
University of Pennsylvania Working
Papers in Linguistics

Volume 21
Issue 1 Proceedings from PLC 39 Article 7

3-1-2015

Back To Events: More on the Logic of Verbal
Modification
Lucas Champollion
champollion@nyu.edu

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/pwpl/vol21/iss1/7
For more information, please contact repository@pobox.upenn.edu.

http://repository.upenn.edu/pwpl
http://repository.upenn.edu/pwpl
http://repository.upenn.edu/pwpl/vol21
http://repository.upenn.edu/pwpl/vol21/iss1
http://repository.upenn.edu/pwpl/vol21/iss1/7
http://repository.upenn.edu/pwpl/vol21/iss1/7
mailto:repository@pobox.upenn.edu

Back To Events: More on the Logic of Verbal Modification

This working paper is available in University of Pennsylvania Working Papers in Linguistics: http://repository.upenn.edu/pwpl/
vol21/iss1/7

http://repository.upenn.edu/pwpl/vol21/iss1/7
http://repository.upenn.edu/pwpl/vol21/iss1/7

Back to Events: More on the Logic of Verbal Modification

Lucas Champollion∗

1 Introduction

Beaver and Condoravdi (2007) propose to move away from event semantics (Davidson 1967) as
a theory of verbal modification. The system they present, linking semantics, provides a clean and
compositional account of the interaction of events and quantifiers. Beaver and Condoravdi present it
as surpassing both (Neo-)Montagovian semantics and Davidsonian event semantics. But as we will
see, their system embodies a nonstandard view of the semantics of action sentences that does not
use events, and this means that some of the benefits of event semantics are lost.

This paper shows that we can have our cake and eat it too: we can reconcile linking semantics
with Davidsonian event semantics and keep the strengths of both systems. This is part of a larger
project about integrating Montague semantics with event semantics (Champollion 2010, 2014).

The central idea in linking semantics is that verbs and verbal projections denote sets of “role
assignments”, that is, partial functions that map labels like ARG1, ARG2 and T (intuitively, agent,
theme, and time) to appropriate values. For example, in a model where John kicked Bill at 1pm,
the sets denoted by kick, by kick Bill and by John kick Bill each contain at least the role assignment
g1 = [ARG1, j; ARG2,b; T,1pm].

Linking semantics provides accounts of the interaction of events and quantifiers, of verbal mod-
ifiication, tense, temporal anaphora, and stacked temporal modifiers. Beaver and Condoravdi (2007)
give the derivation in (1) (slightly simplified here) as an illustration of how the system deals with
quantification. Here, g,g′ ranges over role assignments, and L over sets of role assignments. The
notation g+ [ARG1,x] can be read as an instruction to extend g by a new entry that maps ARG1
to x. It is only defined when g does not already contain an entry for ARG1. Following Beaver
and Condoravdi (2007), I will write (g+[ARG1,y])+ [ARG2,x] as g+[ARG1,y; ARG2,x] and I will
occasionally rely on obvious equivalences, for example by writing g+[ARG2,x](T) as g(T).

(1) A diplomat visited every country.
a. [[every country:ARG2]] = λLλg∀x.country(x)→ L(g+[ARG2,x])
b. [[a diplomat:ARG1]] = λLλg∃y.diplomat(y)∧L(g+[ARG1,y])
c. [[visit]] = λg.visit(g)
d. [[-ed]] = λLλg.L(g)∧g(T)< now
e. [[visited every country:ARG2]]

= λg∀x.country(x)→ [visit(g+[ARG2,x])∧g(T)< now]
f. [[a diplomat:ARG1 visited every country:ARG2]]

= λg∃y.diplomat(y)∧∀x.country(x)→ [visit(g+[ARG1,y; ARG2,x])∧g(T)< now]
= λg.g < now∧∃y.diplomat(y)∧∀x.country(x)→ visit(g+[ARG1,y; ARG2,x])

Linking semantics defines truth with respect to a model M by existentially quantifying over times.
(The interpretation function is of course also defined with respect to a model, as well as temporal
and world parameters, which I have left out here for convenience.) The resulting rule, again slightly
simplified compared with the original formulation because I left out worlds, is as follows:

(2) M |= S iff ∃t[[S]]([T, t])

When applied to the last line of the derivation in (1), this yields:

(3) M |=[[A diplomat visited every country]] iff
∃t.t < now. ∃y.diplomat(y)∧∀x.country(x)→ visit([ARG1,y; ARG2,x; T, t])

The relative scope of the two quantifiers supplied by the two noun phrases is correct. As this deriva-
tion shows, linking semantics does not use quantifying-in or quantifier raising, which Beaver and
∗I thank Simon Charlow and Roger Schwarzschild for helpful discussion.

U. Penn Working Papers in Linguistics, Volume 21.1, 2015

2 LUCAS CHAMPOLLION

Condoravdi see as problematic. I will discuss this reading in more detail below.
I will start by pointing out that linking semantics is not really a “logic” of verbal modification

because it treats the relevant phenomenon by a special-purpose axiom (Section 2). Another axiom
concerns the treatment of time and brings its own problems (Section 3). To fix these problems, I
will formulate a version of event semantics that works in a very similar way to linking semantics
(Section 4), though the treatment of temporal anaphora makes it necessary to add a dynamic layer
(Section 5). I use a simple setup but there are ways to extend it to more complex phenomena like
intersentential temporal anaphora and quantificational subordination (Section 6). Some interesting
differences between temporal and ordinary anaphora emerge (Section 7).

2 The Treatment of Adverbial Modification

In event semantics, verbal modifiers like at noon and in the bathroom are interpreted conjunctively,
so that entailments like (4) are modeled as logical entailments (5) (Carlson 1984, Parsons 1990).

(4) Jones buttered the toast at noon. ⇒ Jones buttered the toast.

(5) [∃e.butter(e)∧ag(e) = j∧th(e) = t∧τ(e) = noon]⇒ [∃e.butter(e)∧ag(e) = j∧th(e) = t]

This treatment of verbal modification is considered a very powerful argument in favor of event
semantics (Landman 2000:ch. 1). One would expect the natural-language entailment in (4) to corre-
spond to a logical entailment, and this is the case in event semantics. But in linking semantics, the
entailment in (6) is not underwritten by predicate logic, so it no longer comes for free.

(6) butter([ARG1, j; ARG2, toast; T,noon])⇒ butter([ARG1, j; ARG2, toast])

The reason that this entailment is not accounted for by predicate logic alone is that there is no
guarantee that a predicate like butter should hold of a certain role assignment just because it holds
of another one. In particular, the predicate might hold of the role assignment (7a) without holding
of the assignment (7b), contrary to intuition.

(7) a. [ARG1, j; ARG2, toast; T,noon]
b. [ARG1, j; ARG2, toast]

Now, in such a situation it is always possible to add axioms that impose constraints on possible
models in order to generate entailments when the underlying logic by itself does not generate them.
Beaver and Condoravdi apply this method as follows. The goal is for the entailment in (4) to be
reflected in the properties of the predicate butter. When understood as a description of events, the
role assignment (7b) is more general than the role assignment (7a), since both assignments agree on
their first and second arguments but only the former specifies a time. Generalizing from this case,
one expects that whenever butter holds of a given role assignment, it also holds of any more general
role assignment. And of course this should not only be the case for butter but for any verb. Linking
semantics guarantees this via the following principle:

(8) Argument reduction axiom. For any verb V and model M, for any role assignments g and
g′, if g ∈ [[V]]M , g′ ⊂ g, and every argument of V is in the domain of g, then g′ ∈ [[V]]M .

This axiom says that if V holds of a role assignment R, it also holds of any role assignment that is
more specific than R, as long as all of the arguments of the verb are kept. This models entailments
like the one in (4). However, at this point the question arises whether we have lost something in the
translation. Linking semantics is presented by its authors as a logic (!) of verbal modification. But
as explained above, one major motivation for event semantics as a logic of verbal modification is
to explain entailments like the one in (4) by reducing them to the fact that it is a logical necessity
that p∧ q entails p. When modeling natural language inferences, this basic property of predicate
logic is also taken to explain facts that are unrelated to verbal modification, such as the entailment
from natural-language conjunctions like John is happy and Mary is sad to each of their conjuncts.
This motivation for event semantics does not carry over to linking semantics, since the argument

BACK TO EVENTS: MORE ON THE LOGIC OF VERBAL MODIFICATION 3

reduction axiom is specific to verbal modification and is not linked to any such general principles.

3 The Treatment of Time

Linking semantics relies on another axiom, this one concerning time. As we have seen above, the
surface scope reading of a sentence like (9a) is represented as in (9b).

(9) a. A diplomat visited every country.
b. ∃t.t < now∧∃y.diplomat(y)∧∀x.country(x)→ visit([ARG1,y; ARG2,x; T, t])

Preliminary paraphrase: “There exist a past time interval t and a diplomat y such that
y visited every country at t.”

Since the role assignments over which the formula quantifies all map T to the same value, namely the
time t that is existentially bound by the highest-scope quantifier, this formula by itself requires all
the visits to happen simultaneously at that time t. This is too strong, since the sentence is compatible
with a (plausible) scenario in which the diplomat in question visits each country in sequence. Beaver
and Condoravdi address this problem by introducing a principle they call “temporal closure”. This
principle makes all verbs temporally upward closed, in the sense that, for example, if x visits y at
time t then x also visits y at every superinterval of t. This principle is implemented as follows:

(10) Temporal closure axiom. For any verb V and model M, and for any role assignments g
and g′ that differ only with respect to the value they assign to T, if g ∈ [[V]]M and g(T) is a
subinterval of g′(T), then g′ ∈ [[V]]M .

The effect of adding this axiom to the system is the following. In order for a verbal predicate to be
true, it no longer has to be true at whatever time t it is formally related to, it is merely required to
be true at some interval or other within that time. Given this axiom, the surface-scope reading of
sentence (9a) no longer requires the diplomat to visit all countries simultaneously. Rather, the truth
conditions in (9b) can now be paraphrased as “There exist a past time interval t and a diplomat y
such that y visited every country at some point or other within t.” As long as all the visits took place
in the past, there will always be a way to make the time interval t long enough to include all of them.
So the sentence comes out as having the right truth conditions after all.

Unfortunately, this approach to temporal semantics does not always work as intended. The
temporal closure axiom gives the mapping of T to a given time the effect of a “within” semantics
rather than an “at” semantics. In effect, the axiom causes this mapping to behave like an upper
bound on the time a given activity takes to unfold, as opposed to being an exact measure. In the
previous sentence, this was appropriate, but for some predicates an exact measure is required. One
kind of example involves statements like (11).

(11) It took John exactly five years to learn Russian.

This sentence states an exact measure on the time in which John learned Russian. It does not merely
place an upper bound: if John actually learned Russian in three years, the sentence is false. Similarly,
the entailment in (12) is not valid, since a model where John learned Russian in five years makes
(11) true and (12b) false. Compare this with the entailment in (13), which is valid:

(12) a. It took John exactly five years to learn Russian.
b. 6⇒ It took John exactly ten years to learn Russian.

(13) a. It took John five years or less to learn Russian.
b. ⇒ It took John ten years or less to learn Russian.

The problem with the temporal closure axiom is that it predicts the entailment in (12) to be valid.
This is because (14a) entails (14b).

(14) a. ∃t.t < now∧years(t) = 5∧ learn([ARG1, j; ARG2,r; T, t])
b. ∃t.t < now∧years(t) = 10∧ learn([ARG1, j; ARG2,r; T, t])

4 LUCAS CHAMPOLLION

For example, take a model where John learned Russian in the five-year interval 2000-2005. In this
model, (14a) will be true because the predicate learn will hold of (15a). But by the temporal closure
axiom, the same predicate will also hold of (15b), and so (14b) is also true.

(15) a. [ARG1, j; ARG2,r; T,2000-2005]
b. [ARG1, j; ARG2,r; T,2000-2010]

So while (14a) and (14b) appear to be the most straightforward (and indeed the only) ways in which
the sentences in (12) can be represented in linking semantics, the temporal closure axiom causes
them to behave as if they had the meanings of the sentences in (13).

Fortunately, there is no need to abandon event semantics even if we want to capture the phe-
nomena for which linking semantics was intended. The rest of this paper develops an event semantic
account that eliminates the need for problematic statements like the argument reduction axiom and
the temporal closure axiom.

4 Back to Events

The basic insight that leads to the system to be presented is that role assignments are very similar
to sets of events. Take for example the role assignment g1 = [ARG1, j; ARG2,b; T,1pm]. This
assignment corresponds to the property of being an event whose agent is John, whose theme is Bill,
and which takes place at 1pm. This property could in principle apply to more than one event. For
example, if John kicked and slapped Bill at the same time, then it would apply to the slapping event
and to the kicking event. So in terms of event semantics, a role assignment corresponds to a set of
events and not just to one event.

Traditional implementations of event semantics, such as Carlson (1984) and Landman (2000),
model verbal projections (that is, verbs, verb phrases, sentence radicals, and so on) as sets of events,
perhaps with additional lambda slots for verbal arguments. But for quantificational arguments, these
traditional implementations need to resort to quantifying-in or other devices that Beaver and Condo-
ravdi see as problematic. Let us therefore translate linking semantics into event semantics in a way
that minimizes disturbance to their system and does not introduce the need for quantifying-in. Since
the verbal projections of linking semantics denote properties of role assignments, and since these
properties correspond to sets of events, it can be expected that the least disturbance to the system
will result if we move to an event semantics in which verbal projections denote properties of sets of
events, rather than properties of events.

The system in Champollion (2010, 2014), which I will call quantificational event semantics, fits
the bill and its derivations are quite similar to the ones in linking semantics. This is no accident,
because quantificational event semantics resulted from my attempt to reconstruct linking semantics
in an event-based framework.

Quantificational event semantics is built around the idea that verbs and their projections denote
predicates that hold of sets of events. A verb will be true of any set of events f so long as f contains
(possibly among other things) an event that satisfies the relevant event predicate. For example, [[rain]]
can be represented (ignoring tense and aspect) as in (16), where f stands for the sets of events to
which the verbal predicate may be applied.

(16) [[rain]] = λ f〈v,t〉∃e[rain(e)∧ f (e)]

Assuming that the verb rain does not take any semantically visible arguments, and again ignoring
tense and aspect for now, the truth conditions of a sentence like it is raining can then be obtained
by checking whether the set of all events whatsoever, λe.true, has the property denoted by the verb.
The meaning of it is raining comes out as follows (Schwarzschild 2014):

(17) [[It is raining]]
a. = λ f∃e[rain(e)∧ f (e)](λe.true)
b. = ∃e[rain(e)∧ (λe.true)(e)]
c. = ∃e[rain(e)∧ true]

BACK TO EVENTS: MORE ON THE LOGIC OF VERBAL MODIFICATION 5

d. = ∃e[rain(e)]

As for verbal arguments like Mary, they are assumed to combine with silent thematic heads like [ag]
and [th], so that, for example, [[[ag] Mary]] can be represented as λV λ f .V (λe.[f (e)∧AG(e) = m])].

The parallel to linking semantics is very close. For comparison, I show a linking semantic
derivation in (18) and its quantificational event semantic counterpart in (19). Here as above, g,g′

range over role assignments, and L over sets of role assignments. In addition, f ranges over sets of
events, and V over sets of sets of events.

(18) a. [[Mary]] = λP.P(m)
b. [[Mary:ARG1]] = λLλg.L(g+[ARG1,m])
c. [[-ed]] = λLλg.L(g)∧g(T)< now
d. [[laugh -ed]] = λg.laugh(g)∧g(T)< now
e. [[Mary:ARG1 laugh -ed]] = λg.laugh(g+[ARG1,m])∧g(T)< now
f. M |= Mary laughed iff ∃t[laugh([T, t; ARG1,m])∧ t < now]

(19) a. [[Mary]] = λP.P(m)
b. [[[ag] Mary]] = λV λ f .V (λe.[f (e)∧AG(e) = m])
c. [[-ed]] = λV λ f∃t[t < now∧V (λe[f (e)∧ τ(e)⊆ t])]
d. [[[closure]]] = λV.V (λe.true)
e. [[laugh]] = λ f∃e[laugh(e)∧ f (e)]
f. [[[closure] [ag] Mary laugh -ed]] = ∃t[t < now∧∃e[laugh(e)∧AG(e) = m∧ τ(e)⊆ t]]

In (19), I have deviated from linking semantics in distinguishing between the runtime of the event,
τ(e), and the reference time interval of the sentence, t. Following standard practice, the morpheme
-ed contributes both past tense and perfective aspect, so it relates τ(e) and t by temporal inclusion,
written as ⊆ (19c). This removes the need for the temporal closure principle.

I represent (9a) (repeated below as (20)) as in (21). The underlined bit requires each visit to be
contained in the reference interval, but does not require all visits to take place at the same time. For
consistency with linking semantics, I also give the tense quantifier widest scope.

(20) A diplomat visited every country.

(21) ∃t.t <now∧∃x.diplomat(x)∧∀y.country(y)→∃e.visit(e)∧ag(e)= x∧th(e)= x∧τ(e)⊆ t

As for the matrix clauses of (12), I translate them as in (22).

(22) [[It took John n years to]]
= λV∃t.t < now∧years(t) = n∧V (λe.ag(e) = j∧ τ(e) = t)

The embedded clause does not have past tense, and therefore does not contribute ⊆. The underlined
parts of (23a) and (23b) block the undesired inference in (12). This is so because we have = where
in linking semantics it is as if we had ⊆ because of the temporal closure principle. Unlike in linking
semantics, there is no overgeneration problem: (23a) does not entail (23b).

(23) a. ∃t.t < now∧years(t) = 5∧∃e[learn(e)∧ag(e) = j∧ th(e) = r∧ τ(e) = t]
b. ∃t.t < now∧years(t) = 10∧∃e[learn(e)∧ag(e) = j∧ th(e) = r∧ τ(e) = t]

5 Extension to Temporal Anaphora through Dynamic Semantics

There is one point in which linking semantics does afford additional formal expressivity compared
to quantificational event semantics as I have introduced it so far. In their treatment of (24), Beaver
and Condoravdi model the dependency between the two temporal modifiers by letting in July write
its denotation into the value of T, and letting last year read it out and replace it with its own value
which is computed as a function of the previous value. This is an instance of destructive assignment
(van Eijck 2001). I give Beaver and Condoravdi’s derivation in (25). This derivation assumes the
existence of two partial functions from intervals to intervals, the-july-in and the-year-before, which

6 LUCAS CHAMPOLLION

have the meanings you would expect. The notation g[T,m] is only defined when g already contains
an entry for T. It can be read as the result of updating the entry for T in g by overwriting its previous
value with m. The destructive assignment step just described occurs between steps (25d) and (25e),
where the time of g is overwritten from “July” to “July of last year”. (To be precise, prior to this
one there is another instance of destructive assignment. In step (25d), in July overwrites the time of
g from whatever interval it was to the July of that interval.)

(24) Last year, it rained in July.

(25) a. [[in July]] = λLλg.L(g[T, the-july-in(g(T))])
b. [[last year]] = λLλg.L(g[T, the-year-before(g(T))])
c. [[it rained]] = λg.rain(g)∧g(T)< now
d. [[it rained in July]]

= λg.rain(g[T, the-july-in(g(T)]))∧ the-july-in(g(T))< now
e. [[Last year, it rained in July]]

= λg.rain(g[T, the-july-in(the-year-before(g(T)])))
∧ the-july-in(the-year-before(g(T)))< now

f. M |= Last year, it rained in July iff
∃t[rain([T, the-july-in(the-year-before(g(T)])))
∧ the-july-in(the-year-before(g(T)))< now]

There is no way to reproduce this behavior one-to-one in quantificational event semantics, as
we cannot compositionally map a predicate of sets of events to another one in a way that would
simulate the destructive assignment (the overwriting of runtimes) that B&C rely on. The problem
already becomes clear when we try to translate the denotation of last year in (25a) to a format that
is suitable for quantificational event semantics:

(26) Problematic translation:
[[last year]] = λV λ f .V (λe.[f (e)∧ τ(e) = the-year-before(τ(e))])

The problem with this translation is the statement τ(e) = the-year-before(τ(e)). This does not have
the intended effect of “overwriting” the value of τ(e) with the year before it, but instead requires
the two intervals to be identical. Since the mapping from times to years preceding them has to be
irreflexive, this constraint cannot be satisfied. Worse, when two such modifiers are stacked, these
equalities pile up instead of replacing one another. For example, here is what happens when we
apply [[in July]] (defined analogously to (26)) to [[it rained]], defined as in (16), and then apply [[last
year]] to the result. I continue to ignore tense for now, but including it would not make things better.

(27) Problematic derivation: [[last year]]([[in July]]([[it rained]]))
λ f .∃e[rain(e)∧ f (e)∧ τ(e) = the-year-before(τ(e))∧ τ(e) = the-july-in(τ(e))]

The problem here is that τ(e) is simultaneously constrained to be the year before itself and the July
inside itself. The first conjunct is already contradictory, and the second conjunct is added to the first
instead of replacing it. The problem arises from the fact that the analogy between sets of events and
role assignments is not perfect. Sets are fundamentally different from partial functions in that there
is no operation on sets that corresponds to re-assigning a variable.

In the following, I will extend quantificational event semantics by adding a dynamic layer on
top of it that will afford us a simple treatment of temporal anaphora. Beyond making sure that we
do not lose any coverage compared with linking semantics, my intention is to show that phenomena
relating to temporal anaphora do not stand in contradiction with adopting an event semantic view of
verbal denotations. There are many ways we could add a dynamic component. Here I consider one
whose particular advantage is its modularity. It can be built on top of quantificational event semantics
without disturbing its inner workings or without having to switch to another logic. Following Shan
(2005), Barker and Shan (2014) and Charlow (2014), I consider binding relations to be linguistic
side effects, a term introduced in Shan (2005) in analogy to the corresponding term in computer
science. The basic idea of the analogy, applied to temporal modifiers like last year and in July, is
that in addition to their core meaning, they retrieve and provide temporal values “on the side”. In

BACK TO EVENTS: MORE ON THE LOGIC OF VERBAL MODIFICATION 7

fact, in the implementation to follow, I will give them a trivial core meaning: the identity function
on verbal denotations. So temporal modifiers make their semantic contribution only via side effects.

In order for these these values to be communicated, I will enrich quantificational event seman-
tics with a dynamic semantic layer that provides the necessary infrastructure for anaphoric links
(Groenendijk and Stokhof 1990). The implementation here follows Charlow (2014). In techni-
cal terms, it can essentially be seen as lifting quantificational event semantics into the state monad
(Wadler 1992). In the following, I will not assume prior knowledge with monads, though Charlow
discusses the connection extensively.

We equip each lexical item with an additional lambda slot λ t, which supplies the “input time”,
the temporal interval at which the lexical item is evaluated. We also form a pair of the ordinary
denotation of each lexical item and the “output time”. This can serve as an antecedent to subsequent
modification. By default, the input time can be returned unchanged as the output time. This is the
case, for example, in the denotation of it rained, given below:

(28) [[it rained]] = λ t.〈λ f∃e.rain(e)∧ f (e)∧ τ(e)⊆ t ∧ τ(e)< now , t〉

In this denotation, the argument λ t is the way through which a temporal antecedent supplies the
value at which the proposition “it rained” is evaluated. Once this argument has been supplied, a pair
is returned whose first argument corresponds to what would be considered in quantificational event
semantics the ordinary denotation of the verb (cf. (19e)) and whose second argument contains the
time that serves as an antecedent to subsequent denotations. In this case, it is the input time t. (In
this paper, I will not actually study any constructions where the output time of the verb serves as an
antecedent, so this choice is mainly for convenience.) Tense supplies the requirement that τ(e) be
located before now. This requirement should be properly handled as a definedness condition rather
than as a part of the assertion. Beaver and Condoravdi make an analogous comment in a footnote.
Like them, I will ignore this issue.

The second element of the pair in (28) can be seen as keeping track of the current state of the
discourse. In the present implementation, it is an extremely impoverished state: the only thing that
we keep track of is a single time interval. This corresponds to the way in which linking semantics
manipulates the value of just one temporal variable at a time. We could enrich the picture in various
ways, for example by passing assignment functions from variables to times. I come back to this
point in Section 6.

As seen above, I write pairs of denotations a and b as 〈a,b〉. These pairs do not play an es-
sential role in the system. A pair like 〈a,b〉 can be seen as a shorthand for λk.k(a)(b), where k
is of the polymorphic type 〈α,〈β , t〉〉. The latter term is known as the Church encoding of pairs
(Church 1936, Charlow 2014). Likewise, the type α × β can be seen as a shorthand for the type
〈〈α,〈β , t〉〉, t〉.

Temporal modifiers can be treated quite simply as identity functions whose side effect is to
return as output time the result of applying the constant function the-july-in to the input time:

(29) a. [[in July]] = λ t.〈λV.V, the-july-in(t)〉 = λ t.λk.k(λV.V)(the-july-in(t))
b. [[last year]] = λ t.〈λV.V, the-year-before(t)〉 = λ t.λk.k(λV.V)(the-year-before(t))

Some temporal modifiers will require us to abandon the pair notation because they contain quanti-
fiers that bind across both the first and the second element of a pair. Although I will not have space
to demonstrate this in detail here, temporal quantifiers like every day are an example. As Beaver
and Condoravdi discuss, such quantifiers can serve as antecedents to other temporal modifiers in
their scope, as in Every dayi, it rained in the afternooni. So the output variable of every day should
be bound by its universal quantifier. The entry in (30a) tries to achieve this but fails because of a
type mismatch: a pair does not have the right kind of type to appear on the right hand side of the
implication arrow. The entry in (30b) fixes this by using Church encoding and moving the variable
k above the universal quantifier.

(30) a. Problematic entry: [[every day]] = λ t.∀t ′[day-in(t ′, t)→ 〈λV.V, t ′〉]
b. Correct entry: [[every day]] = λ t.λk.∀t ′[day-in(t ′, t)→ k(λV.V)(t ′)]

8 LUCAS CHAMPOLLION

The way to combine such paired meanings is a bit more complicated than function application.
I first present the algorithm informally in procedural terms, and then more formally below. For
sister nodes F and A (mnemonics for function and argument, respectively), and an initial input time
t which will eventually be lambda-abstracted over, the result R of applying F to A, or in other words
the denotation of their mother node, is obtained in the following way (see Charlow (2014) on how
to derive this procedure from first principles):

1. Apply [[F]] to t. This results in a pair 〈Fcore,Fout〉, which may be thought of as the core
meaning of F and the output time Fout respectively. For example, in the case of F = [[in July]],
as indicated in (29a), the core meaning Fcore will be the identity function λV.V , and the output
time Fout will be the-july-in(t), the July contained in the initial input time t.

2. Now apply [[A]] to that output time Fout. The output time of F thus becomes the input time
of A. This again results in a pair of a core meaning and an output time, 〈Acore,Aout〉. For
example, in the case of A = [[it rained]], as indicated in (28), the core meaning Acore will be
λk∃e.rain(e)∧ k(e)∧ τ(e)⊆ the-july-in(t)∧ τ(e)< now, and the output time Aout will be the
event time of e, that is, the-july-in(t).

3. Like F and A, the result R should be a function from input times t to a pair 〈Rcore,Rout〉 of core
meanings and output times. We set Rcore to the result of applying Fcore to Acore via ordinary
function application, and we set Rout to the output time Aout of [[A]]. In our current example,
Rcore is (the result of applying the identity function λV.V to) λk∃e.rain(e)∧ k(e)∧ τ(e) ⊆
the-july-in(t)∧ τ(e) < now. As for Rout, it is the-july-in(t). Thus the result of applying in
July to it rained is as follows:

(31) [[it rained in July]]
= λ t.〈λ f∃e.rain(e)∧ f (e)∧ τ(e)⊆ the-july-in(t)∧ τ(e)< now, the-july-in(t)〉

More formally, this procedure can be stated as in (32). Here, i is the type of temporal intervals,
α is the type of a, and β the type of b. I write α×β for the type of the pair 〈a,b〉.1

(32) Stateful function application:
Given a binary-branching node R whose daughters F (function) and A (argument, may be
to the left or right of F) have the types 〈i,(〈a,b〉× i)〉 and 〈i,(a× i)〉, the value of R, written
[[F]]([[A]]), is given by λ t.〈 f (a), t ′′〉 where 〈 f , t ′〉= [[F]](t) where 〈a, t ′′〉= [[A]](t ′).

These “where” statements are shorthands. They expand as in (33). I write πcore for the first element
of a pair π (its core meaning) and πout for its second element (its output time):2

(33) Stateful function application (expanded):
[[F]]([[A]]) def

= λ t.〈(πcore([[F]](t)))(πcore([[A]](πout([[F]](t))))),πout([[A]](πout([[F]](t))))〉

We can now continue the derivation begun in the example. To do this, we first use stateful func-
tion application in order to apply [[last year]], shown in (29b), to (31). In step 1, we retrieve
the (trivial) core meaning of [[last year]] and its output time, the-year-before(t). In step 2, we
apply (31) to that output time. This results in the core meaning λ f∃e.rain(e)∧ f (e)∧ τ(e) ⊆
the-july-in(the-year-before(t)). Here we see that the functions introduced by the temporal modi-
fiers have been stacked in the right way. We also get the-july-in(the-year-before(t)) as the output
time. In step 3, we pack these two things into a pair, and abstract over t. The result is as follows:

(34) [[last year]]([[it rained in July]])
= λ t.〈λ f∃e.rain(e)∧ f (e)∧ τ(e)⊆ the-july-in(the-year-before(t))∧ τ(e)< now,
the-july-in(the-year-before(t))〉

1I thank Simon Charlow for discussion of this point.
2If one uses the Church encoding of pairs, this rule should be replaced by:

[[F]]([[A]]) def
= λ t.λk.[[F]](t)(λ f .λ t ′.[[A]](t ′)(λa.λ t ′′.k(f (a))(t ′′))).

BACK TO EVENTS: MORE ON THE LOGIC OF VERBAL MODIFICATION 9

We can now apply a closure operation that maps this to a truth condition. The resulting operator is
shown below. Since its result type has to be t, it applies via ordinary function application, not via
stateful function application. I use S for variables of type 〈i,(〈vt, t〉× i)〉.

(35) [[past-closure]] = λS.∃t.πcore(S(t))(λe.true)

Applied to (34), this rule yields the right truth conditions:

(36) ∃t∃e.rain(e)∧ f (e)∧ τ(e)⊆ the-july-in(the-year-before(t))∧ τ(e)< now

6 Enriching the System with Variable Assignments

Linking semantics, as well as the extension of quantificational event semantics that I have presented
so far, can only handle temporal anaphora between two temporal modifiers of the same event or role
assignment. But in order to account for temporal anaphora across sentence boundaries, as in (37), it
will be necessary to extend the system in ways that are familiar from dynamic semantics:

(37) Last yeari, I livedi in Rome. I visited Bill in Julyi.

The ability to cross sentence boundaries is just one of many ways in which temporal anaphora is par-
allel to nontemporal anaphora (Champollion 2012). To mention just one example, quantificational
subordination appears to occur in the domain of temporal dependencies:

(38) a. Most books contain a table of contents. In some, it is at the end. (Heim 1990)
b. Every year, Arnim spends a week in the mountains. In some years, he hikes every day.

The present system can be easily extended to keep track of more than one time at once. In dynamic
semantic fashion, one can equip all items that are anaphoric on a time with subscripts, and all items
that provide antecedents with superscripts, as follows:

(39) [[rain j
i]]alternative = λg.〈λ f∃e.rain(e)∧ f (e)∧ τ(e)⊆ g(i) , g+[j,g(i)])〉

(40) [[in July j
i]]alternative = λ t.〈λV.V, g+[j, the-july-in(g(i))]〉

7 Discussion

When I dynamicized quantificational event semantics for the treatment of temporal anaphora, I set
up the system so that the output time of the function is always the input time of the argument. This is
not the only logical possibility. I could have gone the other way round, or I could have implemented
a default left-to-right evaluation order by giving the output time of the left daughter as an input
time to the right daughter. Other empirical domains, such as pronoun binding, require left-to-right
evaluation, and weak crossover phenomena show that right-to-left evaluation order is more than just
a default preference (for details and qualifications, see Barker and Shan (2008, 2014)). But in the
case of temporal anaphora, the importance of left-to-right evaluation order is more doubtful. As
Beaver and Condoravdi (2007) observe, fronted modifiers are interpreted with wider scope than
clause-internal ones:

(41) a. Last year, it rained { in July, every day }.
b. ?{ In July, Every day }, it rained last year.

I have followed Beaver and Condoravdi in interpreting and implementing this constraint in terms
of scope (more specifically, function-argument directionality) rather than in terms of left-to-right
surface order. If, as has been implicitly assumed here, the relation between the reference time of the
verb and the temporal modifier that is adjacent to it is anaphoric in nature, then left-to-right surface
order cannot constrain it. Otherwise there would be no way for temporal modifiers to appear to the
right of the verb, as they do in (41b).

10 LUCAS CHAMPOLLION

In conclusion, there remains a strong motivation for Davidsonian event semantics as a logic of
verbal modification. Once we move the event quantifier into the verb, we are able to provide an
account of quantification that does not make use of quantifier raising or quantifying-in (two devices
that Beaver and Condoravdi see as problematic). As for temporal anaphora, we have seen that
a dynamic system can be layered on top of quantificational event semantics. This system provides
room for extension and shows promise as a possible framework within which to account for temporal
equivalents of phenomena like quantificational and modal subordination.

References
Barker, Chris, and Chung-chieh Shan. 2008. Donkey anaphora is in-scope binding. Semantics and Pragmatics

1:1–46.
Barker, Chris, and Chung-chieh Shan. 2014. Continuations and Natural Langauge. Oxford, UK: Oxford

University Press.
Beaver, David, and Cleo Condoravdi. 2007. On the logic of verbal modification. In Proceedings of the Sixteenth

Amsterdam Colloquium, ed. Maria Aloni, Paul Dekker, and Floris Roelofsen, 3–9. Amsterdam, Netherlands:
University of Amsterdam.

Carlson, Gregory N. 1984. Thematic roles and their role in semantic interpretation. Linguistics 22:259–279.
Champollion, Lucas. 2010. Quantification and negation in event semantics. The Baltic International Yearbook

of Cognition, Logic and Communication 6.
Champollion, Lucas. 2012. Temporal dependencies: anaphora vs. movement. Poster presentation at the 35th

GLOW colloquium, Potsdam.
Champollion, Lucas. 2014. The interaction of compositional semantics and event semantics. To appear in

Linguistics and Philosophy.
Charlow, Simon. 2014. On the semantics of exceptional scope. Doctoral dissertation, New York University.
Church, Alonzo. 1936. An unsolvable problem of elementary number theory. American Journal of Mathematics

345–363.
Davidson, Donald. 1967. The logical form of action sentences. In The Logic of Decision and Action, ed.

Nicholas Rescher, 81–95. Pittsburgh, PA: University of Pittsburgh Press.
van Eijck, Jan. 2001. Incremental dynamics. Journal of Logic, Language and Information 10:319–351.
Groenendijk, Jeroen, and Martin Stokhof. 1990. Dynamic Montague grammar. In Papers from the Second

Symposium on Logic and Language, ed. Lászlo Kálman and Lászlo Polos. Budapest, Hungary: Akadémiai
Kiadó.

Heim, Irene. 1990. E-type pronouns and donkey anaphora. Linguistics and Philosophy 13:137–177.
Landman, Fred. 2000. Events and Plurality: The Jerusalem Lectures. Dordrecht, Netherlands: Kluwer.
Parsons, Terence. 1990. Events in the Semantics of English. Cambridge, MA: MIT Press.
Schwarzschild, Roger. 2014. Distributivity, negation and quantification in event semantics: Recent work by L.

Champollion. Manuscript. Rutgers University/MIT, July 2014.
Shan, Chung-chieh. 2005. Linguistic side effects. Doctoral dissertation, Harvard University.
Wadler, Philip. 1992. Comprehending monads. Mathematical Structures in Computer Science 2:461–493.

Department of Linguistics
New York University
10 Washington Pl
New York, NY 10003
champollion@nyu.edu

	University of Pennsylvania Working Papers in Linguistics
	3-1-2015

	Back To Events: More on the Logic of Verbal Modification
	Lucas Champollion
	Back To Events: More on the Logic of Verbal Modification

	tmp.1431716334.pdf.f_8V7

