Ten men and women got married today: noun coordination and the intersective theory of conjunction

Lucas Champollion
New York University

Final pre-publication version, June 2015.

Abstract

The word *and* can be used both intersectively, as in *John lies and cheats*, and collectively, as in *John and Mary met*. Research has tried to determine which one of these two meanings is basic. Focusing on coordination of nouns (*liar and cheat*), this paper argues that the basic meaning of *and* is intersective. This theory has been successfully applied to coordination of other kinds of constituents (*Partee & Rooth, 1983; Winter, 2001*). Certain cases of noun coordination (*men and women*) challenge this view and have therefore been argued to favor the collective theory (*Heycock & Zamparelli, 2005*). The main result of this paper is that the intersective theory actually predicts the collective behavior of *and* in *men and women*. *And* leads to collectivity by interacting with silent operators involving set minimization and choice functions, which have been postulated to account for phenomena involving indefinites, collective predicates, and coordinations of noun phrases (*Winter, 2001*). This paper also shows that the collective theory does not generalize to coordinations of noun phrases in the way it has been previously suggested.

Keywords: coordination, plurals, collectivity, distributivity, choice functions, numerals, type shifting, boolean semantics, hydas

1 Introduction: How to deal with liars and cheats

The word *and* can be used both intersectively, as in the sentences in (1), and collectively, as in the sentences in (2). This paper focuses on conjunctive coordination of English nouns, where the same pattern can be observed. For example, sentences (1a) and (1b) both talk about a person in the intersection of the sets denoted by the predicates *liar* and *cheat*, while sentences (2a) and (2b) both talk about a collective entity formed by a male and a female person.

(1)
a. John *lies and cheats*.

(b. That *liar and cheat* can not be trusted.

(2)
a. John and Mary met in the park last night.

 (b. A *man and woman* met in the park last night.

Conjunction of plural nouns shows similar behavior, as the following examples illustrate (Heycock & Zamparelli, 2005). For example, sentence (3) is about two people, each of whom is both a friend and a colleague of mine, while sentence (4) is about a collective entity formed by a number of men and a number of women.

(3) My two friends and colleagues wrote their paper together. (intersective)
(4) Ten men and women got married today in San Pietro. (collective)

In some cases, a given sentence can be ambiguous between an “intersective” and a “collective” reading. Heycock & Zamparelli call the former a joint and the latter a split reading. For example, sentence (5) below can either be understood as making a narrow claim about every linguist-philosopher – the joint reading – or as making a claim about every linguist and every philosopher – the split reading (Winter, 1998, ch. 8).

(5) Every linguist and philosopher knows the Gödel Theorem.
 a. Everyone who is both a linguist and a philosopher knows the Gödel Theorem.
 b. Every linguist knows the Gödel Theorem, and every philosopher knows the Gödel Theorem.

While in upward entailing contexts, the intersective reading entails the collective reading, in this case it is the opposite. This shows that the two readings are separate and that each needs to be treated in its own right.

A major theme in research on coordination has been the quest for a lexical entry that unifies these two uses of and. This amounts to determining whether the basic meaning of and is related to intersection, or whether it is related to formation of collective individuals. I will refer to the first view as the intersective theory and to the second view as the collective theory. An overview of relevant issues in the syntax and semantics of coordination is provided in Zamparelli (2011).

The intersective theory has been developed in several places (von Stechow, 1974; Gazdar, 1980; Partee & Rooth, 1983; Keenan & Faltz, 1985). This theory immediately accounts for the intersective behavior of and, as in (1) and (3). For example, the coordination in (1b) is a case of predicate intersection: the set denoted by liar and cheat is the intersection of the sets denoted by liar and by cheat.

The collective theory is adopted, for example, by Krifka (1990), by Lasersohn (1995, ch. 14) and by Heycock & Zamparelli (2005). This theory immediately accounts for the collective behavior of and, as in (2) and (4). For example, the coordination in (2a) involves grouping John and Mary together into a collective individual.

Many authors refer to the intersective theory as boolean conjunction and to the collective theory as non-boolean conjunction. This is presumably due to the fact that in many systems there is a close connection between intersection and the meet operation, particularly in boolean algebras (Keenan & Faltz, 1985, part 1A). However, there are proposals in which and denotes a meet operation that is not limited to boolean models (e.g. Barker, 2010). Additionally, the collective theory is often couched in terms of classical extensional mereology, whose models are isomorphic to complete boolean algebras with the bottom element removed (Tarski, 1935; Pontow & Schubert, 2006; Champollion & Krifka, to appear). So the connection between the term pairs “boolean”/“non-boolean” and “intersective”/“collective” is not straightforward. For this reason, I will continue to call the first two theories “intersective” and “collective” rather than “boolean” and “non-boolean”.

One of the goals of theories of coordination is to pinpoint the common semantic core
of different kinds of conjunction. Some authors assume that there are two lexical entries for and (Link, 1983, 1984; Hoeksema, 1988; Le Bruyn & de Swart, 2014). I will call this the ambiguity theory. On this view, the intersective and the collective use of and correspond to different meanings of the word. The ambiguity theory has nothing to say about the intuitive connection between the two uses (though see Le Bruyn & de Swart (2014) for a different view). Furthermore, it does not capture the way these uses are tied together across languages. English uses the same word for intersective and collective conjunction and another word for disjunction. Typologically speaking, this situation appears to be typical in two respects. First, many languages are like English in that they use one and the same marker to represent conjunction of noun phrases (where collectivity effects can occur) and clausal conjunction (which is represented intersectively in most theories). This is the only type of language found in Europe and Mesoamerica, and while it is not the only widespread type, it is also well-represented in the rest of the world (Haspelmath, 2013). Second, it seems that typically languages represent conjunction and disjunction with different markers, the way English does (though exceptions exist, see Ohori, 2004; Davidson, 2013; Bowler, 2014). Extrapolating from these patterns requires us to ignore the fact that not all noun phrase conjunctions are collective, so our conclusions have to be tentative. With that said, these patterns do seem to suggest that intersective and collective conjunction are more closely related to each other than either one of them is related to disjunction. The ambiguity theory does not lead us to expect this connection (Winter, 2001, ch. 2). For example, on the ambiguity theory one might in principle expect to find languages with a coordination marker that can be used to form collective individuals but that otherwise has the meaning of a disjunction, and with a separate coordination marker that is reserved for intersective conjunction.

Once we set the ambiguity theory aside, the only two options that remain are the intersective theory and the collective theory. Whichever one is adopted immediately accounts for one half of the empirical picture, and the challenge then consists in explaining the other half.

The purpose of this paper is to argue for the intersective theory, that is, for the view that and invariably denotes intersection. The main result of this paper is that the intersective theory actually predicts the collective behavior of and. It does this due to the way that the intersective meaning of and interacts with certain silent operators involving set minimization and choice functions. These operators are believed to be present in the grammar on the basis of phenomena involving indefinites and collective predicates, and they have been argued to cause collective interpretations in coordinations of noun phrases including generalized quantifiers (Winter, 2001, ch. 2). The paper also shows that the collective theory leads to problems when we try to adopt it to precisely the case in which the intersective theory has the fewest problems, namely coordination of generalized quantifiers.

In a nutshell, I will argue that coordinations like man and woman are interpreted collectively because the two nouns are interpreted in the same way as the two noun phrases that are conjoined in the coordinated noun phrase a man and a woman. This does not mean that, syntactically speaking, man and woman in (2b) is a noun phrase or a conjunction of noun phrases. (I use “noun phrase” to refer to what is called DP in theories like Abney (1987) and NP in other theories. In theories like Abney’s, NP stands for nominals, that is, noun phrases without their determiners.) Rather, man and woman is a conjunction of nominals and is therefore itself a nominal. So even though at one point in the derivation of man and woman, it has the same meaning as a man and a woman, the two constituents have different syntactic status.

While the focus of this paper is not on the distribution of the silent operators that lead to the collective behavior of and, the present proposal is compatible with the view that their
distribution is constrained by syntax, following Winter (2001, ch. 4). An alternative is to regard
them as semantic composition rules akin to type shifters that are invisible to the syntactic
component of the grammar. For an accessible discussion of the difference between the two
perspectives and some putative psycholinguistic and neurolinguistic correlates, see Pylkkänen
(2008).

The paper proceeds as follows. For the purpose of exposition, I start in Section 2 with the
case of coordination of singular nouns, as in man and woman. I introduce the main silent
operators of the paper and show how to apply them to a coordination of two singular nouns
denoting disjoint sets: man and woman. These silent operators shift each of these nouns to a
generalized existential quantifier, intersect them, and eliminate non-minimal elements from the
result. At this point the conjunction denotes the set of all man-woman pairs. I argue that these
silent operators can be shown to be part of the interpretive process for reasons independent of
noun-noun coordination. For ease of exposition, I delay this justification until Section 3. When
the two nouns denote non-disjoint sets, as in doctor and lawyer, the generalized-quantifier
approach needs to be supplemented with a way to fix the two individuals independently of
each other. This is done in Section 4, by means of choice functions. The next step in the
development of the analysis, in Section 5, consists in accounting for the collective behavior
of plural nouns, as in the title of this paper (Ten men and women got married today). The
relationship between and and or on the present account is dealt with in Section 6, where the
typological facts discussed above are also explained. Section 7 compares the current account
with previous work. First, I focus on the implementation of the collective theory in Heycock
& Zamparelli (2005). I show that in contrast to what Heycock & Zamparelli suggest, their
implementation does not generalize to coordinations of noun phrases in the way they intend it
to. Section 7 also discusses the account of Winter (1998), who gives a pair-forming denotation
to and, in a similar way to alternative semantic treatments of or which have been developed
since then. I summarize the main results of the paper in Section 8 and suggest avenues for
further research.

2 Man and woman: the last obstacle to intersective coor-
dination

This section presents the basic idea of the analysis in this paper. My general strategy consists
in assuming that and has just one lexical entry, which is intersective. I derive the intersective/collective ambiguity from the optional presence of silent operators, rather than from a
lexical ambiguity of and. On the view advocated here, all sentences with noun-noun coordina-
tion are in principle structurally ambiguous depending on whether or not they contain these
silent operators, but this ambiguity only shows up in certain cases like the Gödel sentence in (5).
In most cases, only one of the readings will surface, due to world knowledge and plausibility
considerations. For example, sentences involving the coordination man and woman lack the
intersective reading because nobody is both a man and a woman (genderqueer people aside).
I will make the simplifying assumption that man and woman denote disjoint sets. This will
simplify the presentation of the theory. Nouns that denote overlapping sets will be the topic
of Section 4.
2.1 The meaning of man and woman

In this subsection I show that man and woman must be able to mean more or less the same thing as man-woman pair. More precisely, it must be able to be interpreted as the predicate that holds of any plurality consisting of a man and a woman. I will do this by using the following sentence, which contains a relative clause headed by a coordinative construction.

(6) A man and woman who dated met in the park. (Link, 1984)

Such constructions were described by Perlmutter & Ross (1970) under the name of relative clauses with split antecedents, and independently by Link (1984), who named them hydas, after the mythological multiple-headed creatures. In (6), the relative clause who dated is a hydra because it is headed by the noun-noun coordination man and woman.

Relative clauses with subject extraction sites are synonymous with the predicates in them; for details and a theory that ensures this, see for example Heim & Kratzer (1998, ch. 5):

(7) [who dated] = [dated]

Relative clauses in general are assumed to be intersective modifiers of their heads, and they are known to modify nominals (NPs) rather than noun phrases (DPs) (Partee, 1975). In this case, for example, the hydra who dated syntactically modifies the nominal man and woman, rather than a man and woman, which is not a constituent in this sentence. Given these assumptions, the semantics of the nominal in (6) must essentially be computed as follows:

(8) [man and woman who dated] = [man and woman] ∩ [(who) dated]

The relative clause who dated denotes a collective predicate. So we know that its denotation must be a predicate of collective individuals, namely, couples who dated. From this and (8), it follows that the nominal man and woman also denotes a property of collective individuals. In other words, man and woman means roughly the same thing as man-woman pair. This is important, because as we will see, some theories fail to assign it this meaning.

A similar argument for the claim that man and woman denotes the property of being a man-woman pair can be made from noun phrases like the following, as observed by Heycock & Zamparelli (2005):

(9) a. that ill-matched man and woman (≠ that ill-matched man and ill-matched woman)
b. that mutually incompatible man and woman (≠ that mutually incompatible man and mutually incompatible woman)

I assume that any collection of individuals constitutes a plural entity (Link, 1983). In this paper, I represent plural entities as nonempty sets (e.g. Bennett, 1974; Winter, 2001, ch. 2). I represent the denotation of man and woman as the predicate that holds of any set consisting of a man and a woman:

(10) [man and woman] = λP ∈ P ∃x∃y[man(x) ∧ woman(y) ∧ P = {x, y}]

From here on, I will abbreviate this collective predicate as mw-pair.

At this point, you might think that the collective theory has a clear advantage, since it is easy in that theory to let man and woman denote the property mw-pair. For example, the following two lines implement the collective theory and deliver the meaning in (10) for man and woman.
Collective Formation:
\[[\text{and}_{col}] = \lambda P_{ct} \lambda Q_{ct} \lambda X_{ct} \exists y \exists z [P(y) \land Q(z) \land X = \{y\} \cup \{z\}] \]

These two lines have the effect that a predicate \(P \) and \(Q \) holds of a collective entity \(X \) iff \(X \) consists of two (possibly identical) entities \(y \) and \(z \), such that \(P(y) \) and \(Q(z) \) hold. For example, when this entry is applied to \(\text{man} \) and \(\text{woman} \), it returns the set of all collective individuals consisting of a man and a woman. Indeed, Link (1984) applies a mereological equivalent of this entry to the hydra constructions he describes, such as the one in (6).

If noun-noun conjunction was the only kind of conjunction we have to model, we could stop here and adopt the collective theory. Instead, in the rest of this section I develop and motivate the intersective theory, in part because I want to show that it can be done even for cases like \(\text{man and woman} \), and in part because the collective theory comes with its own problems. The case against the collective theory is based on conjunctions of noun phrases, and it is laid out in a later part of the paper, Section 7.

2.2 How to derive the meaning of \(\text{man and woman} \)

In this subsection, I show that it is possible to derive the set \(\text{mw-pair} \) as the meaning of \(\text{man and woman} \) while assuming that \(\text{and} \) denotes intersection. This might perhaps be surprising. After all, the intersection of the set of men and the set of women is empty. Hence, I will let go of the implicit assumption that it is these sets that are intersected.

There are three steps to the account I will present. I call them \(\text{Raising}, \text{Intersection}, \) and \(\text{Minimization} \). In the first step, \(\text{Raising} \), we convert the set of men into the set of all the sets that contain a man and possibly other entities. We do the same thing with the set of women and obtain the set of all the sets that contain a woman and possibly other entities. The type of the output of this step is higher than the type of its input. That is why I call it \(\text{Raising} \). In the second step, \(\text{Intersection} \), we intersect the two sets that Raising gave us. This yields the set of all those sets that contain a man, a woman, and possibly other entities. The third and last step, \(\text{Minimization} \), eliminates those sets that actually contain other entities. What remains is the set I have called \(\text{mw-pair} \). Each of its elements is a two-element set that consists of a man and a woman.

I will now lay out in a bit more detail the account I just sketched. In the next subsection I will provide independent motivation for each of the three steps by pointing out other semantic domains where they also show up. Some of these domains involve conjunction of constituents other than nouns, and others involve phenomena that are completely unrelated to conjunction.

The first step, \(\text{Raising} \), can be implemented in different ways. One way is the following: when applied to the set of men, generate the set of all the sets whose intersection with the set of men is nonempty. I will call this \(\text{Existential Raising} \), since one can find out if an intersection is nonempty by checking if there exists an entity in it. Another way to implement \(\text{Raising} \) is as follows: When applied to the set of men, choose one of them according to a predetermined way of choosing men, and generate the set of all the sets that contain him. I will call this \(\text{Choice Raising} \). This “way of choosing men” can be thought of as a choice function, that is, a function that maps any nonempty set to one of its elements. Choice functions have long played an important role in semantic accounts of indefinites (e.g. Reinhart, 1997; Winter, 1997).

Existential Raising and Choice Raising will sometimes lead to different results, and this will be important later on. Existential Raising gives us the set of all sets that contain some man or other. Choice Raising asks us to choose a man and then gives us all the sets that contain the man we have chosen. It turns out that for simple sentences the difference between the two
implementations is immaterial, and for presentational purposes I will first use Existential Raising, since it is simpler. The following operator implements Existential Raising. It corresponds to the treatment of a/an in Montague (1973), which inspired the operator A in Partee (1987), called E in Winter (2001, p. 53). I will abbreviate Existential Raising as ER. Choice Raising can be thought of as a generalization of ER, and I will come back to it in Section 4.1. In the following, τ is a variable that ranges over arbitrary types, but it is useful to think of it as the type e of individuals for now. I will switch freely between set notation and predicate notation. For example, I treat $x \in P$ as interchangeable with $P(x)$.

12. **Existential raising:**
\[
\text{ER} = \lambda P_{\tau t}. \lambda Q_{\tau t}. \exists x_{\tau t} [x \in (P \cap Q)]
\]

When existential raising is applied to the set of men, it returns (the characteristic function of) the set of all sets that contain some man or other:

13. \[
\text{ER(\text{man})} = \lambda P. \exists x [\text{man}(x) \land P(x)]
\]

The second step, Intersection, is at the heart of the intersective theory of conjunction (e.g. Partee & Rooth, 1983). I will call it INT. The following formulation of Intersection makes its connection with conjunction clear. Again, think of τ as the type e of individuals.

14. **Intersection:**
\[
\text{INT} = \lambda P_{\tau t}. \lambda Q_{\tau t}. \lambda x_{\tau t}. (x \in P) \land (x \in Q)
\]

As long as we allow ourselves to switch freely back and forth between sets and their characteristic functions, Intersection can be given the following equivalent alternative formulation, which shows its connection to set-theoretic intersection more clearly:

15. **Intersection (alternative formulation):**
\[
\text{INT} = \lambda P_{\tau t}. \lambda Q_{\tau t}. P \cap Q
\]

The intersective theory of conjunction can then be stated simply as follows:

16. **Intersective theory of and:**
\[
[\text{and}] = [\text{INT}]
\]

This is a simplified view on the intersective theory. It only works for categories of type τt, where τ is any type. It can, however, be generalized to arbitrary conjoinable types (that is, types that “end in t”) as in the recursive definition (17), from which (16) can be shown to follow as a special case. For details on this approach, see for example Partee & Rooth (1983).

17. \[
[\text{and}]_{(\tau,\tau\tau)} = \begin{cases}
\wedge(t,t) & \text{if } \tau = t \\
\lambda X_{\tau t}. \lambda Y_{\tau t}. \lambda Z_{\tau \sigma_1}. X(Z) [\text{and}]_{(\sigma_2,\sigma_2)} Y(Z) & \text{if } \tau = (\sigma_1, \sigma_2)
\end{cases}
\]

When we use Intersection in order to combine the denotation of $\text{ER(\text{man})}$ with that of $\text{ER(\text{woman})}$, we get the set of all those sets that contain both a man and a woman. This is shown here:

18. \[
\text{ER(\text{man}) and ER(\text{woman})}
\]
 a. \[
 = [\text{INT}(\text{ER(\text{man}))}(\text{ER(\text{woman}))}]
 \]
 b. \[
 = [\lambda P. \exists x [\text{\text{man}}(x) \land P(x)]] \cap [\lambda P. \exists y [\text{\text{woman}}(y) \land P(y)]]
 \]
 c. \[
 = \lambda P. \exists x \exists y [\text{man}(x) \land \text{woman}(y) \land P(x) \land P(y)]
 \]
While every set in (18c) contains a man and a woman, most of these sets also contain many other entities. However, the sets we are interested in are precisely the minimal sets in (18c). The third and final step, Minimization, is what gives us these sets (Winter, 2001, p. 53). Here as before, it is useful to think of τ as the type e of individuals. I give Minimization in two logically equivalent formulations here. The first one, (19a), is essentially Winter’s formulation; I will use (19b) in this paper because I find it more intuitive and succinct.

\[(19) \quad \text{Minimization: } [\text{MIN}] \quad (\text{Winter, 2001, p. 53})\]

\[
\begin{align*}
&a. \quad = \lambda Q(\tau,t) . \lambda P_\tau. P \in Q \land \forall P'[(P' \in Q \land P' \subseteq P) \Rightarrow P' = P] \\
&b. \quad = \lambda Q(\tau,t) . \lambda P_\tau. P \in Q \land \forall P'[(P' \subset P \Rightarrow \neg(P' \in Q)]
\end{align*}
\]

We can distill any set into the set of its minimal subsets by the Minimization operator. It is useful to realize that although Minimization can be used to map predicates of type $\langle et, t \rangle$ to other predicates of type $\langle et, t \rangle$, the two kinds of predicates differ conceptually. The former are best thought of as generalized quantifiers, and the latter are best thought of as predicates of collective individuals. This “predicate-quantifier flexibility” is one of the central themes in Winter (2001, ch. 4).

Now, when we apply Minimization to the set in (18c), we get the set that contains all those sets that consist of just a man and a woman and nothing more than that:

\[(20) \quad [\text{MIN}(\text{ER(man) and ER(woman)})] \]

\[
\begin{align*}
&a. \quad = [\text{MIN}](\lambda P . \exists x \exists y [\text{man}(x) \land \text{woman}(y) \land P(x) \land P(y)]) \\
b. \quad = \lambda P . \exists x \exists y [\text{man}(x) \land \text{woman}(y) \land P(x) \land P(y) \\
&\quad \land \forall P'[P' \subset P \Rightarrow \neg \exists x \exists y [\text{man}(x) \land \text{woman}(y) \land P'(x) \land P'(y)]) \\
c. \quad = \lambda P . \exists x \exists y [\text{man}(x) \land \text{woman}(y) \land P = \{x, y\}]
\end{align*}
\]

This is the same set as the one in (10), which was what I called mw-pair. Thus, we have now successfully derived the meaning of man and woman.

2.3 How to use the meaning of man and woman in context

In this subsection I show how to use the predicate denoted by man and woman in context. Specifically, we will look at two simple derivations. One of them involves collective predication, and the other one involves distributive predication. There will be nothing special in the way man and woman is used in these derivations. This is as it should be, because man and woman can essentially be used in the same places and with more or less the same meaning as expressions like man-woman pair. Therefore the way in which any one of these expressions is used should correspond to the way the other ones are used.

First let us analyze the hydra in (6), repeated here as (21).

\[(21) \quad \text{A man and woman who dated met in the park.}\]

Since I have represented collective individuals as sets, I assume that the collective predicates dated and met (in the park) are represented as properties of sets (Winter, 2001, ch. 2):

\[(22) \quad \begin{align*}
&a. \quad [\text{dated}] = \lambda P_{et}. \text{date}(P) \\
b. \quad [\text{met (in the park)}] = \lambda P_{et}. \text{meet}(P)
\end{align*}\]

As already mentioned above, I assume that who dated means the same thing as dated, and that relative clauses are intersective modifiers of their heads. I will also assume, for convenience,
that the determiner \(a \) denotes a relation between two sets of some arbitrary type, so that it can
deal with collective predicates. In other words, \(a \) denotes the same thing as Existential Raising.
A more detailed theory of how determiners interact with collective predicates can be found in
Section 6 and in Winter (2001, ch. 5). It would do just fine here, but I stick to the simpler one
in order to keep the discussion easy to follow.

\[
[a] = \lambda P \tau_1 \lambda Q \tau_1. \exists x_\tau [x \in (P \cap Q)]
\]

We can now put all these assumptions to work and derive a meaning for the hydra:

\[
[a(\text{MIN}(\text{ER}(\text{man}) \text{ and } \text{ER}(\text{woman})) \text{ who dated})(\text{met})]
\]

\[
a. = [a]\{\text{mw-pair} \cap \text{date}\}(\text{met})
\]

\[
b. = [a](\lambda P. \exists x \exists y (\text{man}(x) \land \text{woman}(y) \land P = \{x, y\} \land \text{date}(\{x, y\})))(\text{meet})
\]

\[
c. = \exists P \exists x \exists y (\text{man}(x) \land \text{woman}(y) \land P = \{x, y\} \land \text{date}(\{x, y\}) \land \text{meet}(\{x, y\}))
\]

\[
d. = \exists x \exists y (\text{man}(x) \land \text{woman}(y) \land \text{date}(\{x, y\}) \land \text{meet}(\{x, y\}))
\]

This is true if and only if there is a set consisting of a man and a woman, and nothing else,
and that set is in the denotations of \textit{dated} and of \textit{met}. These are the right truth conditions.

At this point, we have seen how to derive the meaning of the nominal \textit{man and woman}
and how to use it in a sentence that involves collective predication. Now let us see how it can
be used in a sentence that involves distributive predication, such as the following:

\[
\text{A man and woman had a beer.}
\]

On its distributive interpretation, sentence (25) entails the following:

\[
\text{A man had a beer and a woman had a beer.}
\]

This suggests that the predicate \text{had a beer} applies separately to the man in question and to
the woman in question. It is common to assume that this is due to a silent distributivity operator
that can be paraphrased as “each” and that shifts a predicate like \text{have a beer} into its distributive
interpretation (e.g. Link, 1991). I will refer to this operator as \text{Predicate Distributivity} and I will
call it PDIST. In the present setup, where pluralities are modeled as sets, this operator can be
thought of as powerset formation, except that we do not need to keep the empty set around so
we will remove it (Winter, 2001, p. 209). Predicate Distributivity can be represented as follows:

\[
\text{Predicate Distributivity}:
\]

\[\text{PDIST} = \lambda P \tau_1. \lambda P' \tau_1. P \neq \emptyset \land P \subseteq P'\]

For example, the verb phrase \text{have a beer} can be shifted as follows:

\[
\text{PDIST(\text{have a beer})} = \lambda x. \exists y (\text{beer}(y) \land \text{have}(x, y))
\]

This shifted predicate holds of a set just in case it is nonempty and each of its members had a
beer. This predicate can now be combined with \text{man and woman} as above:

\[
[a(\text{MIN}(\text{ER}(\text{man}) \text{ and } \text{ER}(\text{woman})))(\text{PDIST(\text{had a beer}))}]
\]

\[
a. = [a]\{\text{mw-pair}\}(\text{PDIST}(\text{\text{had a beer}}))
\]

\[
b. = [a](\lambda P. \exists x \exists y (\text{man}(x) \land \text{woman}(y) \land P = \{x, y\}))(\text{PDIST(\text{had a beer}))}
\]

\[
c. = [a](\lambda P. \exists x \exists y (\text{man}(x) \land \text{woman}(y) \land P = \{x, y\}))
\]
\[(\lambda P_{et}. P \neq \emptyset \land P \subseteq \{\text{had a beer}\})\]

d. = \exists P \exists x \exists y [\text{man}(x) \land \text{woman}(y) \land \{x, y\} \subseteq \{\text{had a beer}\}]

e. = \exists x \exists y [\text{man}(x) \land \text{woman}(y) \land \lambda x' \exists z [\text{beer}(z) \land \text{have}(x', z)]]

f. = \exists x \exists y [\text{man}(x) \land \text{woman}(y) \land \exists z [\text{beer}(z) \land \text{have}(x, z) \land \exists z' [\text{beer}(z') \land \text{have}(y, z')]]]

These truth conditions can be paraphrased as “There are a man and a woman who each had a beer.” This is what we want.

To summarize this section, I have argued in Section 2.1 that man and woman denotes the set of all sets that consist of a man and a woman. Section 2.2 has shown that this set can be derived despite adopting the intersective theory of and, via the three operations Raising, Intersection, and Minimization. Raising converts man and woman to generalized quantifiers, Intersection combines them in a way that conforms to the intersective theory of and, and Minimization turns the result into the set of all sets that consist of a man and a woman. In Section 2.3 I have shown how to use this meaning in connection with collective predicates and with distributive predicates. All of this came at a price: I have used silent operators that would not be needed on the collective theory. As I have discussed at the end of Section 2.1, the collective theory does not rely on the Raising or Minimization operators. The next section therefore provides evidence for these silent operators.

3 Justifying the silent operators

This section offers motivation for the assumption that the interpretive process contains the three operators Raising, Intersection, and Minimization that I have introduced in Section 2. In each case, the evidence I offer is independent from noun-noun coordination. As stated before, I take Raising and Minimization to be silent. I take Intersection to be the meaning of and, since this is the main claim I defend in this paper. (I have introduced one more operator, Predicate Distributivity or PDIST. This operator does not need to be justified, because so far it occurs only outside of coordination constructions, and it is needed no matter whether one adopts the intersective or the collective theory.)

3.1 Evidence for Raising

In this subsection I review the evidence for the presence of the Existential Raising operator in the grammar. The definition of this operator is repeated here:

\[(\text{ER}) = (\lambda P_{et}. \lambda Q_{et}. \exists x \in (P \cap Q))\]

The idea of a silent operator that lifts its restrictor into an existential quantifier has a long tradition. There are many places in which Existential Raising or a similar operation has been claimed to be at work.

First, the existential interpretation of bare plurals, as in Dogs are barking outside right now, is often analyzed as the result of a type shifter that is similar to Existential Raising. The basic idea is that in such sentences, the bare plural dogs is not interpreted as a predicate that holds of pluralities of dogs, but as the generalized quantifier some dogs, where some is silent and corresponds to Existential Raising. Examples of analyses that use such type shifters include Carpenter (1997, ch. 8) and Krifka (2004). A related and influential analysis is Chierchia (1998). This system uses a special operation called Derived Kind Predication which combines a shift
from kinds to properties with a Raising-like operation on these properties. Therefore, this operation is somewhat more involved than Existential Raising. For a useful overview of what Chierchia’s and Krifka’s accounts have in common and how they differ, see Cohen (2007).

Second, as I have mentioned before, Existential Raising is the meaning that is traditionally assigned to the English indefinite article a (Montague, 1973; Barwise & Cooper, 1981). From that point of view, languages that do not pronounce the indefinite article, such as Hebrew, can be argued to provide motivation for a silent version of Existential Raising (Winter, 2001, p. 138).

Third, indefinite noun phrases in English can form intersective conjunctions with adjective phrases (31a). On the intersective theory of and, it is often assumed that only constituents of the same type can be conjoined. This assumption was explicitly encoded in (17). On that basis, given that adjective phrases like competent in semantics denote predicates, so do indefinite noun phrases like an authority on unicorns. But when indefinite noun phrases are used in argument positions as in (31b), they are often assumed to denote generalized quantifiers. For this reason it has been suggested that indefinite noun phrases can be shifted from predicate to quantifier type using Existential Raising (Partee, 1987).

(31) a. Mary considers John competent in semantics and an authority on unicorns.
 b. An authority on unicorns walked in.

Fourth, noun phrases like three boys are often analyzed as predicates of pluralities, since this explains their ability to license collective readings and to occur in predicative positions (e.g. Verkuyl, 1981; Link, 1987). But in argument position, such noun phrases are often assumed to be interpreted as generalized quantifiers (Barwise & Cooper, 1981). The gap between these two kinds of theories is often bridged by assuming that the predicative meaning can be mapped to its generalized quantifier meaning by a silent determiner or other operation whose meaning amounts to Existential Raising. More recently, this line of analysis has even been extended to modified numerals like exactly three boys (Krifka, 1999; Landman, 2000; Brasoveanu, 2012). I will also adopt this predicative analysis in this paper, but it will not become relevant until I talk about plural nouns in Section 5.2.

Fifth, predicates that result from conjoining indefinites in predicative position can result in intersective as well as in collective interpretations. For example, (32a) can be considered to have an intersective interpretation and (32b), a collective one.

(32) a. Mary is an author and a teacher.
 b. These two women are an author and a teacher.

The split interpretation of an author and a teacher has been argued to result from a category shifting principle that corresponds to Raising and that turns predicates into quantifiers (Winter, 2001, ch. 4). The analysis in question is very similar to the present one. The predicates an author and a teacher are both mapped to generalized quantifiers via Raising. These generalized quantifiers are then combined via Intersection.

Lastly, in order to adequately capture the interaction of Neo-Davidsonian event semantics with verb phrase conjunction as well as with quantification and negation, I have elsewhere suggested that it is desirable to shift the basic denotations of verbs from event predicates to existential quantifiers before anything else happens to them (Champollion, 2015). The process by which this is done can be thought of as an application of Existential Raising to the lexical entry of each verb.

In Section 4.1, I provide more evidence for Raising. As I point out there, one can think
of it as a generalization of choice-functional operators, which have been used to account for the exceptional scope properties of indefinites (Reinhart, 1997). Because choice-functional operators are generally taken to apply to nouns, it is a natural assumption that Raising applies to nouns as well, as I am doing here. My formulation of Existential Raising does not make the choice functions explicit. At this preliminary stage in the analysis, this does not matter. Later on, I will generalize Existential Raising to Choice Raising. That implementation contains an explicit choice function variable, which can be bound at a higher place than it is introduced. Winter develops his analysis in a similar way and talks about the E/CF mechanism, where E is Existential Raising, and CF stands for choice function (Winter, 2001, p. 147).

3.2 Evidence for Intersection

In this subsection, I briefly review evidence for my assumption that intersection is an accurate representation of the meaning of *and* in cases other than noun-noun coordination. My assumption embodies the intersective theory of *and*, which has been proposed in a number of places, as mentioned before (von Stechow, 1974; Gazdar, 1980; Partee & Rooth, 1983; Winter, 2001, ch. 2).

The intersective theory of *and*, slightly simplified for the present purpose, is repeated here: \[\text{Intersection:} \quad [\text{and}] = \lambda P_{\tau _1} . \lambda Q_{\tau _1} . \lambda x_{\tau _1} . x \in P \land x \in Q \]

The intersective theory assumes that *and* always combines with two constituents and intersects them in some way. In the case of sentential coordination, if one adopts an extensional framework as I do here, one way to do this is to identify falsity with the empty set, and truth with some other set S, as in von Neumann arithmetic. Then conjunction of truth values can be modeled as intersection (Gazdar, 1980). That is, the conjunction of a true and a false sentence amounts to intersecting S with the empty set, and this gives us the empty set. The conjunction of two true sentences amounts to intersecting S with itself, and this gives us S. And conjoining two false sentences amounts to intersecting the empty set with itself, which gives us the empty set.

The intersective theory of conjunction also works well in the case of conjunction of verb phrases, assuming they denote properties of individuals. For example, in the absence of any of the operators I have discussed, it predicts that *sang and danced* denotes the intersection of the set of singers with the set of dancers. Assume that noun phrases are interpreted as generalized quantifiers in the style of Montague (1973) and Barwise & Cooper (1981). Then the two sentences in (34) are correctly predicted to be equivalent when noun phrases like *every woman, Mary, or John and Mary* are inserted, and to be nonequivalent when noun phrases like *some woman, no woman, Mary or John, neither Mary nor John, exactly one woman* and so on are inserted. For more details, see for example Winter (2001, p. 9).

\[(34) \quad \text{a. DP sang and danced.} \quad \text{b. DP sang and DP danced.}\]

One of the noun phrases I mentioned, *John and Mary*, involves conjunction of noun phrases. I should mention how they are treated on the intersective theory. If proper names are taken to denote ordinary individuals, they cannot be intersected unless we first shift them to another type. One way to do this is the operator LIFT defined in (35). This operator is sometimes called the "Montague lift". It maps an individual to the set of all the sets that contain this individual.
(e.g. Montague, 1970; Partee & Rooth, 1983). Such sets can then be intersected. For example, John and Mary ends up denoting the set of all those sets that contain both John and Mary.

\[
\text{(Montague lift:)}
\]

\[\text{[LIFT]} = \lambda x, \lambda P_{x}. P(x)\]

Evidence for LIFT comes from the ability to conjoin quantificational and nonquantificational noun phrases, as in John and every woman, again on the assumption that and can only conjoin categories of the same type (Keenan & Faltz, 1985, part 1A).

The smoothness of the interaction between the intersective theory of and and generalized quantifier theory is one of the strengths of these systems. This has been recognized for a long time, but it is worth pointing it out here because, as we will see in Section 7.1, interaction with generalized quantifiers is one of the greatest challenges for the collective theory of and.

3.3 Evidence for Minimization

In this subsection, I provide evidence for the operator I have called Minimization, repeated here:

\[
\text{(Minimization:)}
\]

\[\text{[MIN]} = \lambda Q_{(\tau, t)}. \lambda P_{\tau t}. P \in Q \land \forall P'[P' \subset P \rightarrow \neg(P' \in Q)]\]

The intersective theory faces a challenge when it comes to modeling the collectivity effect in sentences like (37), repeated here from (2a):

\[\text{John and Mary met in the park last night.}\]

This is because the conjunction of the generalized quantifiers that are obtained by Montague lifting the two constants corresponding to John and Mary is the following predicate:

\[\text{[John and Mary]} = [\lambda P. P(j)] \cap [\lambda P. P(m)]\]

Expressed in terms of sets, this corresponds to the following set:

\[\text{[John and Mary]} = \{P \mid j \in P\} \cap \{P \mid m \in P\} = \{P \mid j \in P \land m \in P\}\]

Let us refer to subsets of the domain as properties. Then this set contains all properties P such that P holds both of John and of Mary. The problem is that the property denoted by met in the park last night does not hold of John, nor of Mary: It is a collective predicate. Otherwise, (37) would entail that John met in the park last night and that Mary did too.

An extension of the intersective theory of and to such cases is proposed by Winter (2001, ch. 2). This extension relies on the insight that one can use the Minimization operator to “distill” any intersection or union of the Montague lifts of some individuals into a set of sets of these individuals. The result of applying Minimization to the set in (39) is the set \{\{j, m\}\}, a singleton set whose only member is a two-element set. We can now view this set as the property of being the collective individual consisting of John and Mary. I will assume that this collective individual, and others like it as needed, are in the domain.

The other property involved in sentence (37) is denoted by the verb phrase. This property holds of any set S just in case S met in the park last night. The meaning of (37) can then be obtained by combining these two properties via Existential Raising, in a similar way to the silent determiners I discussed in Section 3.1.
Given these assumptions, Winter analyses the subject of sentence (37) as in (40), a property which is true of any set that contains the collective individual consisting of John and Mary. This gives the right truth conditions once it combines with the verb phrase. The sentence is predicted to be true just in case the set consisting of John and Mary is in the extension of the predicate meet in the park last night. Winter’s derivation is as follows (I abbreviate the verb phrase as meet):

\[
(40) \quad [\text{ER}(\text{MIN}(\text{LIFT}(\text{john}) \text{ and } \text{LIFT}(\text{mary})))\text{(meet)}]
\]

\[
\begin{align*}
\text{a.} & = [\text{ER}([\text{MIN}([\lambda P.P(j)] \cap [\lambda P.P(m)])]\text{(meet}) \\
\text{b.} & = [\text{ER}([\text{MIN}([\lambda P.P(j) \wedge P(m)])]\text{(meet}) \\
\text{c.} & = [\text{ER}([\{\{j, m\}\}]\text{(meet}) \\
\text{d.} & = (\lambda C_{(et, t)}.\lambda C'_{(et, t)}.\exists X_{et}[X \in C \land X \in C'])(\{\{j, m\}\})\text{(meet}) \\
\text{e.} & = (\lambda C_{(et, t)}.\{j, m\} \in C)\text{(meet}) \\
\text{f.} & = \text{meet}(\{j, m\})
\end{align*}
\]

To sum up this section, the theory I have laid out in Section 2 uses elements that have each been used in a variety of contexts within the domain of coordination, and in some cases outside of it. These elements are embodied in the Raising and Minimization operators. The theory recombines these familiar elements in a new way and does not require us to add any new silent operators to the picture. Raising corresponds, among other things, to the way predicative noun phrases are mapped to quantificational denotations in a number of constructions. Minimization corresponds to the way conjunctions of quantificational noun phrases are mapped to predicative denotations.

4 Lawyers, doctors, and other overlappers

In the two previous sections, I have chosen the two nouns man and woman to illustrate the basic framework because they denote (approximately) disjoint sets. This made it easier to present the system. But in the general case, of course we cannot rely on the two nouns being disjoint. This section extends the strategy consisting of Raising, Intersection, and Minimization to conjunctions of overlapping nouns, such as doctor and lawyer. To do so, I will replace Existential Raising by its close relative, which I will call Choice Raising.

Section 4.1 shows that overlapping nouns cannot be dealt with by Existential Raising alone, and draws a parallel to an analogous problem known to occur in conjunctions of noun phrases like John and some man. Section 4.2 reviews and adapts the choice-function based solution of that problem in Winter (2001, ch. 3). Section 4.3 extends that solution to conjunctions of nouns. Section 4.4 shows that the scope of the operators that bind these choice functions needs to be constrained in ways that are familiar from the relevant literature.

4.1 Overlapping nouns and overlapping noun phrases

I start by considering the case of sets that overlap but that do not completely coincide. Assume for example that some but not all doctors are lawyers, and that some but not all lawyers are doctors. For simplicity, let us say that these are the only two professions. Consider now the following sentence:

\[(41) \quad \text{A doctor and lawyer met.} \]
Sentence (41) is true just in case someone who is a doctor met someone else who is a lawyer. When we hear (41), we are not in a position to conclude that either one of these two people has only one job. For all we know it might be that the first-mentioned one is not only a doctor but also a lawyer, or that the other one is not only a lawyer but also a doctor.

The derivations we have seen so far do not account for this. Applying Minimization to the intersection of ER(doctor) and ER(lawyer) returns the set of all sets S with the following three properties: (i) S contains a doctor d; (ii) S contains a lawyer (who may be distinct from d or identical to d); and (iii) S has no proper subset that contains a lawyer and a doctor. Condition (iii) is the contribution of Minimization. Its effect in this case is that there will be two different kinds of sets S: singleton sets containing a doctor-lawyer, and two-element sets that contain a single-profession doctor and a single-profession lawyer. This is a problem, because it predicts that (41) is only true if each of the two people in question belongs to only one profession.

In the extreme case where the two professions coincide, we have $\text{[doctor]} = \text{[lawyer]}$, and Minimization returns a set of singletons. This is even worse than the previous case, because (41) is now predicted to be deviant for the same reason that (42) is: a single individual cannot meet itself.

(42) #John met.

This kind of problem not only occurs in conjunctions of nouns but also in conjunctions of noun phrases (Winter, 2001, p. 68). Imagine that John is a man, and that some man is modeled as a generalized quantifier. Then sentence (43) is wrongly predicted to be deviant.

(43) John and some man met.

The reason is that the singleton set of John fulfills the following conditions: (i) it contains John, and (ii) there is a man that it contains (namely John). Since this set is a subset of any other set that contains John and some man, Minimization eliminates all these other sets from the denotation of the conjoined noun phrase.

To solve this problem, I will appeal to choice functions, following Winter (2001, ch. 3). My adoption of choice functions is in part due to practical considerations. Since I am importing many assumptions and operators from Winter’s framework, it is easier to also import his choice functions than to merge it with another account. Another reason for my choice is the fact that Winter argues for two choice function operators, a nondistributive and a distributive one. Each one of them will play an important role in the following development. In this section, I will use the nondistributive operator to solve the problem of overlap. In the next section, I will use the distributive operator to extend my account from conjunction of singular nouns to conjunction of plural nouns.

One can think of different ways than choice functions to solve these problems. For example, one could exploit the fact that indefinites generally come with a novelty condition on their discourse referents (Heim, 1983). One would then need to explain why the discourse referents of coordinands in intersective readings can be identical while those of coordinands in collective readings must be distinct. Another possibility consists in analyzing the phenomenon as an instance of quantifier domain restriction, which is independently needed in order to explain why (44) does not entail that John shook hands with himself (R. Zamparelli, p.c.).

(44) John and every person in this room shook hands.
4.2 How to deal with overlapping noun phrases

This subsection describes my adaptation of the solution to the problem of overlapping noun phrases offered in Winter (2001, ch. 3). That solution is based on the assumption that some man does not, in fact, denote a generalized quantifier. Winter assumes instead that indefinite determiners like some involve a variable whose value is a choice function, and that this choice function is applied to the complement of some, such as the set of men. For example, in (43), the set of men is mapped to a man. Winter then assumes that this man is Montague lifted in order for and to be able to intersect it with the Montague lift of John. Thus for Winter, indefinites are hybrids of a generalized quantifier and a choice function variable. To interpret the noun phrase in (43), then, we pick a man, Montague lift him to his generalized quantifier, intersect it with the Montague lift of John, and send the result through Minimization, at which point we essentially end up with a singleton set in case we picked John, and with a two-element set in case we picked some man distinct from John. Finally, we existentially quantify over how we picked a man by binding the variable over the choice function that was responsible for picking him.

In effect, this means that we split Raising into two components: a choice function variable that applies to the complement, and a silent operator that binds that variable by an existential quantifier higher up in the tree. In order to distinguish this new way of implementing Raising from what I have called Existential Raising above, I will call it Choice Raising.

Here is an implementation of Choice Raising in the well-known framework of Heim & Kratzer (1998). (Winter himself uses variable-free semantics in the style of Jacobson (1999). The choice between the two frameworks is not essential.) First consider the determiner some. I will define Choice Raising by analogy immediately afterwards. The choice-functional treatment of some, and correspondingly of Raising, consists of two components, one that introduces a choice function variable and another one that existentially binds it. I discuss the two components in turn.

The first component corresponds to the word some itself. We assume that every occurrence of some is indexed with a distinct natural number i. We also assume that the interpretation function is equipped with a variable assignment g, which maps the index of a given occurrence somei to a choice function of type ⟨et, e⟩. We set the interpretation of somei given g, written [somei]g, as in (45). I write λx : φ, ψ for the partial function that is defined whenever φ holds, and that maps x to ψ whenever it is defined. An explanation of the entry follows below.

\[
\begin{align*}
\text{(45)} & \quad \text{[somei]g} = \lambda N_{et} : N \neq \emptyset . \lambda P_{et} . P(g(i)(N)) \\
& \quad \text{where } g(i) \text{ is a choice function of type } \langle et, e \rangle
\end{align*}
\]

I set the interpretation of Choice Raising in the same way. For reference:

\[
\begin{align*}
\text{(46)} & \quad \text{Choice Raising:} \\
& \quad [\text{CR}]^g = \lambda N_{et} : N \neq \emptyset . \lambda P_{et} . P(g(i)(N)) \\
& \quad \text{where } g(i) \text{ is a choice function of type } \langle et, e \rangle
\end{align*}
\]

In words, the interpretation of some, and of Choice Raising given a variable assignment g maps i to a partial function that expects a set of individuals N (typically a singular noun), and is defined whenever that set is nonempty. The restriction to nonempty sets is inherited from Winter’s treatment of choice functions and is independently motivated there (Winter, 2001, p. 110). When defined, that function asks the variable assignment g for the value of i, which is assumed to be a choice function, and lets that choice function choose an individual from the set N. It then returns that individual’s Montague lift, that is, the set of all properties P which
hold of that individual. For example, g might map i to the choice function that maps any set to the tallest individual in that set, and N might be the set containing Laurel (175cm) and Hardy (185cm). In that case $[\text{some}g]$ applied to N would return the set of all properties that Hardy has.

The second component introduces an existential quantifier that binds the operator just defined. I will refer to it as Choice Closure and I will write \exists for it. I assume that for every existential quantifier, including \exists, that is inserted into the LF tree, an index node of type $\langle et, e \rangle$ is inserted right underneath it and is interpreted via the predicate abstraction rule in (47). This strategy goes back at least to Lewis (1970). Here I will adopt a variant of the textbook treatment known as predicate abstraction (cf. Heim & Kratzer, 1998, p. 186). I will represent the index node as an indexed λ symbol.

$$[[\lambda_i \alpha]]^g = \lambda f. [[\alpha]]^{\delta_{i\rightarrow f}}$$

The \exists operator corresponds to the variable-free operator called "Existential Choice Closure" in Winter (2001, p. 131). For the general case I define it as follows:

(47) **Predicate Abstraction:**

$$[\exists] = \lambda A((et,e)，(\alpha_1…\alpha_n,t))· \lambda P_{\alpha_1}…\lambda P_{\alpha_n}· f[Cf(f) \land A(f)(P_1)…(P^n)]$$

Here, CF stands for the predicate that holds of any function f of type $\langle et, e \rangle$ iff it is a choice function, that is, iff for any nonempty set N of type et, we have $f(N) \in N$. The number n stands for the arity of the predicate to which predicate abstraction applies. In the case we are interested in, namely quantificational noun phrases like *John and some man*, we have $n = 1$ since they only expect one predicate (the verb phrase), which is of type et. In that case, (48) simplifies as follows:

(49) **Choice Closure** (when it takes scope at a node of type $\langle et, l \rangle$):

$$[\exists] = \lambda A((et,e)，(et,t))· \lambda P_{et}· f[Cf(f) \land A(f)(P)]$$

For completeness, here is a version of the operator that takes scope at a node of type l, at sentence level for example:

(50) **Choice Closure** (when it takes scope at a node of type l):

$$[\exists] = \lambda A((et,e)，l)· f[Cf(f) \land A(f)]$$

When the first component of Choice Raising, the one defined in (45), occurs in the immediate scope of the predicate abstraction below Choice Closure, the net effect is the same as the Existential Raising operator defined in (12). This is because local existential quantification over individuals amounts to the same as local existential quantification over choice functions, so long as the set from which the choice function chooses is nonempty (Reinhart, 1997). For example, *Some dog barks* is true if and only if there exists a dog that barks, or equivalently, there exists a choice function which, when we apply it to the set of dogs, returns one that barks.

The extra power of Choice Raising, as compared with Existential Raising, comes from the fact that we can give the Choice Closure operator \exists non-local scope. This is motivated from the literature on choice functions. Indeed, the ability of indefinites to take non-local scope was the original motivation for their analysis in terms of choice functions.

This tree for the noun phrase of sentence (43), shown below, conveys the idea. I have omitted the definedness condition $N \neq \emptyset$ to avoid clutter. This restriction to nonempty sets
is vacuous in this example given that John is a man, but it will do real work in other cases. For example, the restriction will make sure that man and woman fails to denote anything in all-male or all-female models.

\[
\lambda P. \exists f [\text{CF}(f) \land P(j) \land P(f(\text{man})) \\
\land \forall P'[P' \subset P \to \neg[P'(j) \land P'(f(\text{man}))]]]
\]

The term at the root of the tree in (51) denotes the set of all properties \(P \) such that there is a way of choosing a man such that \(P \) holds of John and of that man, but of nothing else. Given that John is a man, any such property will either be the singleton of John, or it will be a set of two men, one of which is John. Hence, we can represent the term at the root of the tree more simply as follows:

\[
[[\exists [\lambda_1 [\text{MIN} [\text{John and [some}_1 \text{man}]]]]]]
\]

From now on, in my LFs I will collapse the \(\exists \) operator with lambda abstraction. For example I will write \([\exists \ldots] \) instead of \([\exists [\lambda_1 \ldots] \) This is harmless because I assume that the two always go together, as mentioned above. For example, I will abbreviate the LF in (52) as follows:

\[
[[\exists_1 [\text{MIN} [\text{John and [some}_1 \text{man}]]]]] = \lambda P. \exists x [\text{man}(x) \land P = \{j\} \cup \{x\}]
\]

Given that John is a man, the LF in (53) denotes the set of all those sets that contain either only John, or else John and another man but nothing else. For example, if there are exactly three men, namely John, Bill, and Sam, the LF in (53) will denote the following set:

\[
\{\{j\}, \{j, b\}, \{j, s\}\}
\]

If we want to combine (53) with a verb phrase such as met, we can do so by an application of Existential Raising, as in the analysis of John and Mary met, which was shown in (40). In the same model as above, this results in the following:

\[
[[\text{ER}[\exists_1 [\text{MIN} [\text{John and [some}_1 \text{man}]]]] \text{met}]] = \exists P \in \{\{j\}, \{j, b\}, \{j, s\}\} \cap \text{meet}
\]

In words, this is true if and only if one of the collective individuals in the set (54) is in the set
denoted by *meet*. Since *meet* is collective, the singleton of John will not be contained in the set it denotes. Hence, in the model above, (55) will be true if John and Bill met, and it will be true if John and Sam met, and there are no other possibilities.

As we have seen, there are two applications of Raising in Winter’s analysis of *John and some man met*: one is responsible for the analysis of *some* in the subject, and the other one is responsible for combining the subject with the verb phrase. In procedural terms, giving the existential quantifier over the choice function wide scope makes it possible to delay the choosing of a man until after we have minimized the set of sets containing John and that man.

4.3 Application to *doctor and lawyer*

In this subsection I show how to adapt the analysis of *John and some man met* to the case of *A doctor and lawyer met*. I assume that a silent instance of Choice Raising applies to each of the nouns and delays the choosing of a doctor and the choosing of a lawyer until after minimization has applied. For this purpose, I introduce silent and uniquely indexed operators CRₐ whose meaning is the same as that of the overt indefinite *some*, defined in (45). I assume that these operators are found in adjectival position, just next to the nouns they apply to, replacing and generalizing the ER operators I have used before.

To obtain the denotation of (41), we use the entry for *a* in (23) and the entry for *meet* in (22b), in a way analogous to the analysis of *A man and woman met in the park* in Section 2.3. The LF (41) is as follows:

(56)

This LF evaluates as follows (see below for an explanation; I leave out the nonemptiness conditions for clarity):

(57)

- a. \[\text{CR}_1^g([\text{doctor}]^g) = \lambda P_{et}. P(g(1)(\text{doctor})) \]
- b. \[\text{CR}_2^g([\text{lawyer}]^g) = \lambda P_{et}. P(g(2)(\text{lawyer})) \]
- c. \[\text{and}^g(57a)(57b) = \lambda P_{et}. P(g(1)(\text{doctor})) \land P(g(2)(\text{lawyer})) \]
- d. \[\text{MIN}^g(57c) = \lambda P_{et}. P = \{ g(1)(\text{doctor}) \} \cup \{ g(2)(\text{lawyer}) \} \]
- e. \[\exists_2^g(57d) = \lambda P_{et}. \exists f_2 [\text{CF}(f_2) \land P = \{ g(1)(\text{doctor}) \} \cup \{ f_2(\text{lawyer}) \}] \]
- f. \[\exists_1^g(57e) = \lambda P_{et}. \exists f_1 \exists f_2 [\text{CF}(f_1) \land \text{CF}(f_2) \land P = \{ f_1(\text{doctor}) \} \cup \{ f_2(\text{lawyer}) \}] \]
- g. \[a^g(57f) = \lambda P_{et,\text{et}}. \exists f_1 \exists f_2 [\text{CF}(f_1) \land \text{CF}(f_2) \land \{ f_1(\text{doctor}) \} \cup \{ f_2(\text{lawyer}) \} \in P'] \]
- h. \[(57g) ([\text{met}]^g) = \exists f_1 \exists f_2. \text{CF}(f_1) \land \text{CF}(f_2) \land \{ f_1(\text{doctor}) \} \cup \{ f_2(\text{lawyer}) \} \in \text{meet} \]

In procedural terms, CR₁ introduces a choice function variable whose value picks and then
Lifts a certain doctor (57a); in a similar way, CR$_2$ picks and then Lifts a certain lawyer (57b); the lifts of the lawyer and the doctor are intersected (57c); Minimization turns that intersection into the property of being the set that contains that doctor, that lawyer, and nobody else (57d); the two Choice Closure operators existentially bind the choice function variables (57e), (57f); the indefinite determiner prepares the resulting set for combination with the verb phrase (57g); and finally, met checks if the lawyer and the doctor met (57h). Depending on the choice functions, the doctor may be identical to the lawyer, or there may be two distinct individuals. So if there are doctor-lawyers in the model, then among the sets denoted by doctor and lawyer, there will be singleton sets containing them. But there will also be two-element sets containing a doctor and a lawyer, even if they happen to share one or both of their professions. In this way, we have avoided the problem of overlappers.

The last step of this computation, (57h), is equivalent to the following:

\[\exists x \exists y [\text{doctor}(x) \land \text{lawyer}(y) \land \{x\} \cup \{y\} \in \text{meet}] \]

This says that there are a doctor and a lawyer and that the set that consists of the two of them met. This is true just in case a doctor and a lawyer met, regardless of whether they share any professions. In other words, these truth conditions will still be met if the person identified as a doctor also happens to be a lawyer, and vice versa. (The word meet will require that the two individuals are distinct, since world knowledge tells us that it takes two for a meeting. I have not represented this requirement explicitly here.)

4.4 The scope of Choice Closure

In this subsection I discuss the consequences of the additional degree of freedom that we have gained by moving from Existential Raising to Choice Raising. Essentially, we have decoupled the scope of the location where the choice is made (the Choice Closure operator, $\exists i$) from that of the location at which coordination is interpreted (the Choice Raising operator, CR$_i$). As can be seen in (56), I have allowed Choice Closure to take scope above Minimization. If I had left Choice Closure under Minimization, the result would have been equivalent to using Existential Raising, since the latter can be seen as a local combination of a Choice Raising operator with a Choice Closure operator.

Whenever we have an operator that can take non-local scope, there is a question as to how wide its scope can be. The following two attested examples (59a) and (60a), and the oddity of the paraphrases suggested in (59b) and (60b), make it clear that the scope-taking abilities of Choice Closure need to be constrained.

(59)
\[\begin{array}{l}
\text{a. A set of pairings is called stable if under it there is no man and woman who would both prefer each other to their actual partners.}\footnote{\url{http://www.usc.edu/programs/cerpp/docs/Two-SidedMatching.docx}} \\
\text{b. There are a man and a woman such that a set of pairings is called stable if under it they would not both prefer each other to their actual partners.} \\
\end{array} \]

(60)
\[\begin{array}{l}
\text{a. No matter how much they desire children, no man and woman have a right to bring into the world those who are to suffer from mental or physical affliction.}\footnote{\url{http://www.nyu.edu/projects/sanger/webedition/app/documents/show.php?sangerDoc=237888.xml}} \\
\text{b. There are a man and a woman who do not have a right to bring into the world those who are to suffer from affliction.} \\
\end{array} \]

The problem in (59b) and (60b) is that Choice Closure has taken scope out of a non-upward-
entailing context, namely the restrictor of *no*. That is, configurations like the following do not seem to be allowed:

(61)

\[
\begin{tikzpicture}
 \node (vp) {VP};
 \node (min) {MIN} at (0,0);\node (cr1) {CR\textsubscript{1} man} at (1,-1.5);\node (cr2) {CR\textsubscript{2} woman} at (2,-1.5);
 \draw (min) -- (cr1) node [midway, left] {no};\draw (min) -- (cr2) node [midway, right] {VP};
 \node (exist1) {\exists_1} at (-1,1);
 \node (exist2) {\exists_2} at (-2,1);
\end{tikzpicture}
\]

There seems to be a constraint that prevents \exists_1 from taking scope above *no*. While I have no explanation for this constraint, I note that the issue affects choice-function based analyses more generally. It is well known that certain restrictions on the scope of quantifiers over choice functions must be stipulated in order to prevent the derivation of unattested interpretations (for an overview, see Schwarz, 2011). For example, sentence (62a) does not have a reading that could be paraphrased as (62b).

(62)
\[\begin{array}{ll}
\text{a.} & \text{No student read a book I had praised.} \\
\text{b.} & \text{There is a choice function } f \text{ such that no student read that book I praised which } f \text{ assigns to that student.}
\end{array}\quad (\text{Schwarz, 2001})
\]

This missing reading could also be paraphrased as “There is a way to assign books I praised to students such that no student x read the book assigned to x”, which is another way to say “No student read every book I praised”. This reading is unavailable. Because of the need to impose constraints on the scope of their binders, choice functions have been argued to fail as a plausible model of the semantics of indefinites (e.g. Heim, 2011; Charlow, 2014, Sect. 4.7.1). Here, I have suggested that we can hold on to choice functions as long as we introduce constraints on the scope of the existential quantifiers that bind them. These constraints are different from the familiar island constraints on universal quantifiers, and so the question arises whether such constraints can be plausibly motivated. The fact that choice function binders must be constrained both in the case of indefinites and in the case of coordination can be seen either in a pessimistic light, given that choice functions were originally motivated by the need to give indefinites a way to escape island constraints, or in a more optimistic light, given that the need to constrain them seems independent in the two cases I have discussed here.

In the long run, choice functions may or may not turn out to be the best way to model the scopal behavior of indefinites. So let me emphasize an insight that I think is independent of the formalism used: There is a parallel between the need to fix the choice of discourse referent for an indefinite independently of the place at which it takes scope, and the need to fix the choice of discourse referent for each noun in a *doctor and lawyer* style conjunction outside of the scope of that conjunction.

To summarize this section, I have shown how replacing Existential Raising by Choice Raising allows us to extend the intersective theory from cases without overlap, like *man and woman*, to cases with overlap, like *doctor and lawyer*. The replacement is independently needed in order to handle noun phrase conjunctions like *John and some man met*. Since Existential
Raising can be seen as a special case of Choice Raising, we have not lost anything in the process. The choice functions that we have introduced need to be constrained in their scope in ways that are similar to the constraints that affect choice functions more generally.

5 How many people are five men and women?

In this section, I extend the theory developed so far from the singular to the plural, in order to deal with sentences that involve coordination of plural nouns, such as the one in the title of this paper. This will require combining Choice Raising with Predicate Distributivity, two operators we have seen before.

Conjunctions of plural nouns, just like those of singular nouns, can be interpreted intersectively or collectively, as we have seen in examples (3) and (4), repeated here.

(63) My two friends and colleagues wrote their paper together. (intersective)

(64) Ten men and women got married today in San Pietro. (collective)

Sentences with intersective interpretations, like (63), are unproblematic for the intersective theory because they can be derived simply by intersecting the two plural nouns. Thus, in this section, I focus on sentences with collective interpretations, like (64). Collectively interpreted conjunctions of plural nouns are in principle ambiguous as to the number of entities involved. In English, a noun phrase like five men and women can either involve reference to a group of ten people, five of which are men and five are women, or to a group of five people that includes members of both sexes (Dalrymple, 2004; King & Dalrymple, 2004). These two readings are attested in (65) and (66), respectively. I will refer to them as the 10-people reading and the 5-people reading.

(65) Ten people in total:
Five men and women, representing the five military services, will learn who becomes the 1995 winners when the U.S. Military Sports Association announces the male and female winners here Jan. 19. In the mens category, the candidates are ... [list of five names]. Competing for the female athlete of the year are ... [list of five names]\(^3\)

(66) Five people in total:
Five men and women from four states have been elected to serve on the University of Iowa Foundation Board of Directors. At its October meeting, the Foundations Board of Directors elected ... [list of five names]\(^4\)

The next two subsections show how to account for each of these readings within the intersective theory of and, starting with the 10-people reading (Section 5.1) and going on with the 5-people reading (Section 5.2). The latter reading requires us to combine Predicate Distributivity and Choice Raising to a new operator I call Distributive Choice Raising. I provide independent motivation for that operator in the rest of this section.

5.1 Determiner Doubling

This subsection shows that the 10-people reading is compatible with the intersective theory of and. In this reading, the numeral five appears to be interpreted twice, in a process we might call determiner doubling. This can be implemented, for example, via syntactic deletion of the numeral or via some semantic equivalent of it. In a syntactic deletion account, the noun phrase in (65) would be analyzed as underlingly involving a silent copy of five, like this:

\[(67) \quad \text{five men and five women}\]

A semantic implementation of this idea is found in Cooper (1979). It is further discussed in various places (Partee & Rooth, 1983; Dowty, 1988; Hendriks, 1993; Winter, 1998, p. 361). An illustration of Cooper’s idea for a singular conjunction this man and woman follows. It is taken from Dowty (1988), who attributes the illustration to Mats Rooth. Here, this is a function of type \(\langle et, \langle et, t \rangle \rangle\), from sets of individuals to generalized quantifiers, and D is a variable over such functions.

\[(68)\]

\[\begin{align*}
\text{a. } [\text{man}] &= \lambda D. D(\text{man}) \\
\text{b. } [\text{woman}] &= \lambda D. D(\text{woman}) \\
\text{c. } [\text{man and woman}] &= [\lambda D. D(\text{man})] \cap [\lambda D. D(\text{woman})] \\
&= \lambda D. D(\text{man}) \cap D(\text{woman}) \\
\text{d. } [\text{this man and woman}] &= (\lambda D. D(\text{man}) \cap D(\text{woman}))(\text{this}) \\
&= \text{this}(\text{man}) \cap \text{this}(\text{woman})
\end{align*}\]

This line of analysis involves raising the type of each noun so that it expects the determiner as an argument, then intersecting the two type-raised nouns, and finally combining them with the determiner. It is straightforward to adapt this analysis to the 10-people reading of five men and women illustrated in (65). Since this derivation involves intersection, this reading does not represent a challenge to the intersective theory.

Rooth’s derivation suggests at first sight that even singular noun-noun coordination could be handled by raising the type of the determiner. As was already pointed out in Heycock & Zamparelli (2005, p. 254), this will not work, because on this theory, man and woman does not denote the set of man-woman pairs, in contradiction to what I have shown in Section 2.1. Rather, as shown in (68c), the denotation of man and woman denotes a property of functions of type \(\langle et, \langle et, t \rangle \rangle\). This property cannot be used in order to derive the meanings of sentences like A man and woman who dated met in the park, since it cannot be intersected with hydras, like who dated. More generally, it is not clear how to combine the property in (68c) with collective predicates of any kind. (A similar problem occurs with hydras whose heads are noun phrase coordinations like a man and woman who dated. I come back to them briefly in Section 8.) Hence, while this style of derivation is needed in order to account for the 10-people reading, it will not be able to do all the work.

5.2 Man-woman Mixtures

This subsection discusses the challenges that the 5-people reading illustrated in (66) presents for the intersective theory of and. This reading cannot be generated by a Cooper-style analysis as discussed in the previous subsection. On Cooper’s line of analysis, five men and women would denote the set of all properties P such that five men have P and five women have P. But this is the 10-people reading, not the 5-people reading.
Let me now show how to derive the 5-people reading using the theory developed in this paper so far. To do this, I will need one additional assumption: Raising sometimes composes with Predicate Distributivity.

For sets P and Q, define a P/Q-mixture as any union of a nonempty subset of P with a nonempty subset of Q. For example, a man/woman-mixture is a set which contains at least one man, at least one woman, and nothing which is neither a man nor a woman. Given this, we can represent the 5-people reading of *five men and women* as follows:

\[
\{ \exists P_{ct} \mid |P| = 5 \text{ and } P \text{ is a man/woman-mixture} \}
\]

I have already talked in Section 3.1 about the assumption that numerals have the same type as intersective adjectives (e.g. Verkuyl, 1981; Landman, 2004, ch. 1). So for example, *five* denotes the set of all those sets that contain exactly (or at least) five individuals. I will adopt this assumption now for concreteness. It would be easy to represent numerals as modifiers instead. Here is my entry for the numeral *five*:

\[
\{ \exists P_{ct} \mid |P| = 5 \}
\]

This set is intersected with the plural noun. I follow Winter (2001, p. 209) in analyzing plural nouns as being derived from the singular noun via the PDIST operator defined in (27) and repeated below as (71). For example, the result of applying PDIST to *men* is shown in (72). Here, \varnothing is the powerset operator. The result of the intersection of *five* with *men* is shown in (73).

\[
\begin{align*}
\text{Predicate Distributivity:} & \quad \text{(Winter, 2001, p. 209)} \\
PDIST &= \lambda P'. \lambda P_{ct}. P \neq \emptyset \land P \subseteq P' \\
\text{[men]} &= [PDIST(man)] = \{ P_{ct} \mid P \neq \emptyset \land P \subseteq \text{man} \} = \varnothing(\text{man}) \setminus \emptyset \\
\text{[five]} &= \{ P_{ct} \mid |P| = 5 \land P \neq \emptyset \land P \subseteq \text{man} \}
\end{align*}
\]

While PDIST is incompatible with empty sets, it is compatible with singletons. This implements the view that the plural form of a count noun denotes a superset of its singular form. For example, the property denoted by *students* holds of sets of one or more students (Kri/ffa, 1986, p. 72). On this view, the more than one component of the plural can be treated, for example, as a grammaticalized scalar implicature (Spector, 2007; Zweig, 2009). The “two or more” component is absent in certain contexts. Thus, one can comply with an instruction to *take five fruits and vegetables* even by taking just one fruit and four vegetables (Y. Winter, p.c.).

The question now is how to derive a predicate *men and women* that intersects with *five* in the desired way, analogously to the way *men* intersects with *five*. That is, the question is how to derive the following predicate:

\[
\{ \exists P_{ct} \mid P \text{ is a man/woman-mixture} \}
\]

Neither of the Raising operators developed above will produce the set of all man/woman mixtures that we need in order to derive (74). For example, if we pick a set of men and a set of women, and minimize the intersection of their Montague lifts, this gives us the set of all sets $\{M, W\}$ such that M is a set of men and W is a set of women. The details of this derivation are shown in (75) below.

\[
\text{MIN(ER(PDIST(man)) and ER(PDIST(woman))))}
\]
alternative definition in (/seven.taboldstyle/nine.taboldstyle) makes this connection clear. This definition is equivalent to the definition in (/eight.taboldstyle). There is a close connection between DCR and Predicate Distributivity. Choice Raising as DCR. The notation in Winter (/two.taboldstyle/zero.taboldstyle/zero.taboldstyle/one.taboldstyle) for these two operators is man and woman.

My proposal for generating mixtures consists in combining Choice Raising with Predicate Distributivity. In order to distinguish between Choice Raising as I have used it above, and its combination with Predicate Distributivity as I will introduce it here, I will refer to the former as Nondistributive Choice Raising and to the latter as Distributive Choice Raising. I will assume that Nondistributive Choice Raising applies to singular nouns and Distributive Choice Raising to plural nouns. For example, I will assume that Nondistributive Choice Raising is at work in man and woman, and that Distributive Choice Raising is at work in men and women.

I will continue to write (Nondistributive) Choice Raising as CR, and I will write Distributive Choice Raising as DCR. The notation in Winter (2001) for these two operators is \(f \) and \(f' \). I repeat the definition of Choice Raising from (46) for comparison in (77), and I give the definition of DCR in (78). There is a close connection between DCR and Predicate Distributivity. The alternative definition in (79) makes this connection clear. This definition is equivalent to the one in (78). An explanation immediately follows.

\[
\begin{align*}
\text{Sets of the shape } \{M, W\} \text{ are too small to be in the denotation of } \text{five} \text{ because they are of cardinality two. The problem is the following. Intuitively, given a choice of men } M \text{ and a choice of women } W, \text{ what we want is not the set } \{M, W\} \text{ but the set } M \cup W, \text{ since only that set is a man/woman mixture. But the kind of derivation we have used so far does not give us this kind of set. As a result, intersecting it with the denotation of } \text{five} \text{ gives us the empty set:}

(76) & \quad \{M, W\} \cap \{M, W\} \cap \{M, W\} \\
& = \{M, W\} \cap \{M, W\} \\
& = \emptyset
\end{align*}
\]

In (75) I have used Existential Raising rather than Choice Raising. The choice between the two options does not matter here. Both variants of Raising lead to the same problem because they both produce sets of cardinality two, such as the \(\{M, W\} \) sets in (76). Hence, let me now present a proposal that avoids this problem and delivers \(M \cup W \) instead of \(\{M, W\} \) in a principled way. In Section 5.4, I provide independent motivation for my proposal, in part novel and in part from Winter (2001, p. 149).

5.3 Distributive Choice Raising derives mixtures

My proposal for generating mixtures consists in combining Choice Raising with Predicate Distributivity. In order to distinguish between Choice Raising as I have used it above, and its combination with Predicate Distributivity as I will introduce it here, I will refer to the former as Nondistributive Choice Raising and to the latter as Distributive Choice Raising. I will assume that Nondistributive Choice Raising applies to singular nouns and Distributive Choice Raising to plural nouns. For example, I will assume that Nondistributive Choice Raising is at work in man and woman, and that Distributive Choice Raising is at work in men and women.

I will continue to write (Nondistributive) Choice Raising as CR, and I will write Distributive Choice Raising as DCR. The notation in Winter (2001) for these two operators is \(f \) and \(f' \). I repeat the definition of Choice Raising from (46) for comparison in (77), and I give the definition of DCR in (78). There is a close connection between DCR and Predicate Distributivity. The alternative definition in (79) makes this connection clear. This definition is equivalent to the one in (78). An explanation immediately follows.
Non-distributive CR (same as (46)):
\[\text{[CR]}^g = \lambda N_{et} : N \neq \emptyset . \lambda P_{et}.g(i)(N) \in P\]
where \(g(i)\) is a choice function of type \(\langle et, e \rangle\)

Distributive CR: (cf. Winter, 2001, p. 111)
\[\text{[DCR]}^g = \lambda N_{(et, t)} : N \neq \emptyset . \lambda P_{et}.g(i)(N) \subseteq P\]
where \(g(i)\) is a choice function of type \(\langle \langle et, t \rangle, et \rangle\)

Alternative definition of DCR: (cf. Winter, 2001, p. 155)
\[\text{[DCR]}^g = \lambda N_{(et, t)} : N \neq \emptyset . \lambda P_{et}.g(i)(N) \in [\text{PDIST}](P)\]
where \(g(i)\) is a choice function of type \(\langle \langle et, t \rangle, et \rangle\)

Non-distributive CR is defined in (77) as the Montague lift of the variable that is selected by its choice function. It applies a choice function to a set of individuals, chooses one of them, and then Montague lifts that individual to the set of all properties \(P\) such that the chosen individual has \(P\). DCR as defined in (78) applies a choice function to a set of pluralities, chooses one of these pluralities, and then returns the set of all properties \(P\) such that each of the members of the chosen plurality has \(P\). In other words, \(P\) is required to distribute over the members of the plurality. That is why there is a close connection between DCR and Predicative Distributivity, as shown in (79).

The following derivation shows how DCR can be used in order to derive reading (74), the set of all man-woman mixtures, as the denotation of men and women. I write \(f_1\) and \(f_2\) for the choice functions introduced by the two instances of DCR. I write men and women for the result of applying PDIST to the denotations of man and woman, that is, \(\varphi(\text{man}) \setminus \emptyset\) and \(\varphi(\text{woman}) \setminus \emptyset\). An explanation immediately follows.

(80)
\begin{align*}
a. & \quad [\text{DCR}_1(\text{men})]^g = \lambda P.f_1(\text{men}) \subseteq P \\
b. & \quad [\text{DCR}_2(\text{women})]^g = \lambda P.f_2(\text{women}) \subseteq P \\
c. & \quad [\text{DCR}_1(\text{men}) \text{ and } \text{DCR}_2(\text{women})]^g = \lambda P.f_1(\text{men}) \subseteq P \wedge f_2(\text{women}) \subseteq P \\
d. & \quad [\text{MIN}(\text{DCR}_1(\text{men}) \text{ and } \text{DCR}_2(\text{women}))]^g = \lambda P.f_1(\text{men}) \cup f_2(\text{women}) \\
e. & \quad [\exists_1(\exists_2(\text{MIN}(\text{DCR}_1(\text{men}) \text{ and } \text{DCR}_2(\text{women}))))]^g = \{ P \mid P \text{ is a man-woman mixture} \}
\end{align*}

In procedural terms, this is what happens. We start with the set denoted by the plural noun men. This is the set of all nonempty sets of men. We choose one of these sets of men and place a hold on our choice. We create the set of all those properties that hold of each of these men, that is, we create the set of all the supersets of the set of men that we chose (80a). We do the same thing for a similarly chosen set of women (80b). We combine the two sets of properties via Intersection (80c) and then apply Minimization to the result (80d). Given our fixed choice of men and our fixed choice of women, the only set that remains after Minimization is the set that contains exactly the men and the women we picked. We now release the hold on our choice of men and the hold on our choice of women (80e). This gives us the set of all properties \(P\) such that there is a way of picking some men and some women that gives us all and only the people of which \(P\) holds. In other words, we get the set of all man-woman mixtures.

Now we can derive the right truth conditions for the sentence in the title of this paper, Ten men and women got married today. The set of man-woman mixtures is ready to be intersected with the numeral ten. The result is the set of all man-woman mixtures of cardinality ten. We now use Existential Raising in order to combine ten men and women with got married today. The LF can then be given as follows.
The LF in (81) is true if and only if among the sets in the denotation of got married, there is a man-woman mixture of cardinality ten. To make sure that this is the case if and only if ten men and women got married, we assume that the collective predicate got married denotes the closure under union of the set of all married couples (where each couple is represented as a two-element set). (Alternatively, we could assume that got married denotes the property of being a married couple, and that it combines with the noun phrase via a process called Determiner Fitting (Winter, 2001, ch. 5). I come back to this point in Section 6.)

5.4 Evidence for DCR

This subsection provides evidence that DCR is useful beyond the case of coordination of nouns. The discussion here is based largely on Winter (2001, p. 149f.). One type of example that motivates DCR concerns conjunctions of plural noun phrases.

(82)

- Two Americans and three Russians made an excellent basketball team.
- These women are the authors and the teachers.

As Winter notes, the prominent reading of sentence (82a) is that there was an excellent basketball team which consists of two Americans and three Russians. In order to account for this reading, the subject needs to provide a set consisting of five people of the required nationalities so that the predicate denoted by make an excellent basketball team can apply to that set. (This verb phrase denotes a collective predicate, hence there is no Predicate Distributivity operator involved in its derivation.) Without DCR, this set is impossible to access. The two coordinated noun phrases are represented as predicates of pluralities. These cannot be intersected directly since their intersection is empty due to the different cardinalities (two vs. three). Applying Existential Raising to each of the conjuncts and then combining them via Intersection does not help either. As Winter shows, this would lead to a distributive interpretation that entails that there are two basketball teams of non-standard sizes. Finally, it will not do to apply Nondistributive CR to each of the conjuncts, since this would give us a set of two Americans and a set of three Russians. These sets cannot be combined in the right way: they would need to be combined via union, but the meaning of and is Intersection. This is analogous to the problem above, where we produced sets of the shape \{M, W\} where the desired outcome would be M ∪ W.

Winter’s analysis of sentence (82a) is shown in (83) below. An explanation immediately follows.
(83) Adapted from Winter (2001, p. 156):

\[
\begin{align*}
\text{a. } & \exists_1 \exists_2 \left[\text{ER}(\text{MIN}(\text{DCR}_1(\text{two(AMERICANS)})) \text{ and } \text{DCR}_2(\text{three(RUSSIANS)}))) \right] \\
& \quad \quad \quad \quad \text{b. } \iff \exists A \subseteq \text{american} \exists B \subseteq \text{russian} \quad |A| = 2 \land |B| = 3 \land \\
& \quad [83]
this behavior, Winter puts a combination of CR and Choice Closure to work, and he assumes that islands trap CR but let Choice Closure escape. Here is how Winter analyzes reading (84b) of sentence (84) (with some adjustments to match the notation I have introduced). An explanation immediately follows.

(86) \[\exists_1 [\text{DCR}_1 (\text{three(workers)}) (\lambda x. \exists y [\text{baby} (y) \land \text{have} (y)(x)) \rightarrow \text{problems}]] \]

The predicate \textit{workers} is a shorthand for the application of PDIST to the predicate \textit{worker}, since this is how Winter (as I do) represents the semantic contribution of the plural morpheme. The predicate \textit{problems} is a shorthand for the proposition “we will have to face some hard organizational problems”. The component \text{DCR}_1 (\text{three(workers)}) involves Distributive rather than Nondistributive CR. This is needed in order to distribute the property of having a baby down to each of the three workers. This component denotes the set of all those properties that hold of each of the three workers picked by the choice function associated with the index 1. The component \exists_1 existentially quantifies over this choice function. The DCR component takes scope below the implication arrow, while the \exists_1 component takes scope above it. This is exactly the configuration we need for reading (84b).

I mentioned earlier that these examples can also be analyzed using a combination of Nondistributive CR and PDIST. Let me expand on this. We could have used the PDIST operator in order to shift the property \(\lambda x. \exists y [\text{baby} (y) \land \text{have} (y)(x)) \) into a predicate that holds of any set just in case each of its members had a baby. In that case, the switch from Nondistributive CR to DCR would not have been necessary for this particular kind of example. That is, reading (84b) of sentence (84) could have been modeled as involving verb phrase distributivity instead of noun phrase distributivity, as shown in (87). This requires a generalization of the CR operator in (46) so that \(g(i) \) can be a choice function of arbitrary type.

(87) \[\exists_1 [\text{CR}_1 (\text{three(workers)}) (\text{PDIST}(\lambda x. \exists y [\text{baby} (y) \land \text{have} (y)(x)) \rightarrow \text{problems}]] \]

Let me now summarize this section. I have extended the theory developed in the first part of the paper from the singular to the plural. The main innovation as I did so consisted in combining CR with PDIST. This allowed us to maintain the intersective theory of \textit{and}. We were able to counteract the pressure of the Minimization operation by taking subsets of the two plural nouns with arbitrary cardinalities. The case of plural nouns is particularly important because one of the readings in question, the one I have called the \textit{five}-people reading, does not lend itself to an analysis in terms of determiner doubling or determiner deletion, of the kind that had been proposed several times since Cooper (1979). Following Winter (2001, p. 149f.), evidence for DCR can be derived from conjunctions of plural noun phrases; moreover, it predicts the ability of plural numerals to take existential and distributive scope in different places.

6 The relationship between \textit{and} and \textit{or}

The intersective theory of conjunctive coordination fits naturally into a broader theory known as boolean semantics (Keenan & Faltz, 1985; Winter, 2001). Boolean semantics suggests that there is a close relationship between \textit{and} and \textit{or} in natural language, analogous to the close relationship between conjunction and disjunction in many logics that have been applied to natural language semantics. Although boolean semantics was originally developed with classical propositional and predicate logic (as well as Montague’s intensional logic) in mind, more recent systems such as inquisitive logic also fit well into the general picture this theory paints.
(Ciardelli & Roelofsen, 2010, 2015). In all these logics, the relationship between conjunction and disjunction corresponds to the relationship between the set-theoretic notions of intersection and union (Roelofsen, 2013). For this reason, given any set of assumptions surrounding an intersection-based entry for \(\text{and} \), it is natural to ask whether they interact correctly with a union-based entry for \(\text{or} \). Accordingly, this section deals with the relationship between \(\text{and} \) and \(\text{or} \) in noun coordinations. Section 6.1 introduces and solves a puzzle concerning that relationship that is due to Bergmann (1982). Section 6.2 provides an explanation of the typological observation that I described in the introduction, namely that across languages, disjunction is never associated with collective uses, while conjunction often is.

6.1 Bergmann’s puzzle

Bergmann challenges the intersective theory based on examples that involve noun-noun coordination, by raising the following question: Why are the sentences in (88) equivalent while those in (89) are not?

(88) a. Every cat and dog is licensed.
 b. Every cat or dog is licensed.

(89) a. A cat and dog came running in.
 b. A cat or dog came running in.

I adopt the following entry for \(\text{or} \), analogous to the intersective entry for \(\text{and} \) shown in (17). This entry can combine disjuncts of any conjoinable type \(\tau \). This analogous treatment of \(\text{and} \) and \(\text{or} \) is standard in intersective theories of conjunction. For details, see for example Partee & Rooth (1983).

\[
\text{or}_{(\tau,\tau)}(\tau,\tau) = \begin{cases} \lor(t,tt) & \text{if } \tau = t \\ \lambda X \cdot \lambda \sigma_{1} : X(Z) \text{ or } (\sigma_{2},\sigma_{2}) \sigma_{2} & \text{if } \tau = (\sigma_{1}, \sigma_{2}) \end{cases}
\]

For the purpose of this paper, we only need the following simplified entry, which is a special case of (90):

\[
\text{or} = \lambda P_{t} : \lambda Q_{t} : P \cup Q
\]

To solve Bergmann’s puzzle, we first need to adopt a theory of how distributive quantifiers like every interact with collective predicates in restrictor position, like cat and dog. Different kinds of collective predicates are compatible with different kinds of distributive quantifiers. For example, the distributive quantifier all is incompatible with certain collective predicates such as be numerous, but it is compatible with other ones such as met, gathered, watched a movie together, read the same book, read different books and so on (e.g. Kroch, 1974; Dowty, 1987; Moltmann, 1997; Champollion, to appear). The distributive quantifier every is incompatible with met, gathered or be numerous, but it is compatible with predicates derived from same and from singular different, such as read the same book and read a different book (Carlson, 1987; Barker, 2007). These predicates can be viewed as collective predicates.

I have argued in Section 2.1 that collective coordinations such as man and woman denote collective predicates. Sentences like (88a) show that they are among the kinds of collective predicates that can combine with every. Unlike read the same book and similar cases, in this case the predicate is in restrictor position and not in nuclear scope position. But the fact remains that in order to deal with sentences like (88a), we need a theory that explains how
distributive determiners can combine with collective predicates. One such theory is provided in Winter (2001, 2002). I will adopt it here.

As mentioned, I model collective predicates as set predicates, so their type is \(\langle et, t \rangle \). The next step is for the nominal, be it man and woman or cat and dog, to combine with the determiner. Ordinary determiners expect their restrictor and their nuclear scope to be of type \(et \). In order for determiners to combine with \(\langle et, t \rangle \)-type predicates instead, I assume following Winter that they are adjusted via an operator he calls Determiner Fitting. This operator is triggered by the need to resolve type mismatches that arise when determiners combine with plural or collective-denoting nominals. It is defined as follows:

\[
\text{Determiner Fitting (Winter, 2001, p. 218)}
\]

\[
\text{[DFIT]} = \lambda D_{\langle et, et, t \rangle} \cdot \lambda A_{\langle et, t \rangle} \cdot \lambda B_{\langle et, t \rangle} . D((\bigcup A) \cap (\bigcup (A \cap B)))
\]

Winter motivates this operator by sentences like (93), in which the collective predicate met is an argument of a quantificational determiner.

\[
\text{(93) No students met.}
\]

Winter assumes that the plural morpheme on students triggers the insertion of a Predicative Distributivity (PDIST) operator, as defined in (27). In Winter’s system, this operator also prepares ordinary \(et \)-type predicates so they may combine with determiners that have been adjusted for \(\langle et, t \rangle \)-type predicates via Determiner Fitting. This is relevant, for example, when a fitted determiner combines with two predicates, of which one is of type \(\langle et, t \rangle \) and the other one is of type \(et \), as in No students smiled.

Using Determiner Fitting and Predicate Distributivity, Winter analyzes sentence (93) in terms of the meanings of singular no and student. Its meaning is predicted to be “No student is a member of a set of students that met”.

\[
\text{(94) [DFIT(no)(PDIST(student))(met)]}
\]

\[
\begin{align*}
\text{& = \text{[no]}(\bigcup \text{PDIST([student]}))((\bigcup \text{PDIST([student]} \cap \text{[met]}))} \\
\text{& = \text{[no]}([student])((\bigcup \{ P \in \text{[met]} \mid P \subseteq \text{[student]} \})} \\
\text{& = \neg \exists x [\text{student}(x) \wedge \exists \{ x \in P \wedge P \in \text{meet} \wedge \forall y[y \in P \rightarrow \text{student}(y)]]]
\end{align*}
\]

Now let me present a solution to Bergmann’s puzzle. For sentences (88a) and (88b), the present system generates two equivalent LFs, shown in (95) and (96) along with their translations. (These sentences also have other possible LFs. Sentence (88a) has an LF that translates to the nonsensical interpretation Everything that is both a cat and a dog is licensed, which I assume is ruled out via considerations of plausibility. An additional LF of (88b) will be discussed shortly.) For convenience, I ignore the existential import of every and treat it as simply denoting the subset relation. I treat the verb phrases came running in and be licensed as unanalyzed predicates. They are distributive predicates, or atom predicates in the sense of Winter (2001, ch. 5), which means that they do not by themselves trigger Determiner Fitting. The application of Determiner Fitting in (95a) is triggered by the type of the collective predicate cat and dog, which is treated in the same way as man and woman above.

\[
\text{(95) a. DFIT(every)(MIN(ER(cat) and ER(dog)))(PDIST(be Licensed)))}
\]

a. \[\bigcup \{ x, y \mid \text{cat}(x) \wedge \text{dog}(y) \} \subseteq \]

b. \[\bigcup \{ x, y \mid \text{cat}(x) \wedge \text{dog}(y) \wedge \{ x, y \} \subseteq \text{be Licensed} \}
\]

\[
\text{(96) a. every(cat or dog)(be Licensed))}
\]

b. \[\text{cat} \cup \text{dog} \subseteq \text{be Licensed}
\]

31
The translations in (95b) and (96b) are equivalent, as the reader may verify. As for the sentences in (89), there is no way to generate equivalent LFs for them. For example, the LFs in (97a) and (98a) correspond to the most prominent (if not the only) readings of the two sentences in (89), and they evaluate to the nonequivalent formulae in (97b) and (98b).

(97) a. \(\text{DFIT}(a)(\text{MIN} (\text{ER(cat) and ER(dog)}))(\text{PDIST}(\text{come_running_in})) \)
 b. \(\exists x \exists y[(\text{cat}(x) \land \text{dog}(y)) \land \{x, y\} \subseteq \text{come_running_in}] \)

(98) a. \(a(\text{cat or dog})(\text{come_running_in}) \)
 b. \(\exists x[(\text{cat} (x) \lor \text{dog}(x)) \land \text{come_running_in}(x)] \)

I have assumed that Determiner Fitting is triggered whenever a quantifier encounters a collective predicate, even if the predicate agrees only with singular determiners, as is the case for man and woman. This represents a slight departure from Winter (2001, ch. 5), where it is assumed that Determiner Fitting is licensed only by morphologically plural quantifiers like all but not by singular ones like every. But the departure is arguably in the spirit of the general approach. As Y. Winter (p.c.) points out, the idea that Determiner Fitting is triggered by type mismatches rather than by plurality per se makes it fall in line with his treatment of coordinations of singular and plural quantifiers such as all these children and every other child, which makes use of a type shifting operation similar to Determiner Fitting that is also assumed to be triggered by type mismatches (Winter, 2001, p. 235).

In (97), I have applied Determiner Fitting to the existential determiner \(a \). Strictly speaking, this is not needed. Indeed, in the rest of the paper I have omitted this step whenever possible. But in the interest of uniformity, we might try to apply Determiner Fitting across the board, whenever we combine a determiner with a collective predicate. This raises the question whether applying Determiner Fitting to the determiner \(a \) ever changes the truth conditions of the sentence that contains it. The answer is no, as long as we assume the VP does not apply to the empty set. (This is a safe assumption, since a VP that combines with a Fitted determiner is either a set predicate, in which case its elements represent collective individuals and are therefore nonempty sets, or it is derived via Predicate Distributivity, in which case the empty set is excluded by definition.) To see this, assume that DP and VP are two sets of sets. Now \(a(\text{DP}, \text{VP}) \) is true by definition iff \(\text{DP} \cap \text{VP} \) is nonempty, and \(\text{DFIT}(a)(\text{DP}, \text{VP}) \) is true iff \((\bigcup \text{DP}) \cap (\bigcup (\text{DP} \cap \text{VP})) \) is nonempty. The latter term is equivalent to \(\bigcup (\text{DP} \cap \text{VP}) \), and this set is empty just in case \(\text{DP} \cap \text{VP} \) is either empty or it only contains the empty set, contrary to assumption. Hence, \(a(\text{DP}, \text{VP}) \) is true iff \(\text{DFIT}(a)(\text{DP}, \text{VP}) \) is true.

6.2 Why or is never collective

Unlike and, which is descriptively ambiguous between intersective and collective uses, or has no corresponding ambiguity in any known language. As I have mentioned in the introduction, this provides strong motivation against accounts that attribute collective uses of and to this word being ambiguous between an intersective and a collective entry (Winter, 2001, p. 32). The reason is that such accounts provide no explanation of the fact that or is not ambiguous in the same way as and. In this subsection, I show that Winter’s general answer to this question extends to the present system.

I have argued at length that a surface string of the shape \(N_1 \text{ and } N_2 \) can correspond to the two LFs “\(N_1 \) and \(N_2 \)” and “\(\text{MIN}(\text{ER}(N_1) \text{ and ER}(N_2)) \)”. These two structures have different readings: the intersective and the collective reading, respectively. This explains why and sometimes looks like intersection and sometimes like collective formation. As for noun-noun
disjunction, however, the situation is different. Consider a string of the shape \textit{N1 or N2}. The null assumption is that the same structures are generated as before: “N1 or N2” and “\textsc{MIN}(\textsc{ER}(N1) or \textsc{ER}(N2))”. You might expect that this incorrectly predicts that \textit{or} is ambiguous in an analogous way to \textit{and}. But as it turns out, these two structures evaluate to almost the same thing, and the remaining difference between them disappears because of Determiner Fitting. While “N1 or N2” underlies the derivation in (96) above, “\textsc{MIN}(\textsc{ER}(N1) or \textsc{ER}(N2))” underlies the following derivation. As before, I assume that \textbf{or} denotes union in the sense of the entry in (/nine/one/six). (99) a. \textsc{DFIT}(every)(\textsc{MIN}(\textsc{ER}(\textit{cat})) or \textsc{MIN}(\textsc{ER}(\textit{dog})))((\textsc{PDIST}(\textbf{be licensed}))

b. = \textsc{DFIT}(every)(\textsc{MIN}(\{P \mid P \cap \textit{cat} \neq \emptyset \lor P \cap \textit{dog} \neq \emptyset\}))

\{P \mid P \neq \emptyset \land P \subseteq \textbf{be licensed}\}\)

c. = \bigcup\{\{x\} \mid x \in (\textit{cat} \cup \textit{dog})\} \subseteq \bigcup\{\{x\} \mid x \in (\textit{cat} \cup \textit{dog})\} \cap \{P \mid P \neq \emptyset \land P \subseteq \textbf{be licensed}\}\)

d. = (\textit{cat} \cup \textit{dog}) \subseteq ((\textit{cat} \cup \textit{dog}) \cap \textbf{be licensed})

e. = (\textit{cat} \cup \textit{dog}) \subseteq \textbf{be licensed}

The last line of (99) is equivalent to (96). In other words, when we take the two LFs that lead to the intersective and the collective readings of \textit{and}, and replace \textit{and} by \textit{or} in them, the two LFs turn out to have identical truth conditions.

While the present system predicts that conjoining nominals can sometimes lead to an interpretation that closely resembles the interpretation of a phrase with disjunction, the converse is not predicted. This seems right in many cases. For example, \textit{A linguist or philosopher came running in} can neither be interpreted as talking about a linguist-philosopher, nor as talking about a linguist and a philosopher.

To be sure, there are well-known contexts involving free choice in which conjunction does seem to be interpreted as disjunction. For example, sentence (100a) can be paraphrased as (100b) (for discussion see Zimmermann, 2000): (100) a. Mr. X might be in Victoria or he might be in Brixton.

b. Mr. X might be in Victoria and he might be in Brixton.

This has been taken to suggest that there is a covert operator that maps each connective onto its dual (Barker, 2010). The present approach paints a more asymmetric picture. This is motivated by the fact discussed above that only \textit{and} but not \textit{or} is able to give rise to collectivity effects crosslinguistically. Many current approaches to the free-choice behavior of sentential connectives are compatible with the intersective theory of conjunction and the classical (union-based) view on disjunction. For example, Fox (2007), Eckardt (2007) and Franke (2011) model free choice effects as implicatures and use a standard treatment of conjunction and disjunction in their representations of the literal meanings of sentences like those in (100). Their systems are compatible with the intersective theory of conjunction and more generally with boolean semantics.

To summarize this section, I have shown that the present system correctly predicts the relationship between \textit{and} and \textit{or}. In English, the two of them have their basic meanings that can be described in terms of intersection and union. Applying Raising and Minimization gives \textit{and} a union-like behavior, but turns out not to affect the behavior of \textit{or}. This also provides an explanation of the observation that across languages, it is always \textit{and} and not \textit{or} that is associated with collective-formation behavior. The present system fits well within the larger framework of boolean semantics.
7 Comparison to previous work

Like any system that adopts a uniform meaning for and, the present approach avoids redundancy of lexical entries. This improves on the ambiguity theory, that is, on the view that some instances of and are intersective and others are collective (e.g. Link, 1984; Hoeksema, 1988). Since the meaning I adopt is intersective, it generalizes without problems to sentential coordination, verb-phrase coordination, and noun phrase coordination (Gazdar, 1980). As we will see, this improves on the implementation of the collective theory in Heycock & Zamparelli (2005). Noun-noun coordination is discussed in Winter (1995) and Winter (1998, ch. 8) though not in Winter (2001). The present system is vastly different from the treatment of noun-noun coordination in Winter (1998). In this section, I discuss Heycock & Zamparelli (2005) and Winter (1998) in more detail.

The reason I focus on Heycock & Zamparelli (2005) is that it is the most fully worked-out example of the collective theory of coordination, and the only recent journal-length treatment of the semantics of noun-noun coordination. Another instantiation of the collective theory is found in Krifka (1990), who does not say much about the semantics of noun-noun coordination, however. Krifka only specifies sufficient but not necessary truth conditions for conjoined expressions. According to him, cat and dog will apply among other things to all sums of a cat and a dog, and “some pragmatic strengthening” tells us to remove those other things from consideration. His account does not specify when the pragmatic strengthening occurs, and does not generate the intersective interpretation.

Other instantiations of the collective theory are found in Landman (2004, ch. 2) under the name of sum pairing, and in Lasersohn (1995, ch. 14) in the context of event semantics. Both Krifka and Lasersohn show how to generalize the collective theory to arbitrary types. For a thorough technical discussion and criticism of the accounts by Hoeksema, Krifka, and Lasersohn from the perspective of the intersective theory, see Winter (2001, ch. 2). I critically review the motivation for Lasersohn’s theory and defend the intersective theory of conjunction in Champollion (2015).

7.1 The collective theory: Heycock & Zamparelli (2005)

Heycock & Zamparelli (2005) defend the collective theory of and. They adopt the following collective entry for and, which is very similar to the one I have discussed in (11) in Section 2.1:

\[
[\text{and}_{\text{coll}}] = \lambda Q_{(r,t)} . \lambda Q'_{(r,t)} . \lambda P_{rt} . \exists A_{rt} \exists B_{rt} [A \in Q \land B \in Q' \land P = A \cup B]
\]

Essentially, this entry combines two sets of sets, called Q and Q’ here, by computing their cross-product. But instead of putting any two elements together to form a pair, as the cross-product operation would do, the entry forms their union. Heycock & Zamparelli (2005) call this operation set product. The entry in (101) is assumed to be the one and only meaning for and in Heycock & Zamparelli (2005). That is, they assume that and always involves collective formation, and never involves intersection. Common nouns and verb phrases are assumed to denote sets of singletons. Proper nouns denote generalized quantifiers over singletons. For example, the noun man denotes the set of all singletons of men, \(\lambda P . |P| = 1 \land P \subseteq \text{man} \). When the common nouns man and woman are conjoined, the entry in (101) generates the following denotation:

\[
[\text{man and}_{\text{coll}} \text{woman}] = \lambda P_{rt} . \exists A_{rt} \exists B_{rt} [|A| = 1 \land A \subseteq \text{man} \land |B| = 1 \land B \subseteq \text{woman} \land P = A \cup B]
\]
\[
= \lambda P_{et}. \exists x \exists y [\text{man}(x) \land \text{woman}(y) \land P = \{x, y\}]
\]

This denotation is equivalent to the one my system generates for this constituent, as seen in (20c). But there is an important difference. I assume that all instances of \textit{and} are intersective while Heycock & Zamparelli assume that all instances of \textit{and} have the collective denotation in (101). Their assumption leads to problems when quantifiers are conjoined that are not upward entailing, as in the following cases:

(103) \hspace{1em} a. No man and no woman smiled.
 \hspace{1em} b. Mary and nobody else smiled.

Assume first, as Heycock & Zamparelli do, that the conjunctions in these examples are treated as generalized quantifiers, as shown in (104) for \textit{no man}. The unusual types are due to the assumption that common nouns denote sets of singletons.

(104) \hspace{1em} [\text{no man}] = \lambda Q_{\langle et, t \rangle}. \neg \exists X_{et} [\text{man}(X) \land Q(X)]

Heycock & Zamparelli predict that the complex noun phrase in (103a) holds of the union of any set \(S_1\) containing no man and any set \(S_2\) containing no woman. As \(S_1\) may contain women and \(S_2\) may contain men, the resulting truth conditions are too weak. For example, (103a) is true in a model that contains a smiling man called John, a smiling woman called Mary, and no other smilers. This is for the following reason. The entry for \textit{no man} in (104) holds of the set containing nothing but the singleton of Mary, since that set contains no man. The corresponding entry for \textit{no woman} holds of the set containing nothing but the singleton of John, since that set contains no woman. According to entry (101), the noun phrase in (103a) therefore holds of the union of these two sets, namely, the set containing nothing but the singletons of John and of Mary. But this set is precisely the denotation of \textit{smiled} in this model. For analogous reasons, (103b) is predicted to be true in this model (assuming that \textit{nobody else} in this context means \textit{nobody other than Mary}).

Heycock & Zamparelli are aware of this problem and suggest that scope-splitting analyses of \textit{nobody} might help here, as proposed for example by Ladusaw (1992) for languages with negative concord and by Landman (2004, ch. 8) for English. On these analyses, the lexical entry of \textit{no} is separated into one part that contains only \(\neg\) and another part that contains everything else including \(\exists x\), and the negation part is free to take scope in a higher position than the rest. But adopting such an approach would wrongly predict that (103b) means the same as \textit{It is not the case that Mary and someone else smiled}. That sentence, unlike (103b), is true when Mary did not smile but someone other than Mary smiled. This point is also made by Landman (2004, ch. 8), who assumes that split negation in a conjunction of noun phrases requires the conjunction to be delayed and then interpreted intersectively at the sentential level.

The collective theory of conjunction also has problems with non-monotonic quantifiers, for which a scope-splitting analysis is not available. For example, Heycock & Zamparelli make wrong predictions for the following sentences (see also Schein (2014, p. 695) for a similar argument):

(105) \hspace{1em} a. John and between one and three women smiled.
 \hspace{1em} b. John and an odd number of women smiled.

I mention (105a) because it is discussed by Heycock & Zamparelli (2005, p. 262), and (105b) because \textit{an odd number of X} cannot be analyzed as a combination of monotonic quantifiers. For discussion see Gamut (1991, vol. 2, p. 329); cf. also Schlenker (2006, fn. 15). Now, Heycock
& Zamparelli predict that the complex noun phrase *John and between one and three women* in (105a) holds of the union of any set \(S_1 \) containing John, and any set \(S_2 \) containing between one and three women, and that (105a) itself is true just in case *smiled* denotes such a union. Their predictions for *odd* are analogous: here, \(S_2 \) must contain an odd number of women. Now suppose that we are in a model in which John and four women smiled – call them \(w_1 \) through \(w_4 \) – and suppose that nobody else smiled. In this model, (105a) and (105b) are judged false, because the number of women who smiled is four. Let \(S_1 \) be the set that consists of John and \(w_1 \), and let \(S_2 \) be the set that consists of the three other women, \(w_2, w_3 \) and \(w_4 \). Then for each of the sentences in (105), \(S_1 \) is among the sets in the left conjunct and \(S_2 \) among those in the right conjunct. The union of \(S_1 \) and \(S_2 \) is in the denotation of *John and between one and three women* and of *John and an odd number of women*. This union is also the set of smilers, that is, it is the denotation of *smiled* in this model. Hence, (105a) and (105b) are predicted true, contrary to fact.

To summarize this subsection, conjunctions of non-upward-entailing quantifiers such as *no man and no woman* represent a challenge for the collective theory. While Heycock & Zamparelli (2005) provide many important empirical observations concerning coordination of nouns, they do not give a satisfying account of conjunctions of non-upward-entailing quantifiers. Moreover, it does not seem easy to extend the collective theory to these conjunctions, unless one is willing to radically rethink the meaning of quantified noun phrases. I will not do that in this paper.

7.2 Departing from the intersective theory: Winter (1995, 1998)

In this paper, I have built to a large extent on the theory in Winter (2001), which discusses coordination of noun phrases and of verb phrases but not coordination of nouns. In earlier work, Winter does discuss coordination of nouns and takes it to require a departure from the intersective theory of conjunction (Winter, 1995, 1998, ch. 8). This approach has been recently revived by for the crosslinguistic analysis of certain particles like Japanese *mo* (Szabolcsi, 2013, 2015). These particles seem to be licensed by the presence of a covert conjunction or related notion.

For Winter (1995) and Winter (1998, ch. 8), *and* always returns the denotations of its two conjuncts as an ordered pair. For example, *man and woman* is translated as the ordered pair in (106).

\[
(106) \quad [\text{man and}_\text{pair woman}] = \langle \lambda x. \text{man}(x), \lambda x. \text{woman}(x) \rangle
\]

When such a pair combines with other items in the tree, it is first propagated upwards in a style reminiscent of alternative semantics (e.g., Rooth, 1985, ch. 2). That is, the two computations proceed in parallel. At any point in the derivation, this ordered pair can be collapsed back into a single denotation by covert application of Intersection on its two members. If this operation happens immediately, it mimics the behavior of intersective *and*. But because the computation can proceed in parallel pairs, it becomes possible for *and* to take arbitrarily wide scope. This leads to the right results in cases like (5), repeated here as (107), which is ambiguous between readings (107a) and (107b) (Winter, 1998, p. 340):

\[
(107) \quad \text{Every linguist and philosopher knows the Gödel Theorem.} = (5)
\]

a. Everyone who is both a linguist and a philosopher knows the Gödel Theorem.
b. Every linguist knows the Gödel Theorem, and every philosopher knows the Gödel Theorem.
In Winter’s analysis of (107), if Intersection is introduced immediately, this leads to the reading in (107a). If it is introduced after the conjuncts have combined with the determiner and optionally with the verb phrase, the reading in (107b) is generated. On the present account, reading (107a) is obtained by Intersection, while reading (107b) is obtained by Raising, Intersection, Minimization, and Determiner Fitting.

However, the delayed introduction of intersection in Winter (1998, ch. 8) overgenerates. For example, the system does not prevent No girl sang and danced from meaning the same as No girl sang and no girl danced. This is shown by the following derivation:

\[
\begin{align*}
\text{(108a)} & \quad \text{[no girl]} = \lambda P. \neg \exists x [\text{girl}(x) \land P(x)] \\
\text{(108b)} & \quad \text{[sang and danced]} = \langle \lambda x. \text{sing}(x), \lambda x. \text{dance}(x) \rangle \\
\text{(108c)} & \quad \text{[no girl, sang and danced]} = \langle \exists x [\text{girl}(x) \land \text{sing}(x)], \exists x [\text{girl}(x) \land \text{dance}(x)] \rangle \\
\text{(108d)} & \quad \text{Application of Intersection: } \neg \exists x [\text{girl}(x) \land \text{sing}(x)] \land \neg \exists x [\text{girl}(x) \land \text{dance}(x)] \\
& \quad = \text{[No girl sang and no girl danced]}
\end{align*}
\]

The problem here is similar to the one that arose for early accounts of verb phrase coordination in Transformational Grammar via conjunction reduction. By allowing the subject to enter the computation twice and by giving and scope over it, such accounts overgenerate in many cases where the subject is a quantifier. The system presented here avoids this problem since and is interpreted as local, not delayed, intersection. A sentence like No girl sang and danced is interpreted simply by intersecting sang and danced locally.

To be sure, intersecting sang and danced locally is also a possible derivation in Winter (1998, ch. 8). Both that system and the one I have presented in this paper must be prevented from overgenerating. In my case, for example, we need to prevent Raising from applying to verbs, like sang and danced. For this reason, I assume that the distribution of certain silent operators such as Raising and Minimization is not free, nor governed by the need to resolve type mismatches, but is constrained by syntax, just like the distribution of ordinary words. This assumption is discussed and defended at length in Winter (2001, ch. 4).

Of course, one could adopt the system of Winter (1998) by constraining the application of Intersection syntactically as well, for example by requiring pairs to be collapsed at certain nodes including the one that dominates the verb phrase. However, for the purpose of Winter’s approach and of this paper (that is, for the purpose of showing that the intersective theory is viable), one might of course just as well adopt the present system for noun-noun coordination. The departure from the intersective theory in Winter (1998, ch. 8) is possible but not necessary.

8 Summary and outlook

The intersective theory of and has been successfully applied to coordination of constituents other than nouns. But its application to coordination of nouns has remained elusive and has been taken to require a departure from the intersective theory (Winter, 1998; Heycock & Zamparelli, 2005). In this paper, I have shown that the intersective theory is not only viable in this case, but arguably preferable since it generalizes to other cases more successfully than the collective theory. The intersective theory straightforwardly delivers the observed behavior of and in cases like John is a liar and cheat, where the two nouns are used to describe the same person. The main result of this paper is that the intersective theory also predicts the collective behavior of and in noun-noun coordinations like man and woman, due to the way it interacts with silent operators previously postulated to account for phenomena involving indefinites and collective predicates (Winter, 2001). Essentially, this collective behavior has the same source as
the behavior of some man and some woman, except that the sources of quantification are silent modifiers rather than overt determiners. Potentially non-disjoint sets, as in doctor and lawyer, have made it necessary to adopt a choice-functional analysis of the silent modifiers in question. Coordination of plural nouns, as in five men and women, are potentially ambiguous: in this case, there may be either ten or just five people in total. The former case can be dealt with by assuming a silent copy of the numeral, or by raising the type of the nouns before conjoining them so they expect the numeral as an argument. The latter case requires the application of a distributive choice-functional operator, which is also needed in cases involving coordination of plural noun phrases.

The hardest nut to crack for anyone wishing to pursue the collective theory is probably coordination of non-upward-entailing quantifiers such as John and nobody else or John and an odd number of women. Not only do Heycock & Zamparelli (2005) not give a satisfying account of these conjunctions, it also does not seem easy to give one under any approach that takes the basic meaning of and to be collective. For this reason alone, it seems preferable to make the intersective theory work if one is interested in using generalized quantifier denotations for at least some non-upward-entailing noun phrases.

The intersective theory of conjunction naturally leads to a view according to which there is a close relationship between and and or in natural language, analogous to the close relationship between intersection and union in many logics. Any set of assumptions surrounding an intersection-based entry for and needs to be tested with respect to whether they interact correctly with a union-based entry for or. This is the case here. In particular, the present theory explains the typological observation that across languages, or is never – descriptively speaking – ambiguous between union-based and collective uses the way and tends to be ambiguous between intersection-based and collective uses.

The analysis in this paper leads to new challenges. As discussed in section 2.3, hydrams involving noun-noun coordination find a natural explanation in the present system. Unfortunately, hydrams have the well-known property that for each head cut off, three more need to be dealt with. One problem arises from extraposed relative clauses with split sentential or DP antecedents:

(109) A man entered the room and a woman went out who were quite similar.
(Perlmutter & Ross, 1970)

(110) the boy and the girl who met yesterday
(Link, 1984)

It has long been recognized that such sentences pose challenges for compositional semantics (e.g. Hoeksema, 1986). The correct syntactic analysis of hydrams raises many questions, ranging from how to analyze extraposition (see Baltin, 2006, Sect. 5) to how to analyze split antecedents (e.g. McKinney-Bock, 2013). Aside from this, it is not clear how to compute the presuppositions of the two definite determiners in (110). The presupposition of the first determiner seems to be that there is a unique boy who met yesterday with a girl, and the presupposition of the second determiner is analogous. Thus, each determiner’s restrictor appears in the presupposition of the other one, and this is not easy to explain compositionally. Perhaps a semantic account of these facts can be given along the lines of Champollion & Sauerland (2011). I leave this problem open for future work.

Examples involving adjective conjunction such as the flag(s) is/are green and white are another interesting test case for theories of coordination (Krifka, 1990; Winter, 2001). The present system can be extended to these examples as follows. First, we move to a mereological setting in which parts of ordinary objects, in addition to pluralities of these objects, are explicitly
represented as entities in the model. This is independently needed if we decide to pursue a unified analysis of mass terms and plurals (Link, 1983). The extension furthermore requires allowing Raising to apply to adjectives. The derivation of green and white proceeds similarly to that of man and woman but requires an extra step that applies to the output of Minimization and collapses each pair in this output into its mereological fusion. The result is that green and white denotes the set of all fusions of a green and a white entity, as desired. This extra step is required anyway if one chooses to adapt the present system as a whole into a setting where collective individuals are represented as mereological sums rather than sets. This would also be required if one wanted to extend the present treatment to mass noun conjunctions like water and wine in a mereological framework such as Link (1983). A challenge consists in preventing this approach to adjective conjunctions from overgenerating to cases like the bridge is long and short without ruling out the bridges are long and short (Winter, 2001). Most long bridges can be divided into a long part and a short part, yet we cannot apply collective predicate coordination in this case.

I have not discussed overgeneration much in this paper, because my main goal was a proof of concept: I simply wanted to show that the intersective theory is able to generate the right collective readings in the first place. However, a well-motivated mechanism that prevents overgeneration would be an essential feature of any grammar or fragment that implements the system presented here. In the absence of such a mechanism, the only thing that prevents dropping a generalized quantifier into a nominal position (in which it would be interpreted as a property of sets) is the good will of the grammar user. For an illuminating discussion of the havoc that a mischievous grammar user who is granted unconstrained access to silent semantic operators like Raising and Minimization could wreak, see Schwarzschild (2001). A promising approach may be to adopt the category-shifting strategy advocated in Winter (1998, 2001). According to this strategy, certain silent semantic operators change the semantic category of an expression (e.g. from predicate to quantifier and vice versa). These semantic categories are distinct both from syntactic categories (the Raising operation as I used it maps nominals to other nominals), and from semantic types (the Minimization operation maps \langle et, t \rangle-type quantifiers to \langle et, t \rangle-type predicates of pluralities). The distribution of category-shifting operators is assumed to be constrained by syntax, rather than by the need to resolve type mismatches. The fragment in Winter (2001, p. 186f.) is similar in this respect, since it contains D’ constituents (complements of determiners) that are mapped by operators akin to Raising and Minimization to other D’ constituents of the same semantic type.

Determiners and languages differ in whether they allow collective interpretations of singular noun coordinations. This seems to be due to the different ways in which determiners and languages interact with morphological agreement features and their semantic counterparts (King & Dalrymple, 2004; Heycock & Zamparelli, 2005). Even restricting our attention to English, the agreement properties of noun-noun coordinations are highly interesting in their own right. For example, this requires singular agreement on its complement and plural agreement on its verb phrase (this man/*men and woman/*women are/*is in love), while every requires singular agreement both on its complement and on its verb phrase (every cat/*cats and dog/*dogs is/*are licensed). For various perspectives on these facts, see for example Corbett (1979), King & Dalrymple (2004) and Le Bruyn & de Swart (2014).

A theory of English agreement is not only needed to explain these kinds of facts, but also in order to rule out expressions like *two man and woman which are otherwise expected to be a good way to talk about a man and a woman. It would, however, presumably reach its limits — as does the theory in this paper — when it comes to explaining why *two men and women cannot be used for that purpose either. A natural next step to take is to study the interactions...
of the semantic system presented here with a grammar that describes and constrains number agreement in English and across languages. The grammar in King & Dalrymple (2004) seems to be a promising candidate for that purpose.

LUCAS CHAMPOLLION
Department of Linguistics
New York University
10 Washington Place
New York
NY 10003, USA
e-mail: champoll@gmail.com

Acknowledgements

I thank Chris Barker, Dylan Bumford, Simon Charlow, Ivano Ciardelli, Kit Fine, Caroline Heycock, Kyle Johnson, Manuel Križ, Sarah Murray, Floris Roelofsen, Robert van Rooij, Barry Schein, Philippe Schlenker, Anna Szabolcsi, Roberto Zamparelli, Linmin Zhang, Vera Zu, as well as audiences at the Amsterdam Colloquium, University of Amsterdam, ENS/Institut Jean Nicod, and at the New York University philosophy/linguistics seminar on minimal entities. I am grateful to the editor of Journal of Semantics (Rick Nouwen), the proofreader (Nathan Klinedinst), and to the anonymous reviewers, whose comments have substantially shaped the way the ideas in this paper are presented. Special thanks to Yoad Winter for reviewing and commenting on a shorter version of this paper, which focuses on singular nouns and appeared as Champollion (2013), and for in-depth discussions of this paper. All errors remain mine, and none of the people mentioned here should be taken to endorse the view I defend.

References

Bowler, Margit. 2014. Conjunction and disjunction in a language without ‘and’. In Mia Wie-

edu/books/type-logical-semantics.

http://ling.auf.net/lingbuzz/002099.

44

