introduced locally (3a) will be reflected in the focus semantic values of all dominating phrases, resulting in a corresponding set of propositional alternatives (3b) in the complement of focus-sensitive operators. Only \(\alpha \) then asserts the negation of all alternatives in \(\models \alpha \) which do not entail the prejacent proposition \(\models \alpha \) (Horn 1969; a.o.); this results in the correct assertive content as in (1).

(3) \[\text{LF: only } \left[\text{VP I wear [red]} \right] \text{f shirts} \]
 a. \(\left[\text{red} \right] \text{f} = \{ \text{red, green, blue, ...} \} \)
 b. \(\left[\text{VP} \right] \text{f} = \{ \text{I wear red shirts, I wear green shirts, I wear blue shirts, ...} \} \)

Empirically, this paper centers around the Tanglewood phenomenon first discussed in Kratzer 1991. Tanglewood examples were introduced as a challenge to the basic Roothian theory sketched above, motivating a minor but significant refinement to the theory. Kratzer’s original example is in (4).

(4) Tanglewood (Kratzer 1991: 830):
 Context: Imagine now you are angry at me and start voicing the following accusations.
 “What a copy cat you are! You went to Block Island because I did. You went to Elk Lake Lodge because I did. And you went to Tanglewood because I did.” I feel you exaggerate and reply:
 I only went to [Tanglewood] \(\text{f} \) because you did \(\Delta \).

(5) Paraphrase: Tanglewood is the only place \(x \) such that I went to \(x \) because you went to \(x \).

Her observation is as follows: considering the interpretation of the ellipsis site in (4), indicated by \(\Delta \), let us assume the LF for (4) to be as in (6) below. Now notice that (6) includes two instances of the F-marked constituent Tanglewood. According to Rooth’s definition for focus semantic values in (2) above, the result will include all combinations of different values for the two positions of focus, as in (7a). The assertion of only in (4) is then predicted to be as in (7b) below.

(6) Assumed LF for (4):
 only \(\left[\text{VP I antecedent} \text{go to [Tanglewood]} \text{f} \right] \text{ because you } \left[\text{ellipsis site} \text{go to [Tanglewood]} \text{f} \right] \]

1In Rooth 1985, focus semantic values were called \(p \)-sets, short for \(\text{presuppositional set} \) from Jackendoff 1972. The definition here in (2) is a quote from Rooth 1985: 14 but modified to use the now standard terminology and notation of Rooth 1992. As noted in Rooth 1992: fn 7, the recursion step in (2c) is equivalent to that for the compositional interpretation of \(\text{wh} \)-questions proposed in Hamblin 1973; see Hamblin’s page 49 and in particular footnote 8.

2For convenience, here and elsewhere, we will ignore the contribution of tense and illustrate subjects in their VP-internal base positions. The categories we label “VP” could also, more precisely, be called “\(v \text{P} \)”s. The denotations of propositional alternatives as in (3b) and (7a) below should also be thought of as standing in for their intensions.
(7) Predicted interpretation of *Tanglewood* (4) using Rooth’s (2):

\[
\begin{align*}
&\text{a. } [\text{VP}]^f = \begin{cases}
&\text{I go to Tanglewood because you go to Tanglewood,} \\
&\text{I go to Tanglewood because you go to Block Island,} \\
&\text{I go to Tanglewood because you go to Elk Lake Lodge,} \\
&\text{I go to Block Island because you go to Tanglewood,} \\
&\text{I go to Block Island because you go to Block Island,} \\
&\text{I go to Block Island because you go to Elk Lake Lodge,} \\
&\text{I go to Elk Lake Lodge because you go to Tanglewood,} \\
&\text{I go to Elk Lake Lodge because you go to Block Island,} \\
&\text{I go to Elk Lake Lodge because you go to Elk Lake Lodge}
\end{cases} \\
&\text{b. } [\text{VP}]^o = \text{I go to Tanglewood because you go to Tanglewood} \\
&\text{c. Assertion of (4):} \\
&\text{it’s not the case that } [\text{I went to Tanglewood because you went to Block Island}], \\
&\text{it’s not the case that } [\text{I went to Tanglewood because you went to Elk Lake Lodge}], \\
&\text{it’s not the case that } [\text{I went to Block Island because you went to Tanglewood}], \\
&\text{it’s not the case that } [\text{I went to Block Island because you went to Block Island}], \\
&\text{it’s not the case that } [\text{I went to Block Island because you went to Elk Lake Lodge}], \\
&\text{it’s not the case that } [\text{I went to Elk Lake Lodge because you went to Tanglewood}], \\
&\text{it’s not the case that } [\text{I went to Elk Lake Lodge because you went to Block Island}], \\
&\text{it’s not the case that } [\text{I went to Elk Lake Lodge because you went to Elk Lake Lodge}]
\end{align*}
\]

Kratzer argues that this predicted assertion in (7c) does not reflect the actual interpretation of example (4). As the paraphrase in (4) above indicates, the correct interpretation asserts only that *it is not the case that I went to Block Island because you went to Block Island* and *it is not the case that I went to Elk Lake Lodge because you went to Elk Lake Lodge*. In other words, the set of alternatives must be computed so that the alternatives in the two positions of focus *covary* across the alternatives, as in (8). We will refer to such interpretations which require such covarying alternatives under an in-situ approach to focus as *Tanglewood constructions* or *Tanglewood readings*.

(8) Covarying alternatives, to yield the correct interpretation of (4):

\[
[\text{VP}]^f = \begin{cases}
&\text{I go to Tanglewood because you go to Tanglewood,} \\
&\text{I go to Block Island because you go to Block Island,} \\
&\text{I go to Elk Lake Lodge because you go to Elk Lake Lodge}
\end{cases}
\]

Kratzer proposes an amendment to Rooth’s theory which allows for the natural derivation of covarying alternatives as in (8). In brief, Kratzer proposes that focused constituents bear distinguished *focus indices* and ellipsis ensures their identity (9), resulting in the LF in (10a). Focused
constituents are then interpreted as *distinguished variables* in the focus semantic value, ranging over different assignment functions \(h \) \((10b)\). This yields the desired covarying alternatives in \((10c)\).\(^4\)

\[(9)\] **Assumed LF identity condition on ellipsis with focus indices:**\(^5\)

A VP (\(\text{VP}_E\)) can elide just in case the linguistic context provides an antecedent VP (\(\text{VP}_A\)), such that for any ordinary and distinguished variable assignments \(g \) and \(h \), \(\text{[VP}_E\text{]}^{g,h} = \text{[VP}_A\text{]}^{g,h} \).

\[(10)\] **Tanglewood (4) with covarying alternatives under Kratzer 1991’s system:**

a. *LF:* only \(\text{VP} \text{I [antecedent go to [TW]}_{F7}] \text{[because you [ellipsis go to [TW]F7]]} \) (cf 6)

b. \(H = \{h_0, h_1, h_2\}; h_0(7) = \text{Tanglewood}, h_1(7) = \text{Block Island}, h_2(7) = \text{Elk Lake Lodge} \)

c. \(\text{[VP]}^f = \{ \text{I go to } h(7) \text{ because you go to } h(7) \mid h \in H \} \)

\[\begin{align*}
\text{I go to Tanglewood because you go to Tanglewood,} \\
\text{I go to Block Island because you go to Block Island,} \\
\text{I go to Elk Lake Lodge because you go to Elk Lake Lodge}
\end{align*}\]

\(=8\)

d. **Assertion:**

it’s not the case that [I went to Block Island because you went to Block Island],
it’s not the case that [I went to Elk Lake Lodge because you went to Elk Lake Lodge]

We make two notes here regarding Kratzer’s theory. First, Kratzer 1991 retains from Rooth’s work (a) the idea of a multidimensional semantics, with ordinary and focus semantic values, and (b) the claim that foci are interpreted in-situ at LF. Her Tanglewood argument challenges how focus semantic values are computed, motivating her focus index approach over Rooth’s recursive procedure in (2). She also briefly considers and argues against an alternative account where the focused constituent covertly moves; we will detail this approach and her argument against it in the next section.

Second, we note that Kratzer’s proposal that ellipsis can enforce the identity of focus indices is quite powerful. In particular, it predicts no locality restrictions between the focus-sensitive operator (*only*), the pronounced focus, and the ellipsis site. As long as the pronounced focus and its interpreted copy in the ellipsis site are both in the scope of the focus-sensitive operator, the Tanglewood effect is predicted: the operator will quantify over alternatives where the two focused positions covary.

\(^4\)Note, however, that this requires a focused constituent to be elided, against the common prohibition on the ellipsis of focused constituents (Tancredi 1992; Heim 1997; Merchant 2001; and many others). As we will see below, our proposal does not face a similar problem.

\(^5\)Other solutions to the Tanglewood problem have also been proposed. See Section 5 for discussion.

\(^6\)We thank an anonymous *LI* reviewer for suggesting this phrasing for the LF identity condition assumed in Kratzer 1991 in (9), as well as the condition in (15) below.
In this paper, we present previously unobserved restrictions on the distribution of Tanglewood readings which are unpredicted by previous accounts of the phenomenon. We concentrate first on Kratzer’s account, as the most widely known account of Tanglewood readings, and discuss alternative accounts in a later section of the paper. Of particular importance are two findings: (a) that Tanglewood readings exhibit sensitivity to syntactic islands, and (b) that Tanglewood readings are possible in the absence of ellipsis.

In the following section, we present our own proposal for Tanglewood constructions. We maintain the Roothian multidimensional semantics for the computation of alternatives, but diverge from Rooth and Kratzer in arguing that foci are not interpreted in-situ when associating with only: they move covertly to the higher operator, and it is this movement that makes Tanglewood readings possible. In subsequent sections, we then present our new evidence which motivates this approach, discuss the nature of the movement, and discuss alternative accounts.

2 Proposal

We propose that Tanglewood constructions such as (4) always involve covert movement of the focused constituent to a position from which it binds a bound variable in the ellipsis site.

We first illustrate a basic example of association with English adverb only using covert focus movement in (11).⁶ For concreteness, we adopt the form of covert focus movement discussed briefly in Rooth 1985: 31–32 and used in Wagner 2006.⁷ This involves covert movement of a constituent containing the focus to a complement position of the attracting operator—also called Undermerge by Pesetsky (2007, 2013)—together with adjunction of the associated λ-binder to the complement from which the focused constituent is moved out.⁸

⁶Again, we do not illustrate tense or movement of the subject out of its predicate-internal base position.

⁷Three notes on this movement. First, we present only the corresponding PF and LF representations here in (11); for our purposes, this movement could be thought of as taking place in the narrow syntax, with pronunciation at the tail of the chain, or taking place after Spell-Out, feeding only LF. Second, the movement in (11) can be derived without violating the Extension Condition (Chomsky 1993) by (a) first merging the focused constituent with only, resulting in an independent [only TanglewoodF] tree in the workspace, (b) adjoining the λ-binder to the root of the tree containing the trace of the focused constituent, then (c) merging the results of steps (a) and (b). The necessity of such derivations has been independently claimed for cases of head-movement (Bobaljik and Brown 1997) and sideward movement (Nunes 2001, 2004). Third, it also does not violate the Proper Binding Condition (PBC; Fiengo 1977) if we think of the PBC as a semantic condition requiring variables to be bound by their binders. Even though the landing site of movement does not c-command its trace position, the λ-binder associated with its movement does properly bind the trace position. See Keine and Bhatt 2016 for related discussion supporting this position of the λ-binder. See also Pesetsky 2007, 2013; Yuan 2017 for independent motivation for overt movement of this form.
Covert focus movement:

“I only went to [Tanglewood].”

Let (12) be the semantics of this two-place only, based on the classic Horn 1969 description of only's meaning: only presupposes the truth of its prejacent (the combination of its first and second arguments) and asserts that, for all alternatives to the first argument in set C, if it is not equal to the stated (prejacent) value of the first argument, its combination with the second argument must be false. The variable C must be fixed contextually to be equal to (or a subset of) the focus semantic value of the first argument of only at LF; see e.g. discussion in Rooth 1992; Tancredi 2004; Wagner 2006. Here we let $C = \{[\text{Tanglewood}]_F, \text{Block Island}, \text{Elk Lake Lodge}\}$. The resulting interpretation of (11) is given in (13).

A reviewer notes that this two-place only is similar to that of focus-sensitive particles in Structured Meaning theories of focus (see Jacobs 1983; von Stechow 1991a,b; also Section 5). The availability of the movement proposed here is then subject to Rooth’s (1996) criticism regarding the hypothetical verb *tolf* (p. 278). An alternative would be to use a one-place only which triggers movement of the focus-containing phrase to the edge of only’s complement, resulting in a representation as in (i) below. This form of covert focus movement is compatible with the analysis here and avoids the *tolf* problem.

(i) $[\text{only} [\text{VP} [\text{Tanglewood}]_F [\text{\lambda x} [\text{VP I go to x}]]]]$

We leave further discussion of the precise geometry of covert focus movement for future work.

¹The semantics for (12) here is a naïve formulation which blindly negates all non-prejacent alternatives. Formally, this must be modified so that it is all alternatives that are innocently excludable that are negated. See discussion in e.g. von Fintel 1997; Fox 2007; Spector 2016. In the examples in this paper, this issue will not arise, so we will continue to use the naïve formulation in (12).

There are also debates in the literature regarding the status of the prejacent inference, which we call a presupposition here. This question is orthogonal to the discussion here.
Semantics for two-place only:

\[\text{[only]} = \lambda x. \lambda y \cdot \beta(x, y) : \forall \gamma \in \mathcal{C} \left[(\gamma \neq \alpha) \rightarrow \lnot \beta(\gamma) \right] \]

Interpretation of \textit{I only went to [Tanglewood]} \textit{F} (11) using (12):

a. \text{LF: only([Tanglewood]} F \text{)} = a (\lambda x . \text{I go to } x) \rightleftharpoons \beta

b. \text{Presupposition: } \beta(\alpha) = \text{I go to Tanglewood}

c. \text{Assertion:}

\[\forall \gamma \in \{\text{Tanglewood, Block Island, Elk Lake Lodge}\} \left[(\gamma \neq \text{Tanglewood}) \rightarrow \lnot \beta(\gamma) \right] \]

\[\iff \lnot \beta(\text{Block Island}) \land \lnot \beta(\text{Elk Lake Lodge}) \]

\[\iff \text{it is not the case that [I go to Block Island], it is not the case that [I go to ELL]} \]

We now demonstrate how this covert focus movement helps derive the Tanglewood reading in Kratzer’s original example, (4). We propose that the overt focus \textit{Tanglewood} moves covertly to become the first argument of \textit{only}, leaving the variable \(x\) in its trace position with a corresponding \(\lambda\)-binder. In the ellipsis site, we have a matching bound variable \(\text{there}_x\), which will also be bound by the same \(\lambda\)-binder. Ellipsis is licensed by the LF identity condition in (15). This yields the correct interpretation for the \textit{Tanglewood} example (4).

10The coindexation in the configurations we propose, e.g. (14), is allowed by Heim’s (1997) ‘No Meaningless Coin-indexing’ rule, because the trace and pronoun in (14) are both bound by the same operator.

(i) No Meaningless Coinindexing:

If an LF contains an occurrence of a variable \(v\) that is bound by a node \(a\), then all occurrences of \(v\) in this LF must be bound by the same node \(a\).

As noted by Charlow 2008, the pronoun in the ellipsis site could also refer directly to the moved phrase, rather than being bound by the \(\lambda\)-binder of covert movement, contra Beaver and Clark 2008: 112. Consider the following example, based on an example from Charlow 2008: 200:

(ii) A: You always try to show off how much you can eat by ordering the same thing I do plus something else. When I order soup, you order soup and salad. When I eat udon, you get udon and soba.

B: In general, I suppose you’re right. But here’s a counterexample: \textit{last week I only ate [brisket]} \textit{F when you did } \triangle \textit{. I didn’t eat brisket and ribs or anything like that. I just got the same thing you did.}

The ellipsis site of the italicized sentence in (iiB) is successfully interpreted as “eat it (=brisket),” without a bound variable. In this paper we will concentrate on the derivation of Tanglewood readings, narrowly defined, where this variable is bound.
(14) Interpretation of Kratzer’s *Tanglewood* example (4) using covert focus movement:

a. LF: only\(\left[\text{Tanglewood}\right]_f\) \(\equiv\) a \(\lambda x.\ I\ [\text{antecedent go to } x]\) because you \(\text{[ellipsis go there}_x]\) \(=\) \(\beta\).

b. Presupposition: \(\beta(\alpha) = I\) go to Tanglewood because you go to Tanglewood

c. Assertion:

\[\forall \gamma \in \{\text{Tanglewood, Block Island, Elk Lake Lodge}\} \left[(\gamma \neq \text{Tanglewood}) \rightarrow \neg \beta(\gamma) \right]\]

\(\iff\) \(\neg \beta(\text{Block Island}) \land \neg \beta(\text{Elk Lake Lodge})\)

\(\iff\) it is not the case that [I go to Block Island because you go to Block Island], it is not the case that [I go to Elk Lake Lodge because you go to Elk Lake Lodge]

(15) LF identity condition on ellipsis:

A VP (VP\(_E\)) can elide just in case the linguistic context provides an antecedent VP (VP\(_A\)), such that for any variable assignment \(g\), \([\text{VP}_E]^g = [\text{VP}_A]^g\).

This approach ensures quantification over propositions with the same values in the position of pronounced focus and within the ellipsis site through general mechanisms of movement, abstraction, and variable binding. This takes away the need to generate alternatives which covary in two positions of focus, discussed in the previous section. Note that, under this approach, ellipsis is not a crucial ingredient of Tanglewood readings; we discuss this point in Section 4.

Note that there is an asymmetry between the two positions of \(x\) in this LF structure in (14a). The first variable \(x\) is a trace position of movement, and therefore the relationship between the LF position of *Tanglewood* and the \(\lambda\)-binder and the position of the variable \(x\) in the trace position should be subject to constraints on syntactic movement. The second variable \(\text{there}_x\), however, is simply base-generated as a variable; it is not the product of movement and therefore should have no constraints beyond being in the scope of the matching \(\lambda\)-binder derived by movement. This asymmetry underlies the novel evidence we present in the following Section 3: in brief, we will show that the position of overt focus (corresponding to the first variable \(x\) in (14a)) is sensitive to syntactic islands, whereas the hypothesized bound variable position, within the ellipsis site, is not sensitive to islands.

Kratzer (1991: 831) briefly considers this type of movement approach to Tanglewood readings but dismisses it, based on the availability of examples such as (16). As the paraphrase below makes clear, this example has a Tanglewood reading where *only* quantifies over the possibilities that I contacted the person who chairs a certain group before you contacted the person who chairs that same group. It does not assert, for example, that *it’s not the case that I contacted the person who chairs the Zoning Board before you contacted the person who chairs the Planning Board.*
A Tanglewood construction with the focus inside an island (Kratzer 1991: 831):

Context: “You always contact every responsible person before me.”
No, I only contacted \(\text{island the person who chairs [the Zoning Board]_I} \) before you did \(\Delta \).

Paraphrase: The Zoning Board is the only \(x \) such that I contacted the person who chairs \(x \) before you contacted the person who chairs \(x \).

What is important about example (16) is that the focus the Zoning Board is contained within a relative clause island. If Tanglewood readings require movement of the focus to a position to bind a variable in the ellipsis site, we might expect (16) to have an LF as in (18). But this would be an island violation. To wit, corresponding overt movement of the focus as in (19) is ungrammatical.

LF for (16) using covert focus movement of the Zoning Board:

\[
\text{only} \left(\left[\text{the Zoning Board} \right]_F \right) \left(\lambda x . \underbrace{ \text{I antecedent contact [island the person who chairs } x]}_x \right) \]
\[
\text{before you [ellipsis contact [island the person who chairs } x]}_x \)

Corresponding overt focus movement of the Zoning Board (Kratzer 1991: 831):

* It was [the Zoning Board]_F that I contacted [island the person who chairs ___].

Therefore—Kratzer claims—the grammaticality of (16) with its intended Tanglewood interpretation shows that Tanglewood readings do not depend on covert movement of the focus. This then motivates Kratzer’s proposal where ellipsis enforces identity of focus indices, briefly introduced in Section 1.

What Kratzer did not consider is the possibility of covert focus movement triggering pied-piping (Drubig 1994; Tancredi 1997/2008, 2004; Krifka 2006; Wagner 2006; Erlewine and Kotek 2014).\(^{11}\)

Under our approach presented here—based on the work of the authors listed here—the first argument of only at LF, derived by covert movement, need only contain the focused constituent. In this case, we can covertly move the island containing the focus, the person..., leaving a variable and associated \(\lambda \)-binder which is restricted to different persons chairing organizations. This binder will also bind the matching variable in the ellipsis site.

LF for (16) using covert focus movement with pied-piping:

\[
\text{only} \left(\left[\text{island the person who chairs [the Zoning Board]_I} \right] \right)
\[
\left(\lambda x . \left[\text{I antecedent contact } x \right] \right) \]
\[
\text{before you [ellipsis contact } x] \]

\(^{11} \)None of these previous authors specifically discusses—let alone argues for—the application of covert pied-piping to the problem of Tanglewood and Kratzer’s challenge to the movement account. To our knowledge, the closest that anyone has come to this in previous literature is the last sentence of footnote 14 in Beaver and Clark 2008: 110–111 and footnote 27 in Griffiths and Liptá 2014: 220.
No islands are violated in this LF. We note that parallel pied-piping is possible in overt focus movement, as in (21). Such structures have previously been described simply as clefts where a subpart of the pivot is focused (Chomsky 1970: 91ff, summarized in Jackendoff 1972: 232–234; see also, more recently, Velleman, Beaver, Destrueal, Bumford, Onea, and Coppock 2012 and Erlewine and Kotek 2014).

(21) **Corresponding overt focus movement with pied-piping:**

(20) It was island the person who chairs [the Zoning Board] that I contacted.

For completeness, we demonstrate the interpretation of Kratzer’s Zoning Board example (16) under our approach to Tanglewood constructions, using the LF in (20) involving covert focus movement with pied-piping. Following the context discussed by Kratzer (1991: 829), we let [[the Zoning Board]ʃ] = {the Zoning Board, the Planning Board, the Rent Control Board, the Conservation Commission}. Using the simple Roothian procedure for the interpretation of focus semantic values (2), we yield the focus semantic values for the moved constituent—labeled island here—in (22b).

(22) **Interpretation of Kratzer’s Zoning Board example (16) under our approach:**

a. LF (=20): only \(\left(\text{island the person who chairs [the Zoning Board]} \right) \) \[\lambda x. \ I \left[\text{antecedent contact } x \right] \text{ before you } \ell \] \[\text{the person who chairs the Zoning Board,} \]
 \[\text{the person who chairs the Planning Board,} \]
 \[\text{the person who chairs the Rent Control Board,} \]
 \[\text{the person who chairs the Conservation Commission} \]

b. \(C = \text{[island]} = \{ \text{the person who chairs the Zoning Board,} \text{the person who chairs the Planning Board,} \text{the person who chairs the Rent Control Board,} \text{the person who chairs the Conservation Commission} \} \)

c. **Presupposition:** \(\beta(\alpha) = \ I \text{ contact the person who chairs the Zoning Board before you contact the person who chairs the Zoning Board} \)

d. **Assertion:** \(\forall \gamma \in C \left[(\gamma \neq \alpha) \rightarrow \neg \beta(\gamma) \right] \)
 \[\iff \neg \beta(\text{the person who chairs the Planning Board}) \land \neg \beta(\text{the person who chairs the Rent Control Board}) \land \neg \beta(\text{the person who chairs the Conservation Commission}) \]
 \[\iff \text{it is not the case that } [I \text{ contact the person who chairs the Planning Board before you contact the person who chairs the Planning Board}], \text{it is not the case that } [I \text{ contact the person who chairs the Rent Control Board before you contact the person who chairs the Rent Control Board}], \text{it is not the case that } [I \text{ contact the person who chairs the Conservation Commission before you contact the person who chairs the Conservation Commission} \]
The semantics for *only* here correctly reflects sensitivity to the placement of focus, even though the focus is a proper subpart of the constituent moved to be the first argument of *only*. This is because the set of alternatives C quantified over in (22d) is constrained by the focus semantic value of the first argument of *only*; here $C = \{\text{island}\}$. This is the domain restriction mechanism of Rooth 1985, 1992, adapted for the two-place *only* in (12), also used by Wagner 2006. The need for such sensitivity may be clearer in Merchant’s (2008: 150) example below, which can be similarly analyzed.

(23) I only played [island a song that [Ringo] wrote] because you did \triangle.

The demonstration in (22) shows that Kratzer’s one argument against a covert movement account of Tanglewood readings is easily defeated by the possibility of pied-piping in covert focus movement, which has since been independently developed and argued for by work such as Drubig 1994; Krifka 1996, 2006; Tancredi 1997/2008, 2004; Wagner 2006; Erlewine and Kotek 2014. At the same time, this discussion reflects the difficulty of testing for reflexes of movement such as island-sensitivity in Tanglewood constructions—because of the possibility of covert pied-piping—and hence we have not yet given argument for covert movement. In the next section, we present new evidence that focus association in Tanglewood is island-sensitive in a manner predicted by our movement-based proposal but not by Kratzer’s approach.

3 New evidence from island (in)sensitivity

Our proposal for Tanglewood constructions, presented above, involves covert movement of the overt focus—or a constituent properly containing it—which then binds a corresponding bound variable in the ellipsis site. This predicts an asymmetric pattern of island-sensitivity: covert movement of the focus (possibly with pied-piping) is subject to island constraints, but variable binding is not. In this section we will show that Tanglewood constructions exhibit precisely this pattern of island-sensitivity, predicted by our covert focus movement account but unpredicted by alternative proposals, including Kratzer’s account.

In particular, in the examples in this section we isolate island-sensitivity by controlling for pied-piping. We do this by constructing contexts in which the island-sized constituent that we predict moves to *only* makes for an inappropriate object for the verb in the ellipsis site; whereas the likely object is embedded inside an island and hence cannot be moved to *only*. When these conditions are met, island effects are revealed. We then show that, in contrast to the position of overt focus, the bound variable in the ellipsis site is not island-sensitive.

We begin with example (24). The context is designed to make the intended Tanglewood
reading natural; nonetheless, the sentence does not have the intended Tanglewood reading, which we indicate with $^{*\text{TW}}$. We note that this sentence does have a number of other possible readings.\footnote{In particular, there is another reading which we would call a Tanglewood reading: this is a reading where the ellipsis is resolved to a higher VP, $\Delta = \text{"hire a nanny that speaks..."}$, paraphrasable as Spanish is the only language x such that we hired [a nanny that speaks x] because our son hires [a nanny that speaks x]. The availability of this reading is predicted under our account, following a derivation parallel to (22) for Kratzer’s Zoning Board example. This reading differs from our intended reading here, and is not supported by the context in (24).}

(24) **Focus in a relative clause, without a matching island in the intended ellipsis site:**

Context: Our son speaks Spanish, French, and Mandarin. At one point we hired a nanny that happened to speak French, but that wasn’t why we hired her. Another time we hired a nanny that spoke Mandarin, but that too was a coincidence...

$^{*\text{TW}}$ We only hired [island a nanny that speaks [Spanish]$_F$] because our son does Δ.

Intended Tanglewood reading: Spanish is the only language x such that we hired [a nanny that speaks x] because our son speaks x. ($\Delta = \text{"speak..."}$)

Why is this intended reading unavailable? Under our approach, the intended Tanglewood reading requires covert movement of Spanish or a phrase properly containing Spanish to only, binding a corresponding bound variable within the ellipsis site. Consider first the LF in (25a): although movement of the focus Spanish would arrive at the intended Tanglewood reading, movement of Spanish alone is a violation of the relative clause island. We also consider movement of the entire island containing the focus in (25b). The problem here is that the bound variable in the ellipsis site is the object of speak and therefore should correspond to a language, but in order to yield the Tanglewood reading, this variable will be bound by the λ-binder introduced by covert focus movement, and this λ-binder ranges over different nannies, not languages.

(25) **Problematic LFs for the unavailable Tanglewood reading of (24):**

a. only $\left([\text{Spanish}]_F \right) \left(\lambda x . \text{we hire [island a nanny that [antecedent speaks x]] because our son [ellipsis speaks x]} \right)$

b. only $\left([\text{island a nanny that [antecedent speaks [Spanish]$_F$]]} \right) \left(\lambda x . \text{we hire x because our son [ellipsis speaks x]} \right)$

The unavailability of the Tanglewood reading in (24) is unpredicted by Kratzer’s account. Recall that under her proposal, foci are interpreted in-situ at LF (following Rooth 1985) with distinguished focus indices and ellipsis enforces their identity. Focus association through focus indices and ellipsis are both insensitive to syntactic islands, as explicitly claimed by Kratzer, predicting the availability of a Tanglewood reading here:
(26) **The Tanglewood reading of (24) under Kratzer 1991’s approach:**

a. LF: only \(\text{VP we hire a nanny that \[anteecedent speaks [Spanish]_5}\)
\[\text{because our son \[ellipsis speaks [Spanish]_5]]} \)

b. \(H = \{h_0, h_1, h_2\}; h_0(5) = \text{Spanish}, h_1(5) = \text{French}, h_2(5) = \text{Mandarin} \)

c. \([\text{VP}]^f = \{\text{we hire a nanny that speaks } h(5) \text{ because our son speaks } h(5) \mid h \in H\} \)
\(= \{\text{we hire a nanny that speaks Spanish because our son speaks Spanish}, \)
\(\text{we hire a nanny that speaks French because our son speaks French}, \)
\(\text{we hire a nanny that speaks Mandarin because our son speaks Mandarin}\} \)

d. **Assertion of only:**

\(\text{it is not the case that [we hire a nanny that speaks French because our son speaks French],} \)
\(\text{it is not the case that [we hire a nanny that speaks Mandarin because our son speaks Mandarin]} \)

In (24), we placed the overt focus inside an island, without a corresponding island in the intended ellipsis site, and as a result the Tanglewood reading became unavailable. However, as we have shown, Kratzer 1991’s proposal of enforcing the identity of focus indices under ellipsis predicts this reading to be available. This is not a coincidence—this mechanism was explicitly designed to generate Tanglewood readings without locality restrictions or island sensitivity. As a result, this mechanism will systematically overgenerate such Tanglewood readings, and will not predict any island sensitivity.

We can similarly demonstrate sensitivity to adjunct islands, as in (27) below. Example (27a) is a grammatical Tanglewood baseline, which is then modified in (27b) so that the focus is in an adjunct clause. The intended Tanglewood reading is then judged as unavailable in (27b).

(27) **Tanglewood reading blocked by adjunct island:**

Context: Smith, Jones, and Stevens are all very famous scholars, but they cause trouble at conferences. When I heard that Stevens was being considered as a plenary speaker, I voiced concerns, but the organizers invited her anyway. I then decided to stay out of the invitation process. But after I learned that Smith and Jones had also been invited, I warned the organizers about them, too. The conference was a disaster. I wish I’d been more vocal in my opposition.

a. \(^{\checkmark}\text{TW I only told them that they shouldn’t invite [Stevens]_F before they did } \Delta. \)

Intended Tanglewood reading: Stevens is the only person \(x \) such that I [told them that they shouldn’t invite \(x \) [before they invited \(x \)]. \((\Delta = \text{“invite...”}) \)

b. \(^*\text{TW I only told them that they would regret it [island if they invite [Stevens]_F]} \)
\(\text{before they did } \Delta. \)
Intended Tanglewood reading: Stevens is the only person \(x \) such that I [told them that they would regret it if they invite \(x \) [before they invited \(x \)]]. \((\Delta = \text{“invite...”}) \)

Tanglewood readings are similarly unavailable with the overt focus in one conjunct and the ellipsis site in another conjunct (28). This reflects the fact that covert movement is subject to the Coordinate Structure Constraint, as has been independently argued by Bošković and Franks (2000).\(^{13}\)

(28) **Tanglewood reading blocked by coordination:**

Context: I am under investigation by the Real Estate Board. Sarah and Rebecca claim that I advised them both to bid on many of the same houses, to raise their prices. I reply:

\(^*_{TW} \) I only advised Sarah to bid on [the Elm St. house] and (told) Rebecca to as well.

Intended Tanglewood reading: The Elm St. house is the only house \(x \) such that I advised Sarah to bid on \(x \) and (told) Rebecca to bid on \(x \) as well. \((\Delta = \text{“bid on...”}) \)

Note that there is no independent subject of *tell* or *advise* in the right conjunct in (28), ensuring that the entire conjunction is below only as would be required for the Tanglewood reading both by our approach and for Kratzer’s proposal.

Kratzer’s approach predicts no difficulty in deriving the intended Tanglewood readings in (27b) and (28), in the same way that it would overgenerate a Tanglewood reading without island-sensitivity in (26) above. The examples above show that Tanglewood configurations are instead sensitive to syntactic islands in a manner predicted by our proposal. Tanglewood readings involve covert focus movement and variable binding in the ellipsis site. The placement of an island around the overt focus will block covert movement of the focus and consequent variable binding, though movement of the island itself is possible, as in (20) above.

We furthermore predict that the strengths of these contrasts will correlate with strengths of the islands themselves. For example, the availability of the Tanglewood reading in example (29) below shows that covert focus movement can violate *wh*-islands, which have classically been observed to be of variable or weaker strength than many other islands in English (see discussion in e.g. Ross 1967; Pesetsky 1982; Grimshaw 1986).

\(^{13}\)As noted by a reviewer, the coordinate structure in (28) could conceivably allow for an alternative derivation using across-the-board covert focus movement, schematized in (i) below:

\[
(\text{LF}):\text{only}([\text{the Elm St. House}]_F)(\lambda x. \text{I advised Sarah to bid on } x \text{ and (told) Rebecca to bid on } x)
\]

The LF in (i) is however unavailable due to the unavailability of covert across-the-board movement, as argued by Bošković and Franks (2000).
(29) **Tanglewood reading not blocked by *wh*-island:**

Context: Reporters know a lot about Secretary Clinton’s technology use. They know she uses a Blackberry, and they know she uses teleprompters, but they’ve never cared who else uses such things.

✓TW Reporters only asked \[\text{island who else uses [a private email server]}\]

after learning that Clinton does.

Intended Tanglewood reading: A private email server is the only technology \(x\) such that reporters asked who else uses \(x\) after learning that Clinton uses \(x\). \((\Delta = \text{“use...”})\)

Tanglewood constructions can thus be used as a diagnostic the sensitivity of covert (focus) movement to different islands. Note that the strength of individual islands is additionally subject to inter-speaker variation. We predict a correlation: a Tanglewood sentence with an island should be as acceptable as a baseline for that same island. For example, one anonymous LI reviewer reports that they can get the intended Tanglewood reading in the relative clause example (24) above but also notes that they allow exceptionally wide scope of quantifiers out of relative clause islands, such as the *every > some* reading of *Josh knows someone who speaks every Germanic language* from Sabbagh 2007.

Our analysis for Tanglewood constructions predicts island-sensitivity due to the covert movement of the focus, but it does not predict any island-sensitivity around the ellipsis site. To test this, we change the position of the island in our test sentences: we place the ellipsis site inside a syntactic island, without a corresponding island around the antecedent.\(^{14}\) The intended Tanglewood reading is grammatical in this configuration in (30), based on (24).

(30) **Ellipsis site in a relative clause island:**

Context: I speak Spanish, French, and Mandarin. I also have many friends that speak these languages, but for the most part that’s not why I studied these languages...

✓TW I only speak [Spanish]\(\Delta\) because I have [island a friend who does \(\Delta\)].

Intended Tanglewood reading: Spanish is the only language \(x\) such that I speak \(x\) because I have a friend who speaks \(x\). \((\Delta = \text{“speak...”})\)

The grammaticality of this Tanglewood construction in (30) is predicted by our account. Covert movement of the focus *Spanish* in (30) is not constrained by any syntactic island. This movement introduces a variable and its \(\lambda\)-binder, which in turn binds the matching bound variable in the

\(^{14}\text{Note that the ellipsis site in Tanglewood examples are already inside an adjunct island such as that headed by }\text{because in (30), including Kratzer’s original in (4). However, due to possible differences in island strength, mentioned above, we add the additional relative clause island here around the ellipsis site, to make it parallel to example (24) above both in the island involved and in overall complexity.}\)
ellipsis site. This ellipsis site is inside an island, but this is not a problem: variable binding is not sensitive to syntactic islands. This LF for (30) is illustrated in (31).

(31) LF for (30), involving variable binding into an island:

\[
\text{only}\left(\text{[Spanish]} F \right) \left(\lambda x . I [\text{antecedent} \text{ speak } x] \right) \\
\text{because I have [island a friend that [ellipsis speak x]]}
\]

The asymmetry in the availability of Tanglewood readings between (30) and (24) above is exactly what we predict under our account. The overt focus must covertly move—possibly with pied-piping—and is thus sensitive to islands, but the position of the ellipsis site, under our account, simply hosts a bound variable and is thus insensitive to islands. In contrast, Kratzer’s account would predict no contrast between these examples, predicting the availability of a Tanglewood reading in (24), as demonstrated above in (26) above.

We conclude that Tanglewood constructions are island-sensitive, contrary to Kratzer’s claim and prediction. The patterns of island-sensitivity observed—where the position of overt focus is island-sensitive but the position of the ellipsis site is not—is precisely what is predicted by our proposal, where Tanglewood readings involve covert movement of the focus which then binds a bound variable in the ellipsis site. Kratzer’s approach of enforcing identity of focus indices under ellipsis systematically overgenerates Tanglewood readings, as it was explicitly designed to not require syntactic movement for their derivation, as do other previous accounts of Tanglewood readings. Kratzer’s approach of enforcing the identity of focus indices under ellipsis must not be available to the grammar.\(^{15}\) Other previous approaches to Tanglewood constructions will be discussed in Section 5.

4 Tanglewood readings with overt bound variables

All of the Tanglewood examples we have discussed thus far have involved ellipsis. For Kratzer’s (1991) proposal, the ellipsis is a crucial component of Tanglewood readings: the ellipsis site is interpreted under identity with the antecedent focus, yielding an LF with two foci (32). Matching

\(^{15}\)A possible stronger conclusion that we might entertain is that Kratzer’s mechanism of computing focus alternatives using focus indices as a whole must not be available to the grammar. Aside from Kratzer’s argument for this mechanism from Tanglewood readings, two additional arguments can be found in the literature. The first comes from crossing focus dependencies in Wold 1996, but see Krifka 1996, 2006; Tancredi 1997/2008, 2004 for arguments that such data is better captured by assuming covert focus movement. A second argument comes from the interaction of focus with the Copy Theory of movement (Erlewine 2014), in particular in so-called “backwards association” configurations. Absent an alternative account for this data, the interaction of focus with copies discussed there would necessitate the use of Kratzerian focus indices. We refer the reader to Erlewine 2014 for details.
focus indices between the two positions of focus yield covarying alternatives, as demonstrated above in (10).

(32) **Kratzer’s approach requires ellipsis to generate Tanglewood readings:**

I only went to [Tanglewood]₉ because you did Δ.

\[\text{LF (=10a): only } [I \text{ antecedent go to [TW]₉} \because \text{ you [ellipsis site go to [TW]₉]}] \]

In contrast, the proposal here derives Tanglewood readings through general mechanisms of (covert) movement and variable binding, and does not depend on ellipsis. This predicts that Tanglewood readings could also involve *overt* bound variables. Beaver and Clark (2008) observe that this is indeed the case:

(33) **Tanglewood with an overt bound variable and no ellipsis** (Beaver and Clark 2008: 112):

\[\text{TW} \text{ only went to } [\text{Tanglewood}]₉ \because \text{ you went there.} \]

Intended Tanglewood reading: Tanglewood is the only place \(x \) such that I went to \(x \) because you went to \(x \).

\[(=5) \]

In the intended reading of (33), *there* is an overt bound variable and is not focused. The availability of this reading follows immediately from our account. This LF is equivalent to the LF proposed above in (14a) for the original Tanglewood example.

(34) **Covert focus movement LF for (33):**

\[\text{only} \left([\text{Tanglewood}]₉ \right) \left(\lambda x . I \text{ go to } x \because \text{ you go there}_x \right) \]

\[(=14a) \]

If we instead attempt to interpret (33) using Kratzer’s proposal, *there* would have to be focused with its focus index shared with *Tanglewood*, but note that *there* in (33) is not focused. An unfocused *there* would not yield the intended reading if it is not a bound variable but simply refers to Tanglewood.

Such Tanglewood examples with overt bound variables allow us to explicitly observe the effects of the covert pied-piping proposed here. Recall Kratzer’s original *Zoning Board* example, repeated below in (35), which is a grammatical Tanglewood construction despite its focus being within an island. We proposed above that this example is grammatical due to covert movement of the island *the person...*, binding a variable over different persons; see (20) above. This is reflected explicitly by the bound variable in the grammatical ellipsis-less variant (36), which has the truth-conditionally equivalent Tanglewood reading from (35).
(35) **Kratzer’s Zoning Board example, repeated from (16):**

Context: “You always contact every responsible person before me.”

✓TW I only contacted [island the person who chairs [the Zoning Board]] before you did △.

Intended Tanglewood reading: The Zoning Board is the only x such that I contacted the person who chairs x before you contacted the person who chairs x.

(36) **Overt bound variable paraphrase of Kratzer’s Zoning Board example (16):**

✓TW I only contacted [island the person who chairs [the Zoning Board]]

before you contacted her/him/them.\(^\text{16}\)

The example in (36) corresponds to a parse of (35) where the ellipsis site is resolved as △ = “contact her/him/them.” In contrast, there is no grammatical equivalent of (35) which explicitly spells out the ellipsis site as △ = “contact the person who chairs...” This again reflects the fact that the focused constituent the Zoning Board cannot covertly move out of the island to a position to bind the bound variable it. Instead, the entire island must move.

(37) **Bound variable corresponding to the focus, not the island, is not possible:**

*TW I only contacted [island the person who chairs [the Zoning Board]]

before you contacted [island the person who chairs it].

To conclude, Tanglewood constructions can involve overt bound variables and do not depend on ellipsis, as predicted by our account. This was previously observed by Beaver and Clark (2008), but without an explicit account which predicts the island sensitivity observed in the previous section. Such data is problematic for Kratzer’s account, which relied on ellipsis for the generation of Tanglewood constructions. Kratzer’s proposal undergenerates the examples with overt bound variables in this section, while simultaneously overgenerating the island examples in the previous section.

5 **Alternative analyses of Tanglewood readings**

Several alternative analyses to Kratzer’s can be found in the previous literature. In this section we briefly discuss these alternatives and highlight their shortcomings in light of the discussion in this paper. In particular, two common difficulties faced by these accounts are (a) the asymmetric island sensitivity we presented in Section 3—a fact that has never been previously noted—and (b)

\(^{16}\)In the authors’ English, this sounds best with the gender-neutral singular them, but we want to make it clear that this pronoun here is animate. Given sufficient contextual expectations of all persons chairing relevant organizations to be female or male, the singular her or him becomes grammatical.
the availability of Tanglewood readings with overt bound variables but without ellipsis, discussed in Section 4.

We first discuss analyses in the Structured Meaning (SM) framework, beginning with Krifka 1991. This framework involves “projection” of the focused constituent in a separate “stack” of the computation, without requiring any movement. Krifka 1991 applies this approach to Kratzer’s Tanglewood constructions, assuming a complete copy of the focus within the ellipsis site, together with a mechanism to equate the foci “projected” from the antecedent and ellipsis sites. This analysis is then extended in Jäger 1999 using a theory which directly equates the ellipsis content with its antecedent. Akin to our conclusions for Kratzer’s enforcement of identical focus indices through ellipsis, these SM projection approaches fail to predict the island-sensitivity of the position of overt focus in Tanglewood constructions, presented in Section 3.

Krifka 2006 then proposes that the “projection” mechanism in SM should in fact be thought of as syntactic movement, but this does not improve the situation. Updating the Krifka 1991 account to Tanglewood constructions using the movement approach to projection of Krifka 2006 will predict island-sensitivity for both the position of overt focus and the ellipsis site, contrary to what we have shown in Section 3.

Charlow 2008 presents an analysis of a subclass of Tanglewood constructions as involving variable-binding, which is a component of our analysis as well. However, this categorial grammar approach uses same type-shifting rules to abstract over the antecedent side and the ellipsis site or bound variable. This predicts either island-sensitivitv on both sides or neither, thus failing to derive the asymmetric island-sensitivity observed in Section 3.

Another proposal is the so-called structure-sharing account of Sauerland 2007a,b. Sauerland briefly relates Tanglewood constructions to more general effects of dependence on contrastive foci that can occur specifically in ellipsis, independently observed in Hardt 1999 and Schwarz 2000. Based on these other, non-Tanglewood examples, Sauerland claims explicitly that this structure-sharing technology is not subject to syntactic locality conditions (see Sauerland 2007a: 46). Furthermore, his structure-sharing account would also fail to extend to Tanglewood readings with overt bound variables.

Finally, Beaver and Clark 2008 discusses Tanglewood constructions at some length and discusses two possible approaches, which seem to each capture some but not all the properties of Tanglewood constructions. The first is a movement account which differs significantly from ours in involving VP movement as the mechanism for VP-ellipsis and using this movement to derive the Tanglewood effect (pp. 109–111). This approach is challenged by the availability of Tanglewood readings which involve overt bound variables, without ellipsis, which they too observe (p. 112). They then present a proof-of-concept dynamic semantic approach to Alternative Semantics (pp. 111–115), with the aim
of accounting for both overt pronouns bound by focused constituents and Kratzer’s Tanglewood examples. However, this account predicts no sensitivity to syntactic islands, and hence cannot be extended to model the data we have presented in Section 3. Ultimately, Beaver and Clark do not commit themselves to either approach.

6 Covert focus movement is long-distance, not QR

In this section we consider and argue against one final possible alternative analysis for the data we have presented here. This is the possibility that Tanglewood readings indeed involve covert movement and variable binding, but that this movement is not covert focus movement but rather reflects a general purpose operation such as QR. We will show that the covert movement involved in Tanglewood constructions can be long-distance, across finite clause boundaries, and in particular that this movement can be longer than that of quantifiers undergoing QR.

We first consider example (38), which is a grammatical Tanglewood construction. In the intended reading here, the because-clause adjoins to and modifies think. Therefore, for the binder of the moved focus anaphora to bind the bound variable in the ellipsis site, anaphora must necessarily move outside of the embedded finite clause. (39) below gives the LF that we would propose for this sentence.

(38) **Tanglewood construction requiring long-distance covert movement:**

Context: John, the first year grad student, doesn’t quite understand the field yet. He seems to think that everyone works on focus, on ellipsis, and on anaphora. Some people think he is just extrapolating from what his advisor works on. But actually...

\[TW \]

He only thinks \([CP \text{ that everyone works on [anaphora]}_F] \) because his advisor does \(\Delta \).

Intended Tanglewood reading: Anaphora is the only topic \(x \) such that John [thinks that everyone works on \(x \) [because his advisor works on \(x \)].] \(\Delta = \text{“work on...”} \)

(39) **LF:** only\(([\text{anaphora}}]_F)(\lambda x . \text{he think } [CP \text{ that everyone [antecedent work on } x]}) \)

because his advisor \([\text{ellipsis work on } x]\)

Next let us compare this with the behavior of variable binding by a QR-ed quantifier. Example (40) is a version of (38) with the focus replaced by the quantifier at least one topic and without the associating only. This sentence does not have the intended Tanglewood-esque reading, which would involve binding into the ellipsis site by a long-distance QRing at least one topic. The baseline in (41) shows that variable binding into a because-clause by an object quantifier at least one topic is possible, if the because-clause is attached to the local clause.
(40) **QR does not move as high as the focus in (38):**

*\(TW\) He thinks [that everyone works on at least one topic] because his advisor does \(\Delta\).

Intended Tanglewood-like reading: There is at least one topic \(x\) such that he [thinks everyone works on \(x\) [because his advisor works on \(x\)]]. \((\Delta = \text{“work on...”})\)

(41) **Baseline variable binding by at least one topic:**

\(\checkmark\)\(TW\) He works on at least one topic because his advisor does \(\Delta\).

Intended Tanglewood-like reading: There is at least one topic \(x\) such that he [works on \(x\) [because his advisor works on \(x\)]]. \((\Delta = \text{“work on...”})\)

The contrast between example (40), containing a quantifier, and example (38), with focus associating with only, shows that the covert movement in Tanglewood constructions cannot simply be reduced to QR’s independent ability to covertly move arguments. Covert focus movement is long-distance, crossing finite clause boundaries, in environments where quantifiers cannot. Hence, we argue here for the existence of covert focus movement, which is distinct from QR and must be available to the grammar alongside QR. This focus movement is necessitated in our analysis for simple reasons of semantic composition: the two-place formulation of only in (12) requires a first argument. This argument is supplied to the operator through covert movement of the overt focus—or a constituent properly containing it—as detailed in our proposal above.

7 Conclusion

In this paper we argued for covert focus movement in English focus association with only. Our evidence comes from Tanglewood configurations of the form in Kratzer 1991. We showed that Tanglewood configurations are sensitive to syntactic islands, contrary to Kratzer’s claims and predictions. In particular, we showed an asymmetric pattern of island sensitivity: the position of overt focus is island-sensitive but the position of the ellipsis site is not.

We propose that Tanglewood constructions are derived through covert movement of the focused constituent to the focus-sensitive operator, with binding of a bound variable in the ellipsis site. This movement may involve covert pied-piping of a larger constituent properly containing the focus (Drubig 1994; Krifka 1996, 2006; Tancredi 1997/2008, 2004; Wagner 2006; Erlewine and Kotek 2014). This availability of covert pied-piping explains examples such as Kratzer’s which are apparently island-insensitive: in such examples, the entire island undergoes covert movement to the operator, and hence there is no island violation. It also explains the asymmetric pattern

\(^{17}\)We recognize that there is some inter-speaker variability in the locality of QR (see e.g. Wurmbrand 2015). What is important here is that there is a contrast here between these two examples in the availability of the intended reading.
of island sensitivity we describe above, since the ellipsis site contains a base-generated bound variable that does not undergo any movement and hence is not island-sensitive.

This proposal also severs the link between Tanglewood readings and ellipsis. Indeed, we show that parallel Tanglewood readings are available in sentences with overt bound variables, which do not involve ellipsis. We additionally show that covert focus movement is long-distance and may cross finite clause boundaries, unlike QR in the same environment. The influential Kratzer 1991 proposal—that ellipsis enforces identity of focus indices—will greatly overgenerate Tanglewood constructions. Alternative analyses to Tanglewood constructions were also shown to fail to capture the facts presented in this paper.

References

Massachusetts Institute of Technology.

Yuan, Michelle. 2017. Movement to complement in Kikuyu and the syntax of focus association. Manuscript, MIT.