Gestural Cosuppositions within the Transparency Theory*

Philippe Schlenker

(Institut Jean-Nicod, CNRS; New York University)

October 14, 2015

Abstract: It has been argued that the sentence None of these 10 guys SLAP_punished his son (where SLAP is a slapping gesture co-occurring with the verb) triggers a presupposition that for each of these 10 guys, if he had punished his son, slapping would have been involved (Schlenker 2015a,b). We argue that the conditional nature of this presupposition can be derived within an extension of the Transparency Theory (Schlenker 2008), one in which the target sentence competes with an 'articulated' competitor of the form: None of these 10 guys punished his son like SLAP_this (or some other post-verbal modifier).

Schlenker 2008 argues that the presupposition d of a (predicative or propositional) trigger dd' is just a normal entailment that 'wants' to be articulated as a separate conjunct, in accordance with (1). If possible, then, one should say … it is raining and John knows it… rather than …John knows that it is raining…. (Grice_1981 develops a related intuition).

(1) Be Articulate
 In any syntactic environment, express the meaning of an expression …dd’… as …(d and dd’)… (unless independent pragmatic principles rule out the full conjunction).

Be Articulate is controlled by a Gricean principle of manner, Be Brief, which prohibits unnecessary prolixity, as in (2), and takes precedence over Be Articulate – ruling out, for instance, If it is raining, it is raining and John knows it.

(2) Be Brief - Incremental Version
 Given a context set C, a predicative or propositional occurrence of d is infelicitous in a sentence that begins with a (d and if for any expression g of the same type as d and for any sentence completion b’, C |= a (d and g) b’ ⇐ a d b’.

In the end, dd’ is acceptable in a sentence a dd’ b just in case the attempt to be 'articulate' satisfies the boldfaced equivalence in (2), and thus violates Be Brief. Schlenker_2008 claims that the theory of presupposition projection reduces to the interaction between these two principles, and Schlenker_2007 proves that they derive the results of Heim 1983 for a fragment with generalized quantifiers, modulo some technical assumptions.

 (1)-(2) are tailored to the case of 'articulated' competitors of the form …(d and dd’)…. We argue that (i) for gestural presuppositions (Schlenker_2015a,b), illustrated in (3)a, the 'articulated' competitor takes a different form, akin to …(d d’)…. where d’ is a post-verbal modifier; and that (ii) this explains why gestural presuppositions are conditional in nature. (Notation: the gesture co-occurs with the expression that immediately follows the picture).

(3) a. None of these 10 guys _punished his son.
 => none of these 10 guys punished his son; but for each of them, if he had punished his son, slapping would have been involved

 b. None of these 10 guys punished his son like _this / by slapping him.

(3)a) triggers a universal inference that for each of these 10 guys, if he had punished his son, slapping would have been involved. Given standard results about presupposition projection under none (Chemla_2009), this is explained if x _punished x’s son triggers a conditionalized presupposition (called a 'cosupposition' in

* For helpful theoretical or empirical discussions, I wish to thank Dylan Bumford, Emmanuel Chemla, Chris Kennedy, Nathan Klinedinst, Jeremy Kuhn, Rob Pasternak, Anna Szabolcsi, Lyn Tieu, and the participants to my NYU seminar (Fall 2015) for helpful discussions. The research leading to these results received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement Н°324115-FRONTSEM (PI: Schlenker). Research was conducted at Institut d’Etudes Cognitives (ENS), which is supported by grants ANR-10-IDEX-0001-02 PSL* and ANR-10-LABX-0087 IEC.
Schlenker_2015b) that if \(x \) punished \(x \)'s son, slapping was involved. But why this conditionalization? We suggest that the natural 'articulated' competitor comes with a post-verbal modifier, as in (3)b. Schematically, in 'standard' cases, \(...d'\) competes with \(...((d\text{ and }gd')\)\..., but here \(...Gd'\) (where \(G \) is a gesture co-occurring with the expression \(d' \) – e.g. \(__\text{punished…}__\text{this} \)) competes with \(...d'g_\text{...} \), where \(g \) is a post-verbal modifier with the same content as \(G \) (e.g. \(__\text{punished... like __\text{this}} \)).

This difference in linear order\(^1\) explains why the gestural presupposition is conditional in nature, modulo the extension of (1)-(2) sketched in (4)a-b. (4)b rules out the articulated competitor \(...\text{punished his son like this...} __\text{...} \) just in case no matter which further modifier is added, no matter how the sentence ends, the like-phrase can be eliminated without affecting the truth conditions. This means that the post-verbal modifier must be trivial after the verbal meaning has been computed.

(4) Consider a sentence of the form \(aGd'_\text{b} \), where \(G \) is a gesture co-occurring with a (modifier-compatible) expression \(d' \).

a. **Modified Be Articulate:** Say \(a__d'_\text{g}_\text{b} \) rather than \(a__G_\text{d'}_\text{b} \), unless this is in violation of (b).

b. **Modified Be Brief – Incremental Version:** Given a context set \(C \), do not say \(a__d'_\text{g}_\text{b} \) if \(g \) is incrementally trivial, in the sense that for any modifier \(g' \), for any sentence completion \(b' \), \(C \vDash a__((d'_\text{g})_\text{c'})_\text{b'} \Leftrightarrow a__((d'_\text{c'})_\text{b'}) \).

Assuming that the modifiers are intersective, (4)b is equivalent to the acceptability conditions predicted by (1)-(2) for \(a__d'_\text{g}_\text{b} \), where \(d^* \) is an arbitrary assertive component:

(5) Predictions of (1)-(2) for the acceptability of \(a__d'_\text{g}_\text{b} \)

For any \(g \) of the same type as \(d' \), for any sentence completion \(b' \), \(C \vDash a__((d'_\text{g})_\text{c'})_\text{b'} \Leftrightarrow a__((d'_\text{c'})_\text{b'}) \).

Modulo the assumptions and equivalence results of Schlenker_2007, (5) (and thus (4)) makes the same predictions as Heim's dynamic semantics for a sentence \(a__d'_\text{g}_\text{b} \). In particular, in Heim 1983, \((d'_\text{and } gd^*) \) triggers the conditional presupposition \(d' \Rightarrow g \), which then gets dynamically projected. This derives the conditional nature of gestural presuppositions from the fact that the articulated competitor has a post-verbal modifier.\(^2\)

\(^1\)We follow Schlenker_2007,2008 in framing the discussion in terms of linear order, but more structural notions could be used instead as long as they are independently motivated. Languages in which the modifier can come pre-verbally (e.g. German) might well cause problems for a simple-minded analysis based on linear order alone.

\(^2\)In the present note, we derive the conditional nature of the presupposition predicted by (4) by way of an equivalence with the presupposition predicted by \(d'_\text{and } gd^* \), which in turn is known in Heim's framework to trigger a conditional presupposition \(d' \Rightarrow g \) (which then gets dynamically projected). But we could try to derive a direct equivalence between (4) and the condition predicted by the Transparency Theory (and hence by (2)) for a trigger of the form \(d' \Rightarrow g \) (with the entire conditional \(d' \Rightarrow g \) as its presupposition, and an arbitrary assertive component \(d^* \)). The condition is written in (i):

(i) \[a__((d'_\text{g})d^*)_\text{b} \] is acceptable if for each \(c' \) of the same type as \(g \), for each acceptable sentence completion \(b' \),

\[C \vDash a__((d'_\text{g})_\text{c'})_\text{b'} \Leftrightarrow a__c_\text{b'} \]

The acceptability condition in (i) entails that in (5): for every \(c^* \), take \(c' = ((d'_\text{d}^*_\text{g})_\text{c'}) \) in (i), to get the condition in (ii):

(ii) \[a__((d'_\text{g})_\text{c'})_\text{b'} \] is acceptable if for each \(c' \) of the same type as \(g \), for each acceptable sentence completion \(b' \),

\[C \vDash a__((d'_\text{g})_\text{c'})_\text{b'} \Leftrightarrow a__((d'_\text{d}^*_\text{g})_\text{c'})_\text{b'} \]

But without further assumptions, (5) does not entail (i). Take the sentence \((Q__((d'_\text{g})_\text{c'})) \), where \(Q \) is a generalized quantifier meaning \(\text{zero or an odd number of objects} \). Take \(d' \) to be a predicate that holds true of a single object \(O \). (5) can be re-written as (iii), which is trivially true (both complex predicates hold true of zero or one object, thus making \(Q \) true). But if the domain contains at least two objects, (i), re-written as (iv), will fail to hold in case \(c' \) is a tautological predicate and \(g \) is a contradictory predicate. Let \(n \) be the number of objects in the domain (\(\geq 1 \)). The right-hand side is true iff \(n = 0 \) or \(n \) is odd. Since \(g \) is contradictory, \(c' \) is tautological, and \(d' \) is only true of the object \(O \), \((d'_\text{g})_\text{c'} \) holds of \(n-1 \) objects (namely those make \(d' \) false), and so does \((d'_\text{g})_\text{c'} \), hence the left-hand side is true iff \(n-1 = 0 \) or \(n-1 \) is odd. The equivalence \((n-1 = 0 \text { or } n-1 \text { is odd}) \Leftrightarrow (n = 0 \text { or } n \text { is odd}) \) cannot be satisfied for \(n \geq 2 \), as it then boils down to: \(n-1 \text { is odd } \Leftrightarrow n \text { is odd } \). (It is satisfied if \(n = 1 \), since both sides are true in that case.)

(iii) \[C \vDash (Q__((d'_\text{d}^*_\text{g})_\text{c'})) \Leftrightarrow (Q__((d'_\text{d}^*_\text{g})_\text{c'})) \]
(Following questions raised by Kennedy and Szabolcsi, one could ask whether our analysis extends to verbs that encode manner modifications, as in (6)a, which might compete with (6)b.

(6) a. None of these 10 guys drove / swam to the bridge.
 b. None of these 10 guys got to the bridge by driving / got to the bridge by swimming.

Extending Be Articulate to (6)a would predict an inference that for each of these 10 guys, if he had gone to the bridge, he would have done so by driving / swimming. It is unclear that this holds.)

(iv) $C |= Q((d' \Rightarrow g) \land c')) \iff Q(c')$
References

